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Abstract

Learning-based image denoising methods have been

bounded to situations where well-aligned noisy and clean

images are given, or samples are synthesized from prede-

termined noise models, e.g., Gaussian. While recent gener-

ative noise modeling methods aim to simulate the unknown

distribution of real-world noise, several limitations still ex-

ist. In a practical scenario, a noise generator should learn

to simulate the general and complex noise distribution with-

out using paired noisy and clean images. However, since

existing methods are constructed on the unrealistic assump-

tion of real-world noise, they tend to generate implausi-

ble patterns and cannot express complicated noise maps.

Therefore, we introduce a Clean-to-Noisy image genera-

tion framework, namely C2N, to imitate complex real-world

noise without using any paired examples. We construct the

noise generator in C2N accordingly with each component

of real-world noise characteristics to express a wide range

of noise accurately. Combined with our C2N, conventional

denoising CNNs can be trained to outperform existing un-

supervised methods on challenging real-world benchmarks

by a large margin.

1. Introduction

Image denoising aims to remove unintended signals

from a given noisy observation. The task has been consid-

ered as one of the fundamental vision problems and handled

by numerous studies [9, 14, 17]. While recent deep convo-

lutional neural networks (CNNs) have achieved promising

performance [50, 51, 19, 11, 36], several challenges pre-

vent them from being used for practical applications. A

primary limitation of the learning-based approaches is that

they are usually data-driven, where training on a specific

dataset does not guarantee generalization to a real-world

scenarios [53, 19].

The noise from a typical camera pipeline is different to

the conventional assumption for ideal noise in several as-
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(a) Clean (b) GT (c) C2N (d) DIDN [48]

Figure 1: Examples of generated and denoised image

from our proposed method. (a) Clean image, (b) Ground

truth noisy image, (c) Generated noisy image from the pro-

posed C2N, (d) Denoising results of DIDN [48] trained on

the images generated by our C2N. Our C2N can accurately

imitate the real noise without using paired examples.

pects. For instance, a widely-used Additive White Gaus-

sian Noise (AWGN) formulation assumes that the term is

signal-independent [10, 28], while real-world noises are

not. Therefore, it is difficult to generalize a denoising algo-

rithm toward real-world images when the model is trained

on synthetic examples. As an alternative, few studies have

collected well-aligned noisy and clean image pairs in the

wild [2, 40] so that the following denoising methods can be

trained in a supervised manner. While such an approach is

an effective way to deal with real-world noise, it remains

challenging to acquire large-scale pairs due to several prac-

tical issues. Recent self-supervised approaches [28, 6] deal

with the limitations by using noisy samples as the target

output, whose supervision would lead a model to estimate

the actual value on average. However, they usually leverage

some statistical properties of the noise, which are insuffi-

cient to represent the real-world cases [2, 40].
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On the other hand, generation-based approaches [12, 22]

have been proposed to deal with challenging real-world sit-

uations. These approaches first train a noise generator [16]

on target noisy images to produce pseudo-noisy images

paired to other clean images, which are used later to train

a denoising model. Following the successful results of the

earlier methods [12, 10] for synthetic noise reduction, re-

cent attempts [1, 22] to apply this method to real-world

noise have been introduced. Still, in a situation where no

paired clean images are given to the target noisy images,

a generation-based method that successfully imitates real-

world noise has not been suggested.

In this paper, we introduce C2N(Clean to Noisy), a novel

generative noise modeling framework trained without any

paired data. The C2N can learn a variety of complex noise

distributions successfully and generates accurate noisy im-

ages from arbitrary clean images. We achieve state-of-the-

art performance by training existing denoising models with

the generated pairs from our C2N framework. Our contri-

butions is summarized as follows:

• We propose a novel noise generator with explicit modules

to express noise terms of according characteristics, en-

abling the generator to imitate more accurate real-world

noise.

• Our C2N framework successfully simulates target noise

distribution without any handcrafted formulations or un-

realistic assumptions.

• With the data pairs generated by C2N, we train denois-

ing models that outperform state-of-the-art unsupervised

methods for denoising real photographs.

2. Related Works

Deep Image Denoising. After the DnCNN [50] model

has achieved a significant performance gain over traditional

methods [9, 14], CNN-based methods have become main-

stream in the image denoising area. The FFDNet [51]

model uses given noise level maps to remove AWGN with

spatially varying noise levels effectively. Using large mod-

els and complex architectures, the performance of denoising

models can be improved by extracting rich features from the

input noisy image [11, 24]. While such methods success-

fully erase AWGN with state-of-the-art performances, they

still require numerous training pairs that contain the exact

target noise distribution. Therefore, the real-world denois-

ing task has remained challenging since the desired noise

model is unknown without appropriate training examples.

Deep Denoising of Real-World Noise. If enough amount

of training samples are given, it is straightforward to train

the methods mentioned to function properly. For such pur-

pose, Anaya and Barbu [4] acquire the Renoir dataset where

clean samples are synthesized from a sequence of low-

ISO images. However, spatial misalignment and remain-

ing noise in training pairs make it challenging to use the

dataset for practical purpose. The DND [40] dataset post-

processes low-ISO images to align their spatial contents and

illuminations with high-ISO counterparts. The SIDD [2]

dataset captures noisy images under various lighting condi-

tions with five different smartphone cameras. With these

real-world noise datasets, denoising models with various

attention modules [25, 5], multi-scale resizing in features

[42, 35, 48], or use of self-similarity in images [30, 34, 46]

manage to remove complex real noises.

Nevertheless, it is difficult to collect large-scale real-

world dataset for our specific purpose. To remove noise

even when the accurate distribution of it is not given(e.g.

bling denoising), the CBDNet [19] includes a part that per-

forms noise level estimation based on heteroscedastic Gaus-

sian noise model [15]. It is intended to also operate on real

noisy images, receiving indirect supervision from training

the denoiser. The Path-Restore [47] dynamically selects an

appropriate restoration path for each region of an input im-

age. The self-supervised denoising methods [28, 6] use only

individual noisy images for training and estimates a pixel

value of its input noisy image itself, where the value of that

location is masked-out as ’blind spot’. Since these methods

require the noise to satisfy strong statistical assumptions,

[8, 29] modify these according to the prior knowledge of

noisy images. Recently, the AINDNet [26] apply adaptive

instance normalizing method to deal with varying noise lev-

els. And the Noise2Blur [33] performs an additional proce-

dure to preserve image details after training a model with

blurred labels.

Noise Generation-Based Denoising. The generation-

based methods [12, 10, 1, 22] usually adopt a two-stage

pipeline for the denoising problem rather than using a sin-

gle model. First, a noise generator is learned in an unsuper-

vised fashion [16] to simulate the distribution of given real

noisy examples so that any clean images can be mapped to

pseudo-noisy data. A denoising model can then be trained

in a straightforward manner using the synthesized input

and target pairs. The GCBD [12] is the first generation-

based approach for deep blind image denoising. Later,

the GAN2GAN [10] method leverages better noisy-patch-

extraction, generating more realistic noisy samples to train

the following denoising model in an N2N [31] manner.

While the methods above are limited to show promising re-

sults for signal-independent and synthetic noise only, the

Noise Flow [1] proposes a formulation to imitate challeng-

ing real-world noise. By leveraging the normalizing flow

formed of invertible transforms, it can precisely learn the

shift of distribution between synthetic and desired noise

maps. Although the model successfully imitates in-camera

noise occurring pipeline, true noisy and clean image pairs

are required to get the correct noise distribution, which is

not practical. The DANet [49] also learns the mapping of

denoiser and generator by comparing them with the true
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noisy-to-clean joint distribution, but it still needs paired im-

ages to learn such mapping. Recently, the UIDNet [22]

model handles the unpaired generative noise modeling with

the sharpening technique for better noise separation. Fur-

thermore, the NTGAN [52] method demonstrates that noise

maps synthesized with a given camera response function

(CRF) can be used for the following denoising network.

Unlike the existing generation-based denoising methods,

we introduce a novel noise generator trained without any

paired data or heuristic methods.

3. Method

3.1. Complexity of Real­World Noise

To generate realistic noise with CNNs, it is necessary to

understand the properties and statistical behavior of real-

world noise. Due to several physical limitations, the noise

occurs from various sources, including electronic sensors,

in-camera amplifiers, photon noise, quantization, and com-

pression artifacts [21]. Combining all these factors, the

pixel-wise noise term n is mixed with an underlying clean

signal x, resulting the noisy observation y as follows:

y = x+ n. (1)

In conventional deep denoising methods [50, 51], the

noise term n is usually simplified as an ideal Additive White

Gaussian Noise (AWGN), i.e., n ∼ N (0, σ2), where σ de-

notes the standard deviation. On the other hand, the photon

noise is signal-dependent, where Poisson distribution can be

used to simulate the case and be approximated as a Gaus-

sian distribution with signal-dependent variance [15]. The

heteroscedastic Gaussian noise is defined as follows:

n ∼ N (0, σ2
sx+ σ2

c ), (2)

where σs and σc are hyperparameters for signal-dependent

and signal-independent term. While the noise model in

(2) can provide a proper approximation of the realistic

noise [19, 52] to some extent, several studies [21, 45] have

demonstrated that the real-world cases appear to be much

more complicated. In addition, the physical limitations of

in-camera electronic devices and in-camera compression

pipeline make the noise term to exhibit random spatial pat-

tern [7]. Such property leads the noise term n and its lo-

cal neighbors to be spatially correlated, making the precise

modeling more challenging.

To deal with the problem without using paired data, pre-

vious approaches [19, 52] construct noise maps using a syn-

thetic noise model and known camera response function

(CRF). However, such handcrafted features prevent those

methods from being generalized toward realistic config-

urations. Therefore, we adopt a learning-based method,

namely C2N, to simulate the real-world noise rather than

(a) Training generator (b) Denoising

Figure 2: Our two-step pipeline for real-world denoising.

(a) Our method first learns to generate samples from target

noise distribution, with a noise generator G. We used clean

image x and noise image y′ to be unpaired. (b) Secondly,

using the generated pairs, we train a denoising model F .

using some handcrafted formulations. Our framework fully

utilizes the advantage of unsupervised learning to simu-

late the comprehensive real-world noise, with novel design

components and objective terms.

3.2. Learning to Generate Pseudo­Noisy Images

A denoising network F aims to reconstruct the underly-

ing clean signal x from a given noisy observation y in (1).

When enough training pairs are available, the model can be

trained in a supervised manner to estimate the clean signal.

However, in real-world scenarios, it is challenging to ac-

quire ideal clean images well-aligned to the training noisy

images, even with complicated post-processing [2]. Hence,

our C2N framework first trains a generator to simulate the

target noise distribution. Then, the following denoising

model F can be learned on the generated noisy examples.

Figure 2 shows the two-step pipeline of our method.

Our noise generator network G is designed to synthesize

a realistic noise map n̂ for a given clean image x to produce

the pseudo-noisy image ŷ as follows:

ŷ = x+ n̂ = x+G (x, r) , (3)

where r is a random vector to reflect the stochastic behav-

ior of noise according to the conditions of each scene. We

sample 32-dim random vector from N (0, 12) and spatially

replicate through all pixel positions of x, similar to the GAN

applications [38, 41].

Simultaneously, we train a discriminator network D to

distinguish whether a given noisy image is synthesized from

our generator G or sampled from the real-world dataset.

The two networks G and D can be optimized in an adversar-

ial way [16], using the Wasserstein distance [18] as follows:

Ladv(D,G) = Ey′∼PN
[D(y′)]

− Ex∼PC ,r∼Pr
[1−D(x+G(x, r))]

+ λExδ∼Pδ
[(∥∇xδ

D(xδ)∥2 − 1)2],

(4)
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Figure 3: Overview of C2N framework. The noise generator G architecture of our C2N and its components are shown.

r map denotes the spatially replicated input random vector r. Initial noise maps sI and sD are sampled in the signal-

independent part GI and signal-dependent part GD of the generator, respectively.

where the term is minimized with respect to G and maxi-

mized with respect to D. PN and PC denote the distribu-

tion of the real-world noisy and clean images, respectively.

The real noisy image y′ is sampled from PN . Prime nota-

tion on y denotes that we use noisy image unpaired to clean

image x. Pr is the distribution of random vector r. For sta-

ble learning, we adopt the gradient penalty [18], which is

weighted by a hyperparameter λ = 10. The term xδ ∼ Pδ

is one of the internal dividing points between generated and

real images.

The significant advantage of the proposed C2N frame-

work is that generator in the C2N can synthesize realistic

noise without adopting handcrafted features. However, the

generated noise n̂ may bias the image color and negatively

affect the overall framework if our C2N is trained without

any constraints. To deal with the case, we additionally de-

fine a stabilizing loss term Lstb, which is defined as follows:

Lstb =
1

N

∑

c

∥

∥

∥

∥

∥

∑

i∈B

n̂i,c

∥

∥

∥

∥

∥

1

, (5)

where N denotes the number of pixel i in mini-batch B and

c is index of each color channels. By minimizing the stabi-

lizing loss, the channel-wise average of the generated noise

approaches zero, which prevents the color-shifting problem.

Since we do not take a mean over a single sample or lo-

cal area, the generated noise may have varying nonzero lo-

cal means depending on the underlying signal. Combining

our two loss terms (4) and (5), we optimize the total loss

LG = Ladv + wstbLstb, where wstb = 0.01.

3.3. C2N Architecture

The previous generation-based approaches have limited

their scopes to signal-independent [12] or spatially uncor-

related [1] noise terms. On the other hand, we construct

a new generator architecture to represent diverse and com-

plex noise distributions discussed in Section 3.1. We gradu-

ally implement several design components to express more

general properties of real-world noise. Figure 3 shows the

overall architecture of our C2N framework.

Signal-Independent Pixel-Wise Transform. The noise

generation process can be formulated as a nonlinear map-

ping from an initial random noise map to the desired noise

map. To generate signal-independent noise, we sample the

initial random noise map sI from the standard normal distri-

bution N
(

0, 12
)

. We construct a signal-independent pixel-

wise noise transformation module GI
1×1 to simulate spa-

tially i.i.d. noise. GI
1×1 module consists of 3 modified

residual blocks [20] for low-level vision problems [32] with

1× 1 convolutional layers without batch-normalization.

Signal-Dependent Pixel-Wise Transform. To express

signal-dependent noise, our noise generator should extract

useful features from the clean input image. However, it is

not desirable that the generated noise map n̂ is determinis-

tically generated from the given clean image. To effectively

represent the signal-dependent noise term, we sample ini-

tial noise map sD from position-wise normal distribution

which has mean mi and standard deviation σi at each po-

sition i from convolutional features. Input clean image and

random vector r are transformed to convolutional features

through the feature extractor. Feature extractor consists of

5 residual blocks after 1×1 convolutional layer without us-

ing any pre-trained model. We then sample the initial noise

map sDi at each position i, and apply another pixel-wise

noise transforms GD
1×1 which consists of 2 residual blocks

with 1× 1 convolutional layer. For the sampling of sDi , we

used reparameterization trick [43] to preserve gradients of

the parameters, so that the feature extractor can be jointly

trained with the entire C2N framework.
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(a) P (Ground Truth) (d) S (Ground Truth)

(b) GI
1×1 on P (e) GI

1×1 +GD
1×1 on S

(c) GI
1×1 +GD

1×1 on P (f) GI +GD on S

Figure 4: Generated samples from model ablation study

on synthetic noise. (a, d) Synthetic ground-truth noise map

of Poisson P and spatially correlated Gaussian noise S . (b,

c) Generated residual noise map of the C2N variant trained

on the Poisson noise. (e, f) Synthesized residual noise on

the spatially correlated Gaussian noise. We amplify the

noise maps in (a-c) by 4 times for clearer comparison.

Spatially Correlated Transforms. A number of exist-

ing manual noise models [15] and denoising methods as-

sume spatially uncorrelated noise. On the other hand,

C2N handles color sRGB image containing various con-

version and compression degradations from in-camera post-

processing [7] in end-to-end manner. To achieve this, We

add transforms of 3 × 3 convolution like GI
1×1 and GD

1×1,

which are denoted as GI
3×3 and GD

3×3. These 3 × 3 con-

volutions involve capability for express spatially correlated

noise term. GI
3×3 and GD

3×3 produce features for the spa-

tially correlated signal-independent noise and the spatially

correlated signal-dependent noise, respectively.

Lastly, we add all the noise features transformed through

the GI
1×1, GI

3×3, GD
1×1, GD

3×3 into one, resulting in a noise

feature that integrates the characteristics of noise expressed

by each module. Then we take 1 × 1 convolution to the

merged feature map to reduce the dimension to the color

space, and also to perform a non-linear mapping from the

integrated feature to the final noise map. We set the number

of layer channels C as 64, and all the intermediate features

from sI and sD have the same number of channels.

3.4. Learning to Denoise with the Generated Pairs

With the C2N, it is straightforward to optimize the fol-

lowing denoising network F . We first generate pseudo-

noisy images ŷ from the clean examples x and use the pairs

to train a denoising model in a supervised manner [50, 51].

0 63 127 191 255

Pixel Intensity

0

4

8

12

16

N
o
is
e
σ

GI
1×1

GI
1×1 +GD

1×1

Ground Truth

Figure 5: Comparison between generated noise and

ground truth Poisson noise. We illustrate pixel noise level

with respect to its underlying ground truth signal intensity.

Noise level is measured on the CBSD68 dataset. Distor-

tions around boundary values are due to the clipping of the

over-exposed and under-illuminated pixels [2].

Similar to the previous deep denoising methods [48, 25],

we minimize the L1 reconstruction loss which is defined as

follows:

Lrec =
1

m

m
∑

k=1

∥F (ŷ)− x∥
1
, (6)

where ŷ is pseudo noisy image generated by ŷ = x +
G(x, r), on x sampled from clean images, and k is index

of each images in a mini-batch B of size m.

The major advantages of our approach is that our frame-

work is independent to the selection of following denois-

ing architecture. Previous attempts like [10, 22] train their

noise generator and denoising model jointly. Since the C2N

model doesn’t get any supervision from the reconstruction

loss Lrec, the generated images are not specialized for cer-

tain denoising model.

4. Experiment

4.1. Experimental Setup

Dataset. To train and evaluate our method on synthetic

noise, we use clean color images from the BSD500 [37]

dataset, which consists of 432 training images and 68 test

samples. To train our C2N and denoising model on chal-

lenging real-world noise, we leverage the DND [40] and

the SIDD [2] dataset captured under realistic environments.

The training split of the SIDD dataset, i.e., SIDD Medium,

contains 320 noisy and clean image pairs and the DND

dataset contains 50 noisy images. Since it does not provide

any ground truth image for learning on DND, we combine

the clean images of the SIDD and noisy images in the DND.

To train our C2N framework, we crop 36,000 patches of size

96× 96 from the noisy and clean image sets and randomly

sample them to gather training mini-batches. For training

denoising network, we use only clean patches of the same

size and number. We evaluate the denoising models fol-

lowed by the C2N with the DND and the SIDD benchmarks.
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Training Test Noise Level

Data σ = 15 σ = 25 σ = 50

Synthetic
σ = 15 33.48 27.24 18.30
σ = 25 31.39 30.68 20.88
σ = 50 27.82 27.81 27.14

C2N 32.96 30.51 27.09

Table 1: Denoising performance on synthetic AWGN.

PSNR(dB) is calculated on the CBSD68 dataset. We note

that the C2N models are trained for each noise level inde-

pendently.

AWGN UIDNet C2N (Ours)

KL-divergence 0.1746 0.4417 0.1638

Table 2: KL-divergence between generated noise map

and ground truth noise map. The values are calculated

using the SIDD validation set. We refer the readers to the

supplementary materials for more details on the metric.

G
I

1×1 G
D

1×1 G
I

3×3 G
D

3×3 Lstb PSNR(dB)

✓ ✓ ✓ ✓ 9.81
✓ ✓ 28.54

✓ ✓ 30.46
✓ ✓ ✓ 31.74
✓ ✓ ✓ 32.19

✓ ✓ ✓ 32.21
✓ ✓ ✓ ✓ ✓ 34.08

Table 3: Model ablation study on SIDD validation

set. The notation of each modules follows the Figure 3.

Note that feature extractor module exists when any signal-

dependent module is on.

Implementation Details and Optimization. To optimize

our C2N framework, we augment all training samples by

randomly flipping and rotating them by 90◦ to construct a

mini-batch of size 36. The Adam [27] optimizer is used

with an initial learning rate of 10−4. The learning rate is

multiplied by a factor of 0.8 for every 3 epochs, where a sin-

gle C2N model is trained over 36 epochs. Denoising models

are optimized using only the generated training pairs from

trained C2N generator with mini-batch of size 16. Same

with C2N, the Adam [27] optimizer is used with an intial

learning rate of 10−4 and learning rate is halved for every 4

epochs. The training runs for total 16 epochs. We select the

CDnCNN-B [50] architecture for denoising as our baseline

unless otherwise stated.

4.2. Model Analysis of C2N on Synthetic Noise

To demonstrate the validity and effectiveness of our C2N

framework, we first analyze how each of the design compo-

nent supports the C2N architecture in handling the synthetic

noise of various properties. Figure 4 illustrates how each

modules in our C2N model can imitate two synthetic noise

(a) GT x (b) AWGN x̂ (c) UIDNet x̂ (d) Ours x̂

(e) GT n (f) AWGN n̂ (g) UIDNet n̂ (h) Ours n̂

Figure 6: Visual comparison of the generated noisy sam-

ples on SIDD dataset. (a) A ground truth noisy image (b-d)

Generated noisy image of AWGN, UIDNet [22] and Ours

respectively. (e-h) are the residual noise maps of each (a-d).

(a) wo Lstb (b) wo GI (c) all (d) GT noise

Figure 7: Generated samples from model ablation study

on real-world noise. (a) without stabilizing loss, (b) with-

out independent transforms, (c) with all modules and stabi-

lizing loss, (d) Ground truth noisy image.

models, P and S . P stands for signal-dependent Poisson

noise, and S stands for spatially correlated Gaussian noise

of σ = 50. To implement spatial correlation between local

neighbors, we apply a 9×9 Gaussian filter to the noise map,

similar to [39]. Then, we train C2N variants with different

existence of each module, e.g., GI
1×1, GD

1×1, GI , and GD,

on BSD images corrupted by P and S . We note that the

notation GI and GD refers to the combination of (GI
1×1,

GI
3×3) and (GD

1×1, GD
3×3), respectively. More details are

described in our supplementary material.

The model only with signal-independent module, i.e.,

GI
1×1 that equally generates noise values at all locations,

is not proper to synthesize signal-dependent noise. There-

fore, the output noise in Figure 4b does not differ in dark
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Method
SIDD DND

PSNR(dB) SSIM PSNR(dB) SSIM

Non-learning based

BM3D [14] 25.65 0.685 34.51 0.851

WNNM [17] 25.78 0.809 34.67 0.865

K-SVD [3] 26.88 0.842 36.49 0.898

EPLL [23] 27.11 0.870 33.51 0.824

Supervised

TNRD [13] 24.73 0.643 33.65 0.831

DnCNN [50] 23.66 0.583 32.43 0.790

DnCNN+ [50] 35.13 0.896 37.89 0.932

CBDNet [19] 33.28 0.868 38.05 0.942

AINDNet(R)∗ [26] 38.84 0.951 39.34 0.952

DIDN [48] 39.82 0.973 - -

DANet [49] 39.43 0.956 39.58 0.955

Self-supervised N2V [28] 27.68 0.668 - -

Generation-based

GCBD [12] - - 35.58 0.922

UIDNet-NS [22] 31.34 0.856 - -

UIDNet [22] 32.48 0.897 - -

C2N + DnCNN (Ours) 33.76 0.901 36.08 0.903

C2N + DnCNN∗ (Ours) 34.00 0.907 36.32 0.908

C2N + DIDN (Ours) 35.02 0.932 36.12 0.882

C2N + DIDN∗ (Ours) 35.35 0.937 36.38 0.887

C2N(SD) + DIDN∗ (Ours) - - 37.28 0.924

Table 4: Quantitative evaluation on the SIDD and DND benchmark. We adopt the two-stage pipeline which is denoted

by ‘C2N + Denoiser’. ∗ denotes the method with self-ensemble [44, 32] strategy. (SD) denotes that the C2N generator is

first trained on the SIDD and then fine-tuned on the DND. Results of DnCNN and DnCNN+ are from the model trained on

synthetic noise and the model trained by ourselves on SIDD images, respectively.

and bright areas compared to the ground-truth distribution

in Figure 4a. By explicitly considering the signal-dependent

component with the GD
1×1 module, our C2N can express

such behavior of the Poisson noise as shown in Figure 4c.

Figure 5 further validates that our generator can synthe-

size signal-dependent noise, where standard deviations of

the noise intensities are correlated with pixel values. Fig-

ure 4e illustrates that a model with only 1× 1 convolutions,

i.e., GI
1×1 +GD

1×1, cannot imitate spatially correlated noise

and generates undesirable structures. By including modules

with 3× 3 convolutions, i.e., GI
3×3 and GD

3×3, the proposed

C2N can synthesize the desired noise distribution without

unpleasing artifacts, as shown in Figure 4f.

We also evaluate our method on synthetic AWGN and

compare the performance with supervised denoising mod-

els in Table 1. The supervised model requires pairs of clean

and noisy examples that correspond to the target noise level.

Otherwise, the denoising performances are degraded due to

a mismatch in training and test distribution. However, such

an assumption is less practical in the real-world scenario as

we may not know the exact noise levels of our target images.

The primary advantage of the proposed C2N framework

is that we leverage unpaired noisy and clean images, and

the exact noise level is not required to develop the follow-

ing denoising method. Our unsupervised generation-based

method achieves comparable performance to the supervised

denoising model on a synthetic Gaussian dataset.

4.3. Model Analysis of C2N on Real­World Noise

We validate the effectiveness of each modules in our

C2N framework under the real-world degradations. Fig-

ure 6 shows that the generator in our C2N can generate real-

istic noise maps, whereas the existing noise generator tends

to produce a particular texture. Also, our C2N achieves the

lowest KL-divergence between the generated and ground

truth noise maps, among the compared methods, as show

in Table 2. The stochastic behavior and explicit transforms

of the C2N model help its output to maintain the charac-

teristics of noise, solving the difficulties of a regular CNN

functioning as a noise generator. Note that for UIDNet ex-

periment in Figure 6 and Table 2, we train model with offi-

cially released code.

Also, Table 3 and Figure 7 show that each component of

our C2N model is essential for real-world noise modeling.

Since our method learns the noise distribution without any

accurate noise maps or a heuristic technique to stabilize the

learning, the stabilizing loss Lstb plays an important role.

By comparing rows with only 1 × 1 module to rows com-

bined with 3× 3 module of Table 3, we can again verify the

necessity of GI , GD and 3×3 convolutional transforms. In
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(a) Noisy input (b) BM3D [14] (c) UIDNet [22] (d) C2N + DnCNN (Ours) (e) DnCNN+ (Supervised)

Figure 8: Comparison between denoising result examples of the SIDD dataset. (c) We use publicly released UIDNet to

get the result images. (e) The DnCNN model is trained in a supervised manner, using clean-noisy pairs in the SIDD dataset.

addition, using signal-independent and dependent module

together gain higher PNSR result than others. Result shows

that each single module is not enough for generating com-

plex real-world noise. For example, the model without GI

at the 6th row of the Table 3 produces samples that differ

in noise distribution, as shown in Figure 7. From the abla-

tion study, we confirm that the entire elements of the C2N

together can well simulate challenging real-world noise.

4.4. Results of Real­World Denoising

Table 4 shows the performance of our method evaluated

on the DND and the SIDD benchmarks of real-world de-

noising in sRGB space. We note that our method outper-

forms existing unsupervised methods by a large margin. Es-

pecially, our method with C2N and DnCNN denoiser shows

better results on the SIDD benchmark than the UIDNet

which use similar denoising network with DnCNN model.

We also use much fewer patch data than the 520,965 noisy

and clean image patches of 64 × 64 size used by UIDNet.

We further improve the performance of our method by using

the DIDN [48] as its denoising model, which has larger ca-

pacity of ∼217M parameters compared to that of ∼0.67M

parameters of the DnCNN. It shows that we can train ar-

bitrary denoising models with C2N, unlike UIDNet with a

fixed denoising backbone.

In the DND benchmark, our method also outperforms

GCBD, another previous generation-based method. Sev-

eral existing methods [19, 26] use rich training images of

the SIDD to get high performance on the DND benchmark,

even though the DND and SIDD datasets are not match-

ing datasets. Similarly, we also train our C2N generator on

the SIDD dataset and fine-tune trained model on the DND

dataset to obtain more improved performance than directly

training on the DND, as shown in the last row of Table 4.

Figure 8 shows denoised result examples on the SIDD

dataset. Along with the quantitative results, our method

shows better noise removal and detail-preserving results

than the compared unsupervised methods, with quality

comparable to that of the supervised model.

5. Conclusion

In this paper, we propose a C2N framework for practical

real-world denoising which includes our novel noise gen-

erator. By explicitly designing components of the gener-

ator considering signal-dependency and spatial correlation

of real-world noise property, it successfully learn to sim-

ulate the noise distribution of the noisy images in situa-

tion of unpaired setting. We show that each module of the

model can generate noise with corresponding characteris-

tics through the experiments on several synthetic noise and

real-world noise. Using the generated noisy and clean pairs

from our generator, we train denoisers to outperform the ex-

isting methods without use of actual data pairs. We believe

our method can be a key to solve the challenging points of

practical real-world denoising.
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