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Abstract

The state-of-the-art object detection and image classifi-
cation methods can perform impressively on more than 9k
classes. In contrast, the number of classes in semantic seg-
mentation datasets is relatively limited. This is not surpris-
ing when the restrictions caused by the lack of labeled data
and high computation demand for segmentation are consid-
ered. In this paper, we propose a novel training methodol-
ogy to train and scale the existing semantic segmentation
models for a large number of semantic classes without in-
creasing the memory overhead. In our embedding-based
scalable segmentation approach, we reduce the space com-
plexity of the segmentation model’s output from O(C) to
O(1), propose an approximation method for ground-truth
class probability, and use it to compute cross-entropy loss.
The proposed approach is general and can be adopted by
any state-of-the-art segmentation model to gracefully scale
it for any number of semantic classes with only one GPU.
Our approach achieves similar, and in some cases, even
better mIoU for Cityscapes, Pascal VOC, ADE20k, COCO-
Stuff10k datasets when adopted to DeeplabV3+ model with
different backbones. We demonstrate a clear benefit of our
approach on a dataset with 1284 classes, bootstrapped from
LVIS and COCO annotations, with almost three times better
mIoU than the DeeplabV3+. Our source code is available
at: https://github.com/shipra25jain/ESSNet.

1 . Introduction
With the advent of deep learning, significant progress has

been made in various image understanding tasks, including
image classification, object detection, and image segmenta-
tion. The state-of-the-art methods can impressively classify
images into 10k classes [15] and detect 9k different objects
[49]. In contrast, segmentation models have been trained
for a fairly limited number of common classes. The ability
to segment a greater variety of objects, including small and
rare object classes, is critical to many real-life applications

Figure 1. The left y-axis shows the maximum batch size that can
fit in a single GPU for DeepLabV3+ model vs number of classes
in the dataset. The right y-axis with markers in yellow and green
color shows pixel accuracy for our model and baseline for follow-
ing datasets (number of classes): Cityscapes (19), ADE20k (150),
COCO-Stuff10k (182) and COCO+LVIS (1284).

like autonomous driving [2] and the scene exploration [7].
The scaling of existing segmentation models has several un-
resolved challenges. One of the challenges is the unbal-
anced distribution of classes. As mentioned in [21], due to
the Zipfian distribution of classes in natural settings, there is
a long tail of rare and small object classes that do not have a
sufficient number of examples to train the model. The lack
of segmentation datasets with a multitude of classes also
limits us to develop scalable segmentation models. In fact,
one can also argue from the other side. The reason for lim-
ited classes in existing segmentation datasets is the discour-
aging computational demand, alongside the labor-intensive
annotations.

The task of semantic segmentation is essentially a pixel-
level classification of an image. Typically, it is performed
by predicting an output tensor of H × W × C for image
size H ×W and C number of semantic classes [36]. This
is desirable during the pixel-wise classification by employ-
ing cross-entropy loss on the C-dimensional predictions.
Unfortunately, the memory demand for such predictions
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happens to be a major bottleneck for a large number of
classes. Figure 1 also illustrates an example case: the max-
imum adjustable batch size of 512×512 versus the number
of classes, in one standard GPU (Titan XP) while training
the DeepLabV3+ model with ResNet50 backbone. As ex-
pected, the batch size sharply decreases, leading to only one
image per batch for 1320 classes.

Most existing works [53, 63, 20, 8] primarily focus
on the accuracy for datasets with a few hundred seman-
tic classes using multiple GPUs. With the release of LVIS
dataset [21], efforts are being made in scaling the instance
segmentation models with a large number of classes. How-
ever, for a rich and complete understanding of the scene,
semantic segmentation followed by panoptic segmentation
[29] is the way to go forward. Therefore, it stands to reason
that the semantic segmentation networks in the real-world
will eventually have to get exposed to the classes at least
as high as that of classification, i.e. 10K. Unfortunately,
the benchmark results on ADE20k dataset with 150 classes
require 4-8 GPUs during training [65]. Such demand for
computational resources hinders researchers in emerging
economies and small-scale industries from leveraging these
models for research and developing further applications.

Naive approaches for training segmentation models on
large number of classes and limited GPU memory may be
designed by reducing the image resolution or batch size.
Such solutions regrettably compromise the performance.
As shown in [55], lower resolutions (or higher strides) re-
sult in blurry boundaries and coarse predictions and miss
small but essential regions, such as poles and traffic signs.
On the other hand, [66] has already demonstrated the need
of larger batch size to achieve the state-of-the-art results.
While techniques such as gradient accumulation [24] and
group normalization [58] help to reduce the effect of low
batch size, they fail to solve the problem completely when
even a single batch size does not fit into the GPU memory.
When more than one GPU is available, the authors in [63]
offer a promising synchronized multi-GPU batch normal-
ization technique to increase the effective batch size. Such
solutions allow scaling of classes at the cost of scaling the
GPUs. However, it is important to seek for the possibility
of scaling the training on a high number of classes with a
single GPU, which remains unexplored.

In this work, we propose a novel training methodology
for which the memory requirement does not increase with
the number of semantic classes. To the best of our knowl-
edge, this is the first work to study efficient training methods
for semantic segmentation models beyond 1K classes. Such
scaling is achieved by reducing the output channels of ex-
isting networks and learning a low dimensional embedding
of semantic classes. We also propose an efficient strategy
to learn and exploit such embedding for the task of seman-
tic image segmentation. Our main motive is to improve the

scalability of the existing segmentation networks, instead of
competing against, by endowing them the possibility of us-
ing only one GPU during training for a very high number of
semantic classes. The major contributions of this paper are
summarized as follows:

• We propose a novel scalable approach for training se-
mantic segmentation networks for a large number of
classes using only one GPU’s memory.

• We experimentally demonstrate that the proposed
method achieves 2.7x better mIoU scores on a dataset
with 1284 classes, when compared against its counter-
part, while retaining a competitive performance in the
regime of a lower number of classes.

• For efficiency and generalization, we introduce an ap-
proximate method to cross-entropy measure and a se-
mantic embedding space regularization term.

• Our method is theoretically grounded in terms of prob-
abilistic interpretation and underlying assumptions.

2 . Related Works

Efficient training for segmentation. Existing methods
are often concerned to perform segmentation in constrained
devices by using limited floating point [46] to binary op-
erations [67] for neural networks. Other kinds are either
compact by design [39, 34] or compressed after training
[47, 40, 25]. Strategies like pruning [37, 11] and distill-
ing the knowledge [50, 44] from the large trained model
have also been explored. Almost all these approaches are ei-
ther compromised in accuracy, or discount the need for high
training resources [5]. Many works focus on inference time
on single GPU [56, 64, 61]. Recently, [10, 62] proposed
memory-efficient approaches to preserve local-global infor-
mation for high-resolution images. However, scalability is-
sues regarding the number classes in semantic segmentation
have attained little to no attention. Our method is compli-
mentary in this regard.
Embeddings for segmentation related tasks. Our work is
related to works that use embeddings for segmentation re-
lated tasks. Bottom-up approaches for instance segmenta-
tion use embeddings for one-stage training and improve per-
formance for occluded and thin objects. A branch of work
in the instance segmentation [43, 14, 3, 32, 19, 41, 42, 30]
trains networks for dense prediction of pixel embeddings,
which are later clustered into individual instances. These
methods are based on metric learning, which learns embed-
dings such that pixels belonging to the same instance are
close to each other, and vice versa. To predict the class
of instances, [43, 42, 32, 19, 41] suggest to predict object-
ness for each object category and use cross entropy loss.
[14, 3] compute the cluster centroids of each class over the
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Figure 2. Overview: In left, an encoder-decoder-based segmentation network [E,D] with d-channel output (pixel embeddings) and em-
bedding network ECd, followed by normalization layers N . In right, k-nearest class embeddings from ECd are searched for every pixel
embeddings in O. Logits for target classes in S and nearest classes in Co are computed for cross-entropy loss.

entire training set. The classes are then inferred by compar-
ing embeddings to the class-wise centroids. To efficiently
find clustering seeds, [19, 42] predict the heatmap for every
class. To make the network end-to-end trainable, [30] im-
plements a variant of mean-shift clustering using a recurrent
neural network. Extensions of these methods can be found
in various applications [1, 31]. Differently, we exploit em-
beddings to capture the semantic information at the class
level, unlike in the instance level of the mentioned meth-
ods. In context of semantic segmentation, [6] used embed-
dings for semi-supervised segmentation, [22] refines seg-
mentation masks using similarities between pixel embed-
dings, [60] uses pixelwise embeddings for zero and few la-
bel segmentation and [22] learns embeddings for superpix-
els. [26] performs segmentation by extracting pixel-wise
embeddings and clustering, and uses majority vote of its
nearest neighbors from an annotated set to determine se-
mantic class.

Contrastive loss for embedding learning. In recent years,
a wide range of work [16, 12, 54, 59] have used metric
learning and contrastive losses for representation learning.
Our work builds upon the same idea, which can be seen
in parallel to recently proposed contrastive cross-entropy
loss in [28]. In essence, [28] is a generalization of popular
triplet [57] and N-pair [52] losses. Contrastive losses are
also very popular in self-supervised and semi-supervised
settings [18, 48, 35, 9, 23]. Our loss fundamentally dif-
fers from the existing works, since our loss only operates on
single-pixel and contrasts them against class embeddings.

3 . Embedding-based Scalable Segmentation

For state-of-the-art segmentation models, the output size
is directly proportional to the number of semantic classes
C. This poses a significant computational challenge while

scaling them for datasets with a higher number of classes.
In this work, we propose an embedding-based scalable seg-
mentation method, which outputs a fixed number of chan-
nels and thus reduces the space complexity of output from
O(C) to O(1). Along with the weights of the segmentation
network, the model also learns d-dimensional class embed-
dings for C classes. We also propose the loss functions
to learn and regularize the class embeddings such that the
outputs (pixel embeddings) from segmentation network for
same class pixels are clustered together and are closer to
their respective class embedding. An overview of the pro-
posed method is illustrated in Figure 2. In the following sec-
tion, we first describe the method to integrate embeddings
in existing networks, then provide their probabilistic for-
mulation followed by loss function and algorithm for loss
computation.

3 .1. Low Dimensional Embeddings

The key idea of our work is to reduce memory usage by
representing the classes for each pixel by their correspond-
ing embeddings. For every input image, we predict output
(O in Figure 2) of sizeH×W ×d instead of the commonly
used H ×W × C, where d << C. To do this, we reduce
the number of filters in the last convolution layer from C to
d. In order to learn the dense target representation for ev-
ery class, we add a small embedding matrix ECd consisting
of C class embeddings with d dimensionality. The weights
of this matrix are learned during training and fixed for in-
ference. Unlike the existing models, where C dimensional
output at every pixel represents the pixel’s classwise likeli-
hoods, the d-dimensional output in our approach represents
the pixel in the semantic space of class embeddings. The
embedding dimension can influence the performance of the
model as with too few dimensions the model may under-
fit, and with too many dimensions the model may overfit.
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An appropriate embedding dimension is the one to which
adding further degrees of freedom would not give gains in
performance. The reduction of dimension is followed by
normalization along the depth of the output. The embedding
layer is also followed by a normalization layer to ensure that
embeddings lie on a unit radius hypersphere. Without nor-
malization, a clear correlation between the length of class
embeddings with the frequency of classes can be observed.
Consistent with findings in [28], normalization of class and
pixel embeddings helps the model suppress the bias intro-
duced by class imbalance.

3 .2. Probabilistic Formulation

In our approach, the distribution of pixel embeddings O
from the segmentation network is modeled using a gaus-
sian mixture model. It comprises of C gaussians with
µ1, µ2, µ3...., µC centroids, identical covariance matrix τI
and equal mixing probability ρ, such thatCρ = 1. The prob-
ability of the output embedding xi for pixel i can be given
by Equation (1).

p(xi) =

C∑
n=1

p(cn)p(xi|cn) =
C∑
n=1

ρN (xi|µn, τI). (1)

The prior probability of class cn is p(cn). The posterior
probability p(cn|xn) gives the probability of data point xi
being sampled from the gaussian of class cn. As a discrimi-
native model, segmentation network maximizes the ground
truth class posterior p(cyi |xi). To compute the class poste-
riors, bayes rule is used to derive Equation (2).

p(cyi |xi) =
p(xi|cyi) ∗ p(cyi)

p(xi)
=

N (xi|µyi , τI)∑C
n=1N (xi|µn, τI)

,

(2)

N (x|µ, τI) = 1√
2πτ

e−
(x−µ)2

2τ . (3)

However, Equation (2) requires computation of class-
conditional probability for all classes. This makes it equally
expensive in terms of computation as the C-channel output
prediction. To overcome this problem, we propose to ap-
proximate p(cyi |xi) using Equation (4). For xi, we search
k nearest class centroids from µ1, µ2, µ3...., µC denoted by
η(xi, k) = {n1, n2, n3...., nk}, where k ≤ C. Our approach
is based on the assumption that p(ct|xi)≈ 0, if t 6∈ η(xi, k).
The approximation error in the worst case is 1

k−
1
C , when all

centroids are equidistant to xi. If k = C or the assumption
is satisfied, then the approximation error is zero.

p(cyi |xi) =
N (xi|µyi , τI)∑

n∈η(xi,k)∪yi N (xi|µn, τI)
. (4)

This probabilistic formulation motivates our loss functions
described in the next section.

3 .3. Loss Functions

3 .3.1 Classification Loss

The cross-entropy loss function is almost the sole choice
for classification tasks in practice. It is defined as negative
log-likelihood of the target class, where the class likelihood
is computed from the network outputs using the softmax
function. On reducing the number of channels in output, the
network does not provide the classwise logits directly. As
shown in Equation (5), we use L2 distance between network
outputs and class embeddings scaled by temperature τ to
compute the classwise logits and probability pyii for target
class cyi .

pyii =
e−‖xi−µyi‖

2/τ∑C
m=1 e

−‖xi−µm‖2/τ
. (5)

The computation in the above equation’s denominator de-
mands a memory complexity of O(C ×D), which does not
align well with our goal. To solve this problem, we use the
probabilistic formulation and assumption stated in Section
3 .2. We propose to mine k hard negative classes by search-
ing k-nearest class embeddings for the pixel embedding xi.
In Equation (6), we approximate the target class probabil-
ity pyii by using only k-nearest classes along with the target
class for normalization and compute cross-entropy loss for
classification.

L =

N∑
i=1

log pyii , pyii =
e−‖xi−µyi‖

2/τ∑
m∈η(xi,k)∪yi e

−‖xi−µm‖2/τ
.

(6)
The idea is to use a value of k such that O(k× d) is signifi-
cantly lower thanO(C) and can fit in the available memory.
The search of the nearest neighbours is done in offline mode
on GPU i.e. not included in the computational graph. The
memory and speed efficient search algorithms, such as [27],
can be used for this purpose.

As cross-entropy loss maximizes target class probability,
minimizing it pulls the pixel embedding closer to its target
class embedding, thus the pixel embeddings from the same
class eventually get clustered together. Similar to previous
works in [9, 28] , the appropriate value of temperature τ is
critical for the best performance. It represents the allowed
variance across the pixel embeddings belonging to the same
class and thus the compactness of clusters.

3 .3.2 Regularization Loss

The classification loss models the interaction between pixel
and class embeddings. To model the interaction among
class embeddings and regularize them, we propose to use
a max-margin loss. If class embeddings of two classes are
very close, then the pixels belonging to those classes are
prone to misclassification and can lead to poor generaliza-
tion. The proposed loss applies repulsive force on the near-
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Figure 3. Loss Computation: A pixel embedding x and class embedding ECd are normalized to project on a hyperspherical manifold.
For normalized x, k=3 nearest class embeddings are searched (shown by dotted circle). L2 distance between normalized x and class
embeddings is used to compute logits for k negative nearest classes and a positive class. Further, classification and regularization loss is
computed.

est class embedding for every class if it is closer than the
margin distance m. Equation (7) gives the regularization
loss where dij is the L2 distance between embeddings of
class i and j.

Lr =
1

C

C∑
i=1

max(0,m− di), di = min
j 6=i,j∈C

dij . (7)

Learning rate scheduler. During training, the weights
for the segmentation network and the embedding network
are computed and updated simultaneously. The segmenta-
tion network adjusts its weight to get pixelwise embeddings
closer to corresponding class embeddings, while class em-
beddings move closer to respective pixel embeddings. We
use higher momentum and decay the learning rate of em-
bedding network more aggressively to stabilize the training.

3 .4. The Algorithm

We summarize the loss computation part of the proposed
method in Algorithm 1. The loss computation for seg-
mentation network Md uses an image I with semantic la-
bel S. Note that our algorithm requires an efficient GPU-
compatible nearest neighbour search function represented
by kNN(), which takes a database and query vectors as in-
puts. Please refer to Figure 3 for visual illustration of the
algorithmic steps. The computed loss is then used to train
our network illustrated in Figure 2.

4 . Experiments
Implementation Details. We use DeepLabV3+ as
the baseline and integrate our d-channel approach to
DeepLabV3+ model. We use margin m of 0.2 in max-
margin regularization loss and τ = 0.05. The exact nearest
neighbours are searched using the GPU mode of FAISS li-
brary. All experiments, unless mentioned, are performed

Algorithm 1 L = LossCompute(I, S,Md, kNN())
1: O ← Md(I), O shape : B ×H ×W × d
2: Turn off gradient computation
3: Ck ← kNN(ECd, O), Co ← Reshape(Ck)
4: Turn on gradient computation
5: Zo ← Concat(ECd(S), ECd(Co))
6: Z ← −‖O − Zo‖2/τ
7: P ← Softmax(Z), Pgt ← P [0]
8: L ← mean(-log (Pgt)) + Lr
9: Return L

Lr is computed using Equation (7). Note that the output O
and class embeddings ECd are normalized.

using a single Titan X GPU, and the maximum possible
batch size were used. For more implementation details,
please refer to supplementary material.

Benchmark datasets. We conducted experiments on five
datasets, whose details are given in Table 1. The used four
datasets Cityscapes [13], Pascal VOC [17], ADE20k [65],
and COCO-Stuff10k [4] are standard benchmarks. Due to
lack of publicly available large scale dataset with high num-

Dataset # classes crop size B d k
Cityscapes 19 400 × 800 14/10 7 6

Pascal VOC 21 512 × 512 14/10 7 8
ADE20k 150 512 × 512 8/10 12 7

COCO-Stuff10k 182 512 × 512 7/10 12 7
COCO+LVIS 1284 450 × 450 2/10 12 8

Table 1. Dataset details. Different dataset and their respective
hyperparameters used to train models with ResNet50 backbone.
The column B shows batch size for baseline and our method, d is
embedding dimension and k in number of nearest neighbours.
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ber of classes, we merged the COCO and LVIS dataset to
demonstrate the capability of our method on 1284 classes.

COCO+LVIS - a merged dataset. We build a large-class
segmentation dataset bootstrapped from stuff annotations of
COCO [33] and instance annotation of LVIS [21] for COCO
2017 images [33]. LVIS is an instance segmentation dataset
whose annotations are sparse for the whole image seman-
tics. To overcome the sparsity, we merge the annotations
of the stuff classes from COCO-Stuff dataset. After merg-
ing, the COCO+LVIS has the label sparsity of 19.5% (with
18.8% for validation). Note that, this sparsity is on par with
benchmark datasets such as Pascal-MT (30.4%) [38] and
Cityscapes (28.3%).

We use official split of LVIS, with about 100k train and
20k validation images. Only the semantic labels are used
while ignoring the instance ids. LVIS has 1203 thing cate-
gories. Similarly, COCO has 91 stuff categories. Between
these two datasets, 10 classes are common. This leads to the
total of 1284 classes. Labels from LVIS is prioritize over
those of COCO, whenever they overlap. Please, refer to our
supplementary material for more details. As discussed ear-
lier, datasets with large number of classes have long-tail dis-
tributions (causing the the problem of a severe class imbal-
ance). This is also the case for COCO+LVIS. The mean IoU
measure is known to be very sensitive to such class imbal-
ance. Therefore, to capture a better picture, we also report
frequency weighted IoU (FwIoU), along with the standard
metrics: mean IoU (mIoU) and pixel accuracy (PAcc).

4 .1. Ablation Experiments

All ablation experiments are conducted for the
Cityscapes with MobileNet [51] backbone, which are
reported in Table 2-3 and Figure 4. Table 2 shows that
irrespective of k, all models converge at mIoU 71.2 ±
0.2, while the higher number of nearest neighbours being
faster in convergence. Hence, k can be chosen based on
the trade-off between training time and the available GPU
memory. These experiments do not use regularization
loss. Figure 4 shows the increasing performance with the
increase in embedding dimension from 4 to 7, followed
by a slight drop. It also shows that the nearest neighbours
offer better mIoU and convergence, compared to random
sampling. Table 3 shows that max-margin loss provides

#NN mIoU Pixel Accuracy iters

4 71.35 95.03 36.3k
6 71.05 95.07 32.1k
8 71.08 95.13 29.1k

Table 2. Number of nearest neighbours vs. performance. Mean
IoU, pixel accuracy, and iterations for different number of nearest
neighbours (#NN). Similar performance is achieved for different
#NN with difference in convergence iterations.

# channels

m
Io

U

iterations

m
Io
U

Figure 4. Number of output channels and neighbours sampling.
Number of output channels d vs. mean IoU (left). The conver-
gence of random sampling of k=7 vs. 7-nearest neighbours (right).

semantic classes

cl
as

s 
m

Io
U

Figure 5. Classwise mIoU for ADE20k dataset with ResNet50
backbone. Our model does slightly better on some rare classes
and performs comparable on dominant classes.

marginal improvement in mIoU and normalization of
class embeddings contributes significantly towards better
mIoU. Ablations on COCO+LVIS dataset are provided in
supplementary material.

nn sampling normalization max-margin loss mIoU pixel accuracy

- - - 64.49 93.71
X - - 67.20 94.43
X X - 72.56 95.14
X X X 73.03 95.40

Table 3. Ablation study shows that our approach benefits from
nearest neighbour (NN) sampling, normalization, and max-margin
loss. Experiment in first row uses random sampling.

4 .2. Benchmark Results

Quantitative results. For datasets with a lower number
of classes, Table 4 shows that the performance of our model
with both ResNet50 and MobileNet backbones is compa-
rable to that of the baseline. Figure 5 shows a compari-
son between classwise IoUs of ADE20k for both models.
Classes in the plot are sorted based on IoUs for the base-
line. We observe that our model performs better for some
rare classes like shower, apparel, and stool over baseline,
and these classes occur in some specific context like bath-
room or bedroom. We hypothesize that our learned embed-
dings allows rare classes to implicitly borrow knowledge
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dataset Cityscapes Pascal VOC ADE20k COCO-Stuff10k COCO+LVIS
backbone MobileNet ResNet50 ResNet101 MobileNet ResNet50 MobileNet ResNet50 ResNet50 ResNet50

metric mIoU PAcc mIoU PAcc mIoU PAcc mIoU PAcc mIoU PAcc mIoU PAcc mIoU PAcc mIoU PAcc mIoU PAcc fwIoU
baseline 72.11 95.22 75.25 95.80 76.8 96.22 71.07 92.25 73.1 93.35 34.02 75.07 38.93 77.01 32.56 65.22 1.68 38.88 22.66

ours 73.03 95.40 75.64 95.62 76.6 96.28 71.15 92.28 72.8 92.98 34.11 75.19 38.29 77.16 32.60 65.18 4.57 54.27 39.67

Table 4. Our model performs comparable to the baseline model for Cityscapes, PASCAL VOC, ADE20k and COCO-Stuff10k datasets.
For COCO+LVIS dataset, it outperforms the baseline with large margin. The higher values of mean IoU (mIoU), pixel accuracy (PAcc)
and Frequency weighted IoU (fwIoU) is better.

from the associated semantic context. As the frequency of
classes increases, both models perform similarly.

For COCO+LVIS, our model clearly outperforms the
baseline in terms of both mIoU and pixel accuracy. The low
mIoU for both models, when compared to other datasets,
can be explained by the long tail of thing classes in LVIS
annotations. Figure 6 shows that as we increase number of
rare classes, mIoU drops. Among 1284 classes, 220 classes
occur in less than ten images in the training dataset. Please
recall, the challenge of class imbalance is not within the
scope of this work. For further analysis, we also report
the frequency weighted IoU for COCO+LVIS. The supe-
rior performance of our method for COCO+LVIS can be
explained by the five times higher batch size that we can fit
in a single GPU. Lower batch size leads to noisy estimation
of batch statistics in BatchNorm layer.

To reduce the effect of low batch size in baseline
model, we perform experiments using gradient accumula-
tion (GA) [24] and group normalization (GN) [58]. Ta-
ble 5 shows that GA and GN help to improve the perfor-
mance of both the models. GA increases the effective batch
size of all the layers in network except BatchNorm as the
mean and variance for every batch are computed during
the forward pass. GN makes the computation of mean and
variance independent of batch size. However, these tech-
niques are not the substitute for our approach as our major
contribution lies on restricting the number of output chan-
nels, thus decreasing the memory complexity from O(C)
to O(1). Using GN/GA (with baseline model) alone would
not be possible for very high number of classes or larger im-
ages as even a single image would not fit into the memory
(because of O(C) complexity). To understand the perfor-
mance loss incurred by limited computational resources for
COCO+LVIS, we conduct experiments on 4 GPUs (16 GB
each) with synchronized batch norm (no GN). We use batch
size of 12 and 40 for baseline and our model, respectively.
We did not perform hyperparameter search for this experi-
ment and used embedding size of 16. We believe that mIoU
can be further improved by reducing the batch size and by
increasing the embedding dimension.

Analysis of memory consumption. In Table 6, we inves-
tigate the peak memory usage in GPU during training. We
observe that for datasets with low number of classes, like
Cityscapes, baseline uses less memory to accommodate the

model mIoU FwIoU PAcc
baseline 1.68 22.66 38.88

ours 4.57 39.67 54.27
baseline + GA 2.76 29.57 46.34

our + GA 5.01 41.87 57.05
baseline + GN 5.15 37.89 53.45

ours + GN 6.26 43.03 59.01
baseline + 4 GPUs 7.86 42.2 58.1

ours + 4 GPUs 8.78 43.8 59.3

Table 5. Results on COCO+LVIS dataset with Gradient Accumu-
lation (GA), GroupNorm (GN) and 4 GPUs. Gradients are accu-
mulated over 5 and 2 steps for baseline and ours, respectively. In
GN experiments, we use groups of 16-channels for both methods.

dataset model train BS memory (in GB)

Cityscapes baseline 14 12.1
ours 12 10.4

ADE20k baseline 8 10.3
ours 10 10.0

COCO+LVIS baseline 2 9.94
ours 10 10.4

Table 6. Analysis of peak GPU memory usage and maximum
batchsize for 1 GPU. For Cityscapes dataset, baseline has bet-
ter memory consumption while our model is memory efficient for
ADE20k and COCO+LVIS datasets.

bigger batch size. However, our approach is better suited
for datasets with a higher number of classes like ADE20k.
In this case, our approach accommodates a bigger batch size
for the same memory. Despite of any increase in number of

Figure 6. mIoU on COCO+LVIS with increasing number of
classes, with most frequent first, for baseline and our method.
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Figure 7. Qualitative results of our method and the baseline. Black
color denotes the unlabelled pixels. For COCO+LVIS dataset,
both models miss rare classes such as bucket and pipe. Our model
performs better than baseline for dominant classes like wall. For
Cityscapes, both model provide similar results.

Figure 8. Qualitative results for our method and the baseline.
For ADE20k, COCO-Stuff10k, and Pascal VOC datasets both the
models provide similar qualitative results.

classes, our model’s memory requirement remains almost
the same, thanks to the O(1) complexity of the proposed
method. This allow us to scale to 1k+ classes and still use
the batch size of 10. On the other hand, the baseline model
can only fit a batch size of two in a single GPU. For details
on inference time, please refer to supplementary material.

Qualitative results. In Figure 7 and 8, we show qualita-
tive results. In COCO+LVIS dataset, rare and small area
classes are mostly missed by both the models which re-
flects in lower mIoU scores. Our model segments the dom-
inant classes like wall and grass much better than the base-
line. For CityScapes, Pascal VOC, ADE20k, and COCO-
Stuff10k, segmentation masks from both models look very

Figure 9. Synthesized images for Cityscapes. Left to right: real
image; generated using: one-hot encoding (FID = 60.47); random
embeddings (FID = 64.14); our class embeddings (FID = 58.34).

similar. We also notice that almost same set of pixels are
misclassified by both the models in many examples.

Semantic class embeddings for image synthesis. Using
the learned class embeddings, our method performs well
for the task of semantic segmentation. This suggests that
our embeddings capture the semantics of the classes and
represent them efficiently in lower-dimensional space. In
order to demonstrate the utility, beyond segmentation, of
our learned embeddings, we conducted experiments with
SPADE network [45] to synthesize photo-realistic images.
SPADE takes class semantics in the form of a one-hot vec-
tor corresponding to the class label for every pixel as input.
We conduct three experiments : 1) one-hot vector seman-
tics (19 classes) as input with B = 3, 2) randomly initial-
ized 7-dim embeddings as input with B = 4, and 3) 7-dim
class embeddings from our trained segmentation network
with B = 4. Figure 9 shows image examples generated for
the Cityscapes test dataset using a single GPU. Our embed-
dings achieve a lower FID score than random embeddings,
which suggests that our learned class embeddings can also
be used for synthesis. Embedding-based semantic inputs for
the memory-efficient generation of images, with a higher
number of classes, remains a promising direction for future
work. For visualization of our class embeddings, please re-
fer to the supplementary materials.

5 . Conclusions

In this work, we address the problem of memory com-
plexity of existing segmentation approaches with large
number of semantic classes. By leveraging our understand-
ing of metric learning and probabilistic mixture models, we
proposed a novel approach to train the segmentation mod-
els. The proposed method can be used for any number of
classes to train the segmentation model in a single GPU’s
memory. Experiments demonstrate that our method can re-
tain the performance, while improving the scalability; thus
allowing us to segment a large number of classes
Acknowledgments: This work was supported by the ETH
Future Computing Laboratory (EFCL) financed by a gift
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