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Abstract

Appearance and motion are two important sources of
information in video object segmentation (VOS). Previous
methods mainly focus on using simplex solutions, lower-
ing the upper bound of feature collaboration among and
across these two cues. In this paper, we study a novel frame-
work, termed the FSNet (Full-duplex Strategy Network),
which designs a relational cross-attention module (RCAM)
to achieve the bidirectional message propagation across
embedding subspaces. Furthermore, the bidirectional pu-
rification module (BPM) is introduced to update the incon-
sistent features between the spatial-temporal embeddings,
effectively improving the model robustness. By considering
the mutual restraint within the full-duplex strategy, our FS-
Net performs the cross-modal feature-passing (i.e., trans-
mission and receiving) simultaneously before the fusion
and decoding stage, making it robust to various challeng-
ing scenarios (e.g., motion blur, occlusion) in VOS. Exten-
sive experiments on five popular benchmarks (i.e., DAVIS16,
FBMS, MCL, SegTrack-V2, and DAVSOD19) show that our
FSNet outperforms other state-of-the-arts for both the VOS
and video salient object detection tasks.

1. Introduction
Video object segmentation (VOS) [12, 32, 101, 104] is a

fundamental topic in computer vision for intelligent video
analysis, whose purpose is to delineate pixel-level mov-
ing object1 masks in each frame. It has been widely ap-
plied to robotic manipulation [1], autonomous cars [58],
video editing [34], medicine [36], optical flow estima-
tion [18], interactive segmentation [9,29,60], URVOS [75],
and video captioning [65]. There are two settings for ad-
dressing this task (i.e., semi-supervised [95] and unsuper-
vised [59] VOS), depending on whether or not the candi-
date object is given manually in the first frame. In this

*Corresponding author: Deng-Ping Fan (dengpfan@gmail.com). Work
was done while Ge-Peng Ji was an intern mentored by Deng-Ping Fan.

1We use ‘foreground object’ & ‘target object’ interchangeably.
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Figure 1: Visual comparison between the simplex (i.e., (a)
appearance-refined motion and (b) motion-refined appear-
ance) and our full-duplex strategy. In contrast, our FS-
Net offers a collaborative way to leverage the appearance
and motion cues under the mutual restraint of full-duplex
strategy, thus providing more accurate structure details and
alleviating the short-term feature drifting issue [117].

work, we focus on the unsupervised setting, i.e., zero-shot
VOS [126,127]. For semi-supervised VOS, we refer readers
to prior works [5, 8, 43, 53, 73, 76, 114, 116, 120, 122].

Recent years have witnessed promising progress of ad-
dressing video content understanding by exploiting appear-
ance (e.g., color frame [119]) and motion (e.g., optical
flow [33, 83] and pixel trajectory [78]) correlation between
frames. However, short-term dependency estimation (i.e.,
one-step motion cues [33, 83]) produces unreliable results
and suffers the common ordeals [30] (e.g., diffusion, noise,
and deformation), while the capability of appearance-based
modeling (e.g., recurrent neural network (RNN) [59, 85]) is
severely hindered by blurred foregrounds or cluttered back-
grounds [14]. Those conflicts are prone to accumulating
inaccuracies with the propagation of spatial-temporal em-
beddings, which cause short-term feature drifting [117].

Earlier solutions address this issue using direction-
independent strategy [16, 35, 38, 85, 108], which would be
to encode the appearance and motion features individually
and fuse them directly. However, this implicit strategy will
cause feature conflicts, since motion and appearance are two
distinctive modalities, extracted from separate branches. A
reasonable idea is to integrate them in a guided manner, and
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Figure 2: Mean contour accuracy (F) vs. mean region sim-
ilarity (J ) scores on DAVIS16 [71]. Circles indicate UVOS
methods. Four variants of our FSNet are shown in bold-
italic, in which ‘N ’ indicates the number of BPM. Com-
pared with the best unsupervised VOS model (MAT [127]
with CRF [42] post-processing), the proposed method FS-
Net (N=4, CRF) achieves the new SOTA by a large margin.

thus, several recent approaches opt for the simplex strat-
egy [30, 50, 54, 62, 68, 88, 127], which is either appearance-
based or motion-guided. Although these two strategies have
achieved remarkable advances, they both fail to infer the
mutual restraint between the appearance and motion cues
that both guide human visual attention allocation during dy-
namic observation, according to previous studies in cogni-
tive psychology [40, 87, 105] and computer vision [35, 93].

For the same object, we argue that appearance and mo-
tion characteristics should be homogeneous to a certain de-
gree. Intuitively, as shown in Fig. 1, the foreground region
of appearance (top-left) and motion (bottom-left) maps in-
trinsically share the correlative patterns about perceptions,
including semantic structure, movement posture. However,
misguided knowledge in the individual modality, e.g., static
spectators at the bullring and dynamic watermark on TV
(blue boxes), will produce inaccuracies during the feature
propagation, and thus, it easily stains the result (red boxes).

To alleviate the above conflicts, it is important to intro-
duce a new modality transmission scheme, instead of em-
bedding them individually. Inspired by this, we introduce
the idea of full-duplex2 from the field of wireless commu-
nication. As shown in Fig. 4 (c) & Fig. 5 (c), this is a
bidirectional-attention scheme across motion and appear-
ance cues, which explicitly incorporates the appearance and
motion patterns in a unified framework. As can be seen in
the first row of Fig. 1, the proposed Full-duplex Strategy

2On the same channel, information can be transmitted and received
simultaneously [4].

Network (FSNet) visually performs better than the one with
simplex strategy. To understand what enables good learning
strategies, we comprehensively delve into the simplex and
full-duplex strategies of our framework and present the fol-
lowing contributions:

• We emphasize the importance of the full-duplex strat-
egy for the spatial-temporal representations. Specifi-
cally, a bidirectional interaction module, termed the rela-
tional cross-attention module (RCAM), is used to extract
discriminative features from the appearance and motion
branches, which ensures the mutual restraint between
each other.

• To further improve the model robustness, we intro-
duce a bidirectional purification module (BPM), which
is equipped with an interlaced decremental connection
(IDC) to automatically update inconsistent features be-
tween the spatial-temporal embeddings.

• We demonstrate that our FSNet performs superior per-
formance on five mainstream benchmarks, especially for
FSNet (N=4, CRF) outperforms the SOTA UVOS model
(i.e., MAT [127]) on the DAVIS16 [71] leaderboard by a
margin of 2.4% in terms of F score (see Fig. 2), with less
training data (i.e., Ours-13K vs. MAT-16K). This sug-
gests that the mutual restraints within full-duplex strat-
egy is promising for the spatial-temporal learning tasks.

2. Related Works
2.1. Unsupervised VOS

Although there are many works [7, 15, 37, 69, 89, 107]
addressing the VOS task in a semi-supervised manner, i.e.,
by supposing an object mask annotation is given in the first
frame, other researchers have attempted to address the more
challenging unsupervised VOS (UVOS) problem. Early
UVOS models resort to low-level handcrafted features for
heuristic segmentation inference, such as long sparse point
trajectories [6, 23, 63, 79, 97], object proposals [47, 48, 57,
72], saliency priors [20, 92, 94], optical flow [88], or su-
perpixels [24, 25, 109]. As such, these traditional mod-
els have limited generalizability, and thus low accuracy in
highly dynamic and complex scenarios, due to their lack
of semantic information and high-level content understand-
ing. Recently, RNN-based models [3, 81, 85, 99, 114, 125]
have become popular due to their better capability of cap-
turing long-term dependencies, as well as their use of deep
learning. In this case, UVOS is formulated as a recurrent
modeling issue over time, where spatial features are jointly
exploited with long-term temporal context.

How to combine motion cues with appearance features
is a long-standing problem in this field. To this end, Tok-
makov et al. [84] proposed to simply use the motion pat-
terns required from the video. However, their method is
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Figure 3: The pipeline of our FSNet. The Relational Cross-Attention Module (RCAM) abstracts more discriminative representations
between the motion and appearance cues using the full-duplex strategy. Then four Bidirectional Purification Modules (BPM) are stacked to
further re-calibrate inconsistencies between the motion and appearance features. Finally, we utilize the decoder to generate our prediction.

unable to accurately segment objects between two similar
consecutive frames, since it relies heavily on the guidance
of optical flow. To resolve this, several works [16, 80, 85]
have integrated the spatial and temporal features from the
parallel network, which can be viewed as plain feature fu-
sion from the independent spatial and temporal branch with
an implicit modeling strategy. Li et al. [51] proposed a
multi-stage processing method to tackle UVOS, which first
utilizes a fixed appearance-based network to generate ob-
jectness and then feeds this into the motion-based bilateral
estimator to segment the objects.

2.2. Attention-based VOS
The attention-based VOS task is closely related to

UVOS, since it aims at extracting attention-aware object(s)
from a video clip. Traditional methods [31,98,111,113,128]
first compute the single-frame saliency based on various
hand-crafted static and motion features, and then conduct
spatial-temporal optimization to preserve coherency across
consecutive frames. Recent works [45, 61, 96, 121] aim to
learn a highly-semantic representation and usually perform
spatial-temporal detection in an end-to-end manner. Many
schemes have been proposed to employ deep networks that
consider temporal information, such as ConvLSTM [22,
49, 81], take optical-flows/adjacent-frames as input [50, 96,
110], 3D convolutional [45, 61], or directly exploit tempo-
rally concatenated deep features [46]. Besides, long-term
influences are often taken into account and combined with
deep learning. Li et al. [52] proposed a key-frame strat-
egy to locate representative high-quality video frames of

salient objects and diffused their saliency to ill-detected
non-key frames. Chen et al. [10] improved saliency detec-
tion by leveraging long-term spatial-temporal information,
where high-quality “beyond-the-scope frames” are aligned
with the current frames and both types of information are
fed to deep neural networks for classification. Besides
considering how to better leverage temporal information,
other researchers have attempted to address different prob-
lems in VSOD, such as reducing the data labeling require-
ments [115], developing semi-supervised approaches [82],
or investigating relative saliency [102]. Fan et al. [22] intro-
duced a VSOD model equipped with a saliency shift-aware
ConvLSTM, together with an attention-consistent VSOD
dataset with high-quality annotations.

3. Methodology
3.1. Overview

Suppose that a video clip contains T consecutive frames
{At}Tt=1. We first utilize optical flow field generator H,
i.e., FlowNet 2.0 [33], to generate T − 1 optical flow maps
{Mt}T−1

t=1 , which are all computed by two adjacent frames
(Mt = H[At,At+1]). To ensure the inputs match, we
discard the last frame in the pipeline. Thus, the proposed
pipeline takes both the appearance image {At}T−1

t=1 and its
paired motion map {Mt}T−1

t=1 as the input. First, Mt & At

pairs at frame t3 are fed to two independent ResNet-50 [28]
branches (i.e., motion and appearance blocks in Fig. 3). The
appearance features {Xk}Kk=1 and motion features {Yk}Kk=1

3Here, we omit the superscript “t” for the convenient expression.
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Figure 4: Illustration of our Relational Cross-Attention Module (RCAM) with a simplex (a & b) and full-duplex (c) strategy.

extracted from K layers are then sent to the Relational
Cross-Attention Modules (RCAMs), which allows the net-
work to embed spatial-temporal cross-modal features. Next,
we employ the Bidirectional Purification Modules (BPMs)
with N cascaded units. BPMs focus on distilling represen-
tative carriers from fused features {Fnk}Nn=1 and motion-
based features {Gn

k}Nn=1. Finally, the predictions (i.e., StM
and StA) at frame t are generated from two decoder blocks.

3.2. Relational Cross-Attention Module
As discussed in § 1, a single-modality (i.e., motion or

appearance) guided stimulation may cause the model to
make incorrect decisions. To alleviate this, we design a
cross-attention module (RCAM) via the channel-wise at-
tention mechanism, which focuses on distilling out effec-
tive squeezed cues from two modalities and then modulat-
ing each other. As shown in Fig. 4 (c), the two inputs of
RCAM are appearance features {Xk}Kk=1 and motion fea-
tures {Yk}Kk=1, which are obtained from the two different
branches of the standard ResNet-50 [28]. Specifically, for
each k-level, we first perform global average pooling (GAP)
to generate channel-wise vectors VXk and VYk from each Xk
and Yk. Next, two 1×1 conv layers, i.e., ϕ(x;Wϕ) and
θ(x;Wθ), with learnable parameters Wϕ and Wθ, gener-
ate two discriminated global descriptors. The sigmoid func-
tion σ[x] = ex/(ex + 1), x ∈ R is then applied to convert
the final descriptors into the interval [0, 1], i.e., into the valid
attention vector for channel weighting. Then, we perform
outer product ⊗ between Xk and σ

[
θ(VYk ;Wθ)

]
to gener-

ate a candidate feature QX
k , and vice versa, as follows:

QX
k = Xk ⊗ σ

[
θ(VYk ;Wθ)

]
, (1)

QY
k = Yk ⊗ σ

[
ϕ(VXk ;Wϕ)

]
. (2)

Then, we combine QX
k , QY

k , and lower-level fused fea-
ture Zk−1 for in-depth feature extraction. With an element-
wise addition operation ⊕, conducted in the corresponding
k-th level block Bk[x] in the ResNet-50, we finally obtain

the fused features Zk that contain comprehensive spatial-
temporal correlations:

Zk = Bk
[
QX
k ⊕QY

k ⊕Zk−1

]
, (3)

where k ∈ {1 : K} denotes different feature hierarchies in
the backbone. Note that Z0 denotes the zero tensor. In our
implementation, we use the top four feature pyramids, i.e.,
K = 4, which is suggested by [103, 123].

3.3. Bidirectional Purification Module
In addition to the RCAM described above, which inte-

grates common cross-modality features, we further intro-
duce the bidirectional purification module (BPM) to im-
prove the model robustness. Following the standard in ac-
tion recognition [77] and saliency detection [106], our bidi-
rectional purification phase is composed of N BPMs con-
nected in a cascaded manner. As shown in Fig. 3, we first
employ the feature allocator ψ{F,G}(x;W

{F,G}
ψ ) to unify

the feature representations from the previous stage:

Fnk = ψF (Zk;WF
ψ ), G

n
k = ψG(Yk;WG

ψ ), (4)

where k∈{1 : K} and n∈{1 : N} denote different feature
hierarchies and number of BPM, respectively. To be spe-
cific, ψ{F,G}(x;W

{F,G}
ψ ) is composed of two 3×3 conv,

each with 32 filters to reduce the feature channels. Note
that the allocator is conducive to reduce the computational
burden as well as facilitate various element-wise operations.

Here, we consider a full-deplex scheme (see Fig. 5 (c))
that contains two simplex strategies (see Fig. 5 (a & b))
in the BPM. On one hand, the motion features Gn

k con-
tain temporal cues and can be used to enrich the fused fea-
tures Fnk by the concatenation operation. On the other, the
distractors in the motion features Gn

k can be suppressed
by multiplicating the fused features Fnk . Besides, to ac-
quire robust feature representation, we introduce an efficient
cross-modal fusion strategy in this scheme, which broad-
casts high-level, semantically strong features to low-level,
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Figure 5: Illustration of our Bidirectional Purification Module (BPM) with a simplex and full-duplex strategy.

semantically weak features via interlaced decremental con-
nection (IDC) with a top-down pathway [55]. Specifically,
as the first part, the spatial-temporal feature combination
branch (see Fig. 5 (b)) is formulated as:

Fn+1
k = Fnk ⊕

K⋃
i=k

[Fnk ,P(Gn
i )] , (5)

where P is an up-sampling operation followed by a 1×1
convolutional layer (conv) to reshape the candidate guid-
ance to a consistent size with Fnk . Symbols ⊕ and

⋃
re-

spectively denote element-wise addition and concatenation
operations with an IDC strategy4, followed by a 1×1 conv
with 32 filters. For the other part, we formulate the temporal
feature re-calibration branch (see Fig. 5 (a)) as:

Gn+1
k = Gn

k ⊕
K⋂
j=k

[Gn
k ,P(Fnj )], (6)

where
⋂

denotes element-wise multiplication with an IDC
strategy, followed by a 1×1 conv with 32 filters.

3.4. Decoder
After feature aggregation and re-calibration with multi-

pyramidal interaction, the last BPM unit produces two
groups of discriminative features (i.e., FNk & GN

k ) with
a consistent channel number of 32. We integrate pyramid
pooling module (PPM) [124] into each skip connection of
the U-Net [74] as our decoder, and only adopt the top four
layers in our implementation (K = 4). Since the features
are fused from high to low level, global information is well
retained at different scales of the designed decoder:

F̂Nk = C[FNk ⊙ UP(F̂Nk+1)], (7)

ĜN
k = C[GN

k ⊙ UP(ĜN
k+1)]. (8)

Here, UP indicates the upsampling operation after the pyra-
mid pooling layer, while ⊙ is a concatenation operation be-
tween two features. Then, a conv C is used for reducing the

4For instance, Ḡn
2 =

⋃K=4
i=2 [Fn

2 ,P(Gn
i )] = Fn

2 ⊙ P(Gn
2 ) ⊙

P(Gn
3 )⊙ P(Gn

4 ) when k = 2 and K = 4.

channels from 64 to 32. Lastly, we use a 1×1 conv with
a single filter after the upstream output (i.e., F̂N1 & ĜN

1 ),
followed by a sigmoid activation function to generate the
predictions (i.e., StA & StM ) at frame t.

3.5. Training
Given a group of predictions St ∈ {StA,StM} and the

corresponding ground-truths Gt at frame t, we employ the
standard binary cross-entropy loss Lbce to measure the dis-
similarity between output and target, which computes:

Lbce(St,Gt) =−
∑
(x,y)

[Gt(x, y) log(St(x, y))

+ (1−Gt(x, y)) log(1− St(x, y))],

(9)

where (x, y) indicates a coordinate in the frame. The overall
loss function is then formulated as:

Ltotal = Lbce(StA,Gt) + Lbce(StM ,Gt). (10)

For final prediction, we use StA since our experiments show
that it better combines appearance and motion cues.

3.6. Implementation Details
Training Settings. We implement our model in Py-
Torch [67], accelerated by an NVIDIA RTX TITAN. All
the inputs are uniformly resized to 352×352. To enhance
the stability and generalizability of the learning algorithm,
we employ the multi-scale ({0.75, 1, 1.25}) training strat-
egy [27] in the training phase. Based on experiments
in Tab. 4, N=4 (the number of BPM) achieves the best per-
formance. We utilize the stochastic gradient descent (SGD)
algorithm to optimize the entire network, with a momentum
of 0.9, learning rate of 2e−3, and weight decay of 5e−4.

Testing Settings and Runtime. Given a frame along with
its motion map, we resize them to 352×352 and feed them
into the corresponding branch. Similar to [56, 99, 127],
We employ the conditional random field (CRF) [42] post-
processing technique for a fair compairison. The inference
time of our method is 0.08s per frame, regardless of flow
generation and CRF post-processing.
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Table 1: Video object segmentation (VOS) performance of our FSNet, compared with 14 SOTA unsupervised and seven semi-supervised
models on DAVIS16 [71] validation set. ‘w/ Flow’: the optical flow algorithm is used. ‘w/ CRF’: conditional random field [42] is used for
post-processing. The best scores are marked in bold.

Unsupervised Semi-supervised

Metric
FSNet MAT AGNN AnDiff COSNet AGS EpO+ MOA LSMO ARP LVO LMP SFL ELM FST CFBI AGA RGM FEEL FA OS MSK
(Ours) [127] [91] [117] [56] [99] [19] [80] [86] [41] [85] [84] [16] [44] [66] [118] [37] [107] [89] [15] [7] [69]

w/ Flow ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/ CRF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mean-J ↑ 83.4 82.1 82.4 80.7 81.7 80.5 79.7 80.6 77.2 78.2 76.2 75.9 70.0 67.4 61.8 55.8 85.3 81.5 81.5 81.1 82.4 79.8 79.7
Mean-F ↑ 83.1 83.0 80.7 79.1 80.5 79.5 77.4 75.5 77.4 75.9 70.6 72.1 65.9 66.7 61.2 51.1 86.9 82.2 82.0 82.2 79.5 80.6 75.4

Table 2: Video salient object detection (VSOD) performance of our FSNet, compared with 13 SOTA models on several VSOD datasets.
‘†’ denotes that we generate non-binary saliency maps without CRF [42] for fair comparison. ‘N/A’ means the results are not available.

DAVIS16 [71] MCL [39] FBMS [64] DAVSOD19-Easy35 [22]
Model Sα ↑ Emax

ξ ↑ Fmax
β ↑ M ↓ Sα ↑ Emax

ξ ↑ Fmax
β ↑ M ↓ Sα ↑ Emax

ξ ↑ Fmax
β ↑ M ↓ Sα ↑ Emax

ξ ↑ Fmax
β ↑ M ↓

20
18

MBN [51] 0.887 0.966 0.862 0.031 0.755 0.858 0.698 0.119 0.857 0.892 0.816 0.047 0.646 0.694 0.506 0.109
FGRN [49] 0.838 0.917 0.783 0.043 0.709 0.817 0.625 0.044 0.809 0.863 0.767 0.088 0.701 0.765 0.589 0.095
SCNN [82] 0.761 0.843 0.679 0.077 0.730 0.828 0.628 0.054 0.794 0.865 0.762 0.095 0.680 0.745 0.541 0.127
DLVS [96] 0.802 0.895 0.721 0.055 0.682 0.810 0.551 0.060 0.794 0.861 0.759 0.091 0.664 0.737 0.541 0.129

SCOM [13] 0.814 0.874 0.746 0.055 0.569 0.704 0.422 0.204 0.794 0.873 0.797 0.079 0.603 0.669 0.473 0.219

20
19
∼

20
20

RSE [113] 0.748 0.878 0.698 0.063 0.682 0.657 0.576 0.073 0.670 0.790 0.652 0.128 0.577 0.663 0.417 0.146
SRP [17] 0.662 0.843 0.660 0.070 0.689 0.812 0.646 0.058 0.648 0.773 0.671 0.134 0.575 0.655 0.453 0.146

MESO [112] 0.718 0.853 0.660 0.070 0.477 0.730 0.144 0.102 0.635 0.767 0.618 0.134 0.549 0.673 0.360 0.159
LTSI [10] 0.876 0.957 0.850 0.034 0.768 0.872 0.667 0.044 0.805 0.871 0.799 0.087 0.695 0.769 0.585 0.106
SPD [52] 0.783 0.892 0.763 0.061 0.685 0.794 0.601 0.069 0.691 0.804 0.686 0.125 0.626 0.685 0.500 0.138

SSAV [22] 0.893 0.948 0.861 0.028 0.819 0.889 0.773 0.026 0.879 0.926 0.865 0.040 0.755 0.806 0.659 0.084
RCR [115] 0.886 0.947 0.848 0.027 0.820 0.895 0.742 0.028 0.872 0.905 0.859 0.053 0.741 0.803 0.653 0.087
PCSA [26] 0.902 0.961 0.880 0.022 N/A N/A N/A N/A 0.868 0.920 0.837 0.040 0.741 0.793 0.656 0.086

FSNet†(Ours) 0.920 0.970 0.907 0.020 0.864 0.924 0.821 0.023 0.890 0.935 0.888 0.041 0.773 0.825 0.685 0.072

4. Experiments
4.1. UVOS and VSOD
Datasets. We evaluate the proposed model on four widely
used VOS datasets. DAVIS16 [71] is the most popular
of these, and consists of 50 (30 training and 20 valida-
tion) high-quality and densely annotated video sequences.
MCL [39] contains 9 videos and is mainly used as testing
data. FBMS [64] includes 59 natural videos, in which 29
sequences are used as the training set and 30 are for test-
ing. SegTrack-V2 [48] is one of the earliest VOS dataset,
and consists of 13 clips. In addition, DAVSOD19 [22] was
specifically designed for the VSOD task. It is the most chal-
lenging visual attention consistent VSOD dataset with high-
quality annotations and diverse attributes.

Metrics. We adopt six standard metrics including: mean
region similarity (J ) [71], mean contour accuracy (F) [71],
structure-measure (Sα, α=0.5) [11], maximum enhanced-
alignment measure (Emaxξ ) [21], maximum F-measure
(Fmaxβ , β2=0.3) [2], and MAE (M) [70].

Training. Following a similar multi-task training setup
as [50], we divide our training procedure into three steps: (i)
We first use a well-known static saliency dataset DUTS [90]
to train the spatial branch to avoid over-fitting, like in [22,
81,96], (ii) We then train the temporal branch on the gener-
ated optical flow maps, and (iii) We finally load the weights

pretrained on two sub-tasks into the spatial and temporal
branches, and thus, the whole network is end-to-end trained
on the training set of DAVIS16 (30 clips) and FBMS (29
clips). Last step takes about 4 hours and converges after 20
epochs with a batch size of 8.
Testing. We follow the standard benchmarks [22,71] to test
our model on the validation set (20 sequences) of DAVIS16,
the test set of FBMS (30 clips), the test set (Easy35 split) of
DAVSOD19 (35 clips), the whole of MCL (9 clips), and the
whole of SegTrack-V2 (13 clips).
Evaluation on DAVIS16. As shown in Tab. 1, we compare
our FSNet with 14 SOTA UVOS models on the DAVIS16

public leaderboard. We also compare it with seven recent
semi-supervised approaches as reference. For fair compar-
ison, we use a threshold of 0.5 to generate the final binary
maps, as recommended by [117]. Our FSNet outperforms
the best model (AAAI’20-MAT [127]) by a margin of 2.4%
in F and 1.0% in J , achieving the new SOTA performance.
Notably, the proposed UVOS model also outperforms the
semi-supervised model (e.g., AGA [37]), even though it uti-
lizes the first GT mask as the reference of object location.

We also compare FSNet against 13 SOTA VSOD mod-
els. We obtain the non-binary saliency maps5 from the
standard benchmark [22]. This can be seen from Tab. 2,
our method consistently outperforms all other models since

5Note that all compared maps in VSOD, including ours, are non-binary.

4927



D
AV
IS
’1
6

ca
r-
ro
un
da
bo
ut

M
C
L

Ro
ad

FB
M
S

te
nn
is

Se
gT
ra
ck
V
2

bi
rd
_o
f_
pa
ra
.

D
AV
SO
D
’1
9

se
le
ct
_0
64
7

time

Figure 6: Qualitative results on five datasets, including DAVIS16 [71], MCL [39], FBMS [64], SegTrack-V2 [48], and DAVSOD19 [22].

2018, on all metrics. In particular, for the Sα and Fmaxβ

metrics, our method improves the performance by ∼2.0%
compared with the best AAAI’20-PCAS [26] model.
Evaluation on MCL. This dataset has fuzzy object bound-
aries in the low-resolution frames, due to fast object move-
ments. Therefore, the overall performance is lower than
on DAVIS16. As shown in Tab. 2, our method still stands
out in these extreme circumstances, with a 3.0∼8.0% in-
crease in all metrics compared with ICCV’19-RCR [115]
and CVPR’19-SSAV [22].
Evaluation on FBMS. This is one of the most popular
VOS datasets with diverse attributes, such as interacting ob-
jects and dynamic backgrounds, and no per-frame annota-
tion. As shown in Tab. 2, our model achieves competitive
performance in terms of M. Further, compared to the pre-
vious best-performing SSAV [22], it obtains improvements
in other metrics, including Sα (0.890 vs. SSAV=0.879) and
Emaxξ (0.935 vs. SSAV=0.926), making it more suitable to
the human visual system (HVS) as mentioned in [11, 21].
Evaluation on SegTrack-V2. This is the earliest VOS
dataset from the traditional era. Thus, only a limited
number of deep UVOS models have been tested on it.
We only compare our FSNet against the top-3 models:
AAAI’20-PCAS [26] (Sα=0.866), ICCV’19-RCR [115]
(Sα=0.842), and CVPR’19-SSAV [22] (Sα=0.850). Our
method achieves the best performance (Sα=0.870).
Evaluation on DAVSOD19. Most of the video sequences
in DAVSOD19 are similar to those in the challenging
DAVIS16 dataset. It also contains a large amount of sin-

gle (salient) objects. We find that FSNet outperforms all
the reported algorithms. Compared with the current best
solution (i.e., AAAI’20-PCAS), our model achieves large
improvements of 3.2% in terms of Sα.
Qualitative Results. Some qualitative results on the five
datasets are shown in Fig. 6, validating that our method
achieves high-quality UVOS and VSOD results. As can
be seen in the 1st row, the red car in the bottom-right cor-
ner moves slowly, so it does not get noticed. However, as
our full-duplex strategy model considers both appearance
and motion bidirectionally, it can automatically predict the
smaller car in the center of the video. Overall, for these
challenging situations, e.g., dynamic background (1st & 5th

rows), occlusion (2nd row), fast-motion (3rd row), and de-
formation (4th row), our model is able to infer the real target
object(s) with fine-grained details. From this point of view,
we demonstrate that FSNet is a general framework for both
UVOS and VSOD tasks.

4.2. Ablation Study
4.2.1 Stimulus Selection

We explore the influence of different stimuli (appearance
only vs. motion only) in our framework. We use only video
frames or motion maps (using [33]) to train the ResNet-
50 [28] backbone together with the proposed decoder block
(see § 3.4). As shown in Tab. 3, Mo. performs slightly bet-
ter than App. in terms of Sα on DAVIS16, which suggests
that the “optical flow” setting can learn more visual cues
than “video frames”. Nevertheless, App. outperforms Mo.
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Table 3: Ablation studies (§ 4.2.1, § 4.2.2, & § 4.2.3) for our
components on DAVIS16 and MCL. We set N = 4 for BPM.

Component Settings DAVIS16 MCL
Appearance Motion RCAM BPM Sα ↑ M ↓ Sα ↑ M ↓

App. ✓ 0.834 0.047 0.754 0.038
Mo. ✓ 0.858 0.039 0.763 0.053

Vanilla ✓ ✓ 0.871 0.035 0.776 0.046
Rel. ✓ ✓ ✓ 0.900 0.025 0.833 0.031

Bi-Purf. ✓ ✓ ✓ 0.904 0.026 0.855 0.023
FSNet ✓ ✓ ✓ ✓ 0.920 0.020 0.864 0.023

Table 4: Ablation study for the number (N ) of BPMs on
DAVIS16 [71] and MCL [39], with the focus on parameter and
FLOPs of BPMs, and runtime of FSNet.

Param. FLOPs Runtime DAVIS16 MCL
(M) (G) (s/frame) Sα ↑ M ↓ Sα ↑ M ↓

N = 0 0.000 0.000 0.03 0.900 0.025 0.833 0.031
N = 2 0.507 1.582 0.05 0.911 0.026 0.843 0.028
N = 4 1.015 3.163 0.08 0.920 0.020 0.864 0.023
N = 6 1.522 4.745 0.10 0.918 0.023 0.863 0.023
N = 8 2.030 6.327 0.13 0.920 0.023 0.864 0.023

in M metric on MCL. This motivates us to explore how to
effectively use appearance and motion cues simultaneously.

4.2.2 Effectiveness of RCAM

To validate the effectiveness of our RCAM (Rel.), we re-
place our fusion strategy with the vanilla fusion (Vanilla)
using a concatenate operation followed by a convolutional
layer to fuse two modalities. As expected (Tab. 3), the pro-
posed Rel. performs consistently better than the vanilla fu-
sion strategy on both DAVIS16 and MCL. We would like to
point out that our RCAM has two important properties: (i)
it enables mutual correction and attention, and (ii) it can al-
leviate error propagation within a network to an extent due
to the mutual correction and bidirectional interaction.

4.2.3 Effectiveness of BPM

To illustrate the effectiveness of the BPM (with N = 4),
we derive two different models: Rel. and FSNet, referring
to the framework without or with BPM. We observe that
the model with BPM gains 2.0∼3.0% than the one with-
out BPM, according to the statistics in Tab. 3. We attribute
this improvement to BPM’s introduction of an interlaced
decremental connection, which enables it to effectively fuse
the different signals. Similarly, we remove the RCAM and
derive another pair of settings (Vanilla & Bi-Purf.) to test
the robustness of our BPM. The results show that even us-
ing the bidirectional vanilla fusion strategy (Bi-Purf.) can
still enhance the stability and generalization of the model.
This benefits from the purification forward process and re-
calibration backward process in the whole network.

4.2.4 Number of Cascaded BPMs

Intuitively, more cascaded BPMs should lead to better boost
performance. This is investigated and the evaluation results

Table 5: Ablation study for the simplex and full-duplex strategies
on DAVIS16 [71] and MCL [39]. We set N = 4 for BPM.

Direction Setting DAVIS16 MCL
RCAM BPM Sα ↑ M ↓ Sα ↑ M ↓

si
m

pl
ex

App. ⇒ Mo. (App.+Mo.) ⇒ Mo. 0.896 0.026 0.816 0.038
App. ⇒ Mo. (App.+Mo.) ⇐ Mo. 0.902 0.025 0.832 0.031
App. ⇐ Mo. (App.+Mo.) ⇒ Mo. 0.891 0.029 0.806 0.039
App. ⇐ Mo. (App.+Mo.) ⇐ Mo. 0.897 0.028 0.840 0.028

full-dup. App. ⇔ Mo. (App.+Mo.) ⇔ Mo. 0.920 0.020 0.864 0.023

are shown in Tab. 4, where N = {0, 2, 4, 6, 8}. Note that
N = 0 means that NO BPM is used. Clearly, as can be
seen from Fig. 2 and Tab. 4, more BPMs leads to better
results, but the performance reaches saturation after N =
4. Further, too many BPMs (i.e., N > 4) will cause high
model-complexity and may increase the risk of over-fitting.
As a trade-off, we use N = 4 throughout our experiments.

4.2.5 Effectiveness of Full-Duplex Strategy

To investigate the effectiveness of the RCAM and BPM
modules with the full-duplex strategy, we study two uni-
directional (simplex, see Fig. 4 & Fig. 5) variants of our
model. In Tab. 5, the symbols ⇒, ⇐, and ⇔ indicate the
feature transmission directions in the designed RCAM or
BPM. Specifically,App.⇐Mo. indicates that the attention
vector in the optical flow branch weights the features in the
appearance branch, and vice versa. (App. +Mo.) ⇐ Mo.
indicates that motion cues are used to guide the fused fea-
tures extracted from both appearance and motion. The com-
parison results show that our elaborately designed modules
(RCAM and BPM) jointly cooperate in a full-duplex fash-
ion and outperform all simplex (unidirectional) settings.

5. Conclusion
We explore a simple yet efficient full-duplex strategy

network (FSNet) that fully leverages the complementarity
of appearance and motion cues to address the video object
segmentation problem. This architecture consists of a rela-
tional cross-attention module (RCAM) and an efficient bidi-
rectional purification module (BPM). The former is used to
abstract features from a dual-modality, while the latter is
utilized to re-calibrate inaccurate features step-by-step. In
the BPM, the interlaced decremental connection is critical
for broadcasting high-level coarse features to low-level fine-
grained features. We thoroughly validate each module of
our FSNet, providing several interesting findings. Finally,
FSNet acts as a unified solution significantly advancing the
SOTA of both VOS and VSOD. How to learn short-/long-
term in an efficient Transformer-like [100, 129] scheme un-
der the complicated scenarios seems to be interesting work.
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