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Abstract

Unsupervised person re-identification (Re-ID) remains
challenging due to the lack of ground-truth labels. Existing
methods often rely on estimated pseudo labels via itera-
tive clustering and classification, and they are unfortunately
highly susceptible to performance penalties incurred by the
inaccurate estimated number of clusters. Alternatively, we
propose the Meta Pairwise Relationship Distillation (MPRD)
method to estimate the pseudo labels of sample pairs for
unsupervised person Re-ID. Specifically, it consists of a Con-
volutional Neural Network (CNN) and Graph Convolutional
Network (GCN), in which the GCN estimates the pseudo la-
bels of sample pairs based on the current features extracted
by CNN, and the CNN learns better features by involving
high-fidelity positive and negative sample pairs imposed
by GCN. To achieve this goal, a small amount of labeled
samples are used to guide GCN training, which can distill
meta knowledge to judge the difference in the neighborhood
structure between positive and negative sample pairs. Ex-
tensive experiments on Market-1501, DukeMTMC-reID and
MSMT17 datasets show that our method outperforms the
state-of-the-art approaches.

1. Introduction
Given a query pedestrian image, person re-identification

(Re-ID) aims to match it with target pedestrian images of
the same identity. It remains challenging due to the large
appearance variations caused by different viewing angles,
light conditions and background clutters in disjoint scenes.
Existing methods usually learn discriminative features in a
supervised manner [39, 35, 2, 1, 25], which requires exten-
sive manual labeling efforts. Due to the prohibitively high
cost of such annotation, training person Re-ID systems in
the unsupervised manner has become a popular and practical
research topic.

*Corresponding author.

Figure 1. Illustrations of two pseudo label estimation methods,
in which (a) the traditional method directly take the pairwise sim-
ilarity to estimate pseudo labels, while (b) our method takes the
pairwise neighborhood structures to estimate pseudo labels. Each
circle denotes an individual image. The green circles represent the
same identity as the query image, dark color indicates high visual
similarity, while red circles represent other identities.

Recent unsupervised person Re-ID methods [13, 14, 6]
attempted to learn discriminative feature embeddings from
unlabeled training data based on iterative clustering and
classification. However, it is often nontrivial to determine the
number of clusters, and mishaps that wrongly estimate the
cluster numbers often incurs excessive noise in the pseudo
labels.

To address these issues, we reformulate the unsupervised
discriminative feature learning as a pairwise relationship
estimation problem. In this paper, we use the term positive
pair to denote a pair of the pedestrian images of the same
perceived identity; and conversely, negative pair to denote
images with different perceived identities. In the embed-
ding specified by a GCN, positive pairs are pulled closer;
while negative pairs are pushed away from one another. With
this soft semantic preserving rule replacing the clustering
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algorithm, the dilemma of determining cluster numbers are
circumvented. In the unsupervised learning paradigm, we
will need to differentiate such positive pairs and negative
pairs without relying on human annotations. One intuitive
solution is thresholding visual similarity scores as the crite-
rion, i.e., considering two images with high visual similarity
as a positive pair, and vice versa. However, as with many
other thresholding based techniques, this criterion is unreli-
able in practice. For example, as shown in Figure 1 (a), pair
(q, i2) is higher in visual similarity score than pair (q, i3),
contradicting the ground-truth. Alternatively, we argue that
a graph structure is more suitable to estimate pairwise la-
bels, as shown in Figure 1 (b), which exploits contextual
information to deduce the correct pairwise pseudo label for
(q, i2).

In this paper, we propose the Meta Pairwise Relationship
Distillation (MPRD) method for unsupervised person Re-
ID. It comprises a Convolutional Neural Network (CNN)
and Graph Convolutional Network (GCN), where the GCN
estimates the pseudo labels of sample pairs via the meta
knowledge learned from small amount of labeled samples,
and the CNN learns the discriminative features from input
images according to the estimated pseudo labels.

Specifically, the CNN and GCN are trained in an alter-
nating manner, which iteratively and respectively refines its
per-image feature and pairwise pseudo labels. At each iter-
ation, the CNN extracts the current per-image feature, and
updates the feature memory by a linear combination of it
and the previous features. Afterwards, the pairwise neighbor-
hood structure is estimated by connecting every image with
its neighbors, according to the visual similarity metric. The
resulting graph structure is then fed into the GCN to infer
the pseudo label for sample pairs. Empirically, we found
that it is very hard to train the GCN without any supervision,
therefore, we exploit a small amount of labeled metadata to
explicitly supervise GCN, which greatly helps its robustness.

The GCN is only leveraged to provide pseudo supervision
to the CNN training, and it is excluded in the testing stage.
We evaluate our proposed method on Market-1501 [34],
DukeMTMC-reID [20], and MSMT17 [26] datasets.

In summary, the contributions of this paper are summa-
rized as follows.

1. We reformulate the unsupervised discriminative feature
learning task as a pairwise relationship estimation prob-
lem, which avoids the error-prone step of estimating the
number of clusters in most existing methods.

2. We propose the MPRD method for unsupervised person
Re-ID, which incorporates a dedicated GCN as the pair-
wise pseudo label generator in the training stage and it
iteratively refines its estimated labels with better CNN
features.

3. We design an effective GCN that generates high-fidelity
pseudo labels based on the pairwise neighborhood struc-

tures.

2. Related Work
Supervised Person Re-identification methods require

labor-intensive labeled images during their training process.
Early methods usually extract a global feature represen-
tation per image for image retrieval [28, 18, 10]. In Per-
sonNet [28], a small-scale convolutional filter captures the
fine-grained cues. By combining such cues and automati-
cally determined scale weights, multi-scale discriminative
features are learned in [18]. SPRe-ID [10] employs a hu-
man semantic parsing technique to capture the pixel-level
discriminative clues. When the background is cluttered or
the pedestrian is occluded, part-level features are shown to
boost performance with the mining of discriminative body
regions [22, 19, 42, 5, 41]. Attention and multi-loss are also
used to enhance representation learning from a multi-view
perspective [29, 33, 4, 21, 40].

Unsupervised Person Re-identification methods re-
lieve the requirement for the cost-prohibitive annotations,
which include hand-crafted feature based methods [12, 34],
unsupervised domain adaptation methods [7, 36, 37, 16, 9,
11, 3, 31, 43] and fully unsupervised methods [13, 6, 27, 15,
24, 14]. It is very challenging to hand-craft robust features
to handle the appearance variations incurred by different
camera models, varying illuminations and viewpoints.

Methods based on unsupervised domain adaptation uti-
lize prior knowledge on a source dataset with labels, and
attempt to generalize on another unlabeled target dataset.
HHL [36] enforces camera invariance and domain connect-
edness to improve the generalization. ECN [37] introduces
an exemplar memory to store features of the target domain
and accommodate examplar-invariance, camera-invariance,
and neighborhood-invariance of the target domain proper-
ties. SSG [7] exploits the potential similarity (from the
global body and local parts) of unlabeled samples to automat-
ically build multiple clusters from different views. Mekhazni
et.al. [16] design the Dissimilarity-based Maximum Mean
Discrepancy loss to bridge the domain gap. ADTC [9] uses
an unsupervised voxel attention and a two-stage clustering
strategy to to account for the variations in images.

Some fully unsupervised methods are guided by pseudo
supervision obtained from clustering results on the embed-
dings [13, 6, 14]. SSLR [15] replaces the hard one-hot label
with soft labels to alleviate the error caused by unsuper-
vised clustering. MLCR [24] predicts a “multi-label” for
each training sample through Memory-based Positive La-
bel Prediction (MPLP) and learns discriminative features
via the Memory-based Multi-label classification loss. With
the intrinsic “tracklet” structure and appearance, TSSL [27]
eliminates the necessity of both pedestrian identity and cam-
era labels.
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Figure 2. Overview of MPRD. An initialized backbone network extracts the feature of the training image. Then GCN infers the pairwise
relationship between the features and their neighbors, which is used to train the CNN model.

The most relevant existing method is MLCR [24], which
reformulates the unsupervised person Re-ID task as a multi-
label classification problem. However, we argue that our
MPRD differs from MLCR in two aspects. First, we refor-
mulate the task as a pairwise relationship estimation prob-
lem; second, we design an effective GCN model to provide
high-fidelity pseudo labels. The ablation study in Section 5.3
verifies the MPRD’s performance advantage over MLCR.

3. Meta Pairwise Relationship Distillation

Given an unlabeled dataset X = {xi}Ni=1, where xi de-
notes the ith input image, and N denotes the number of
training samples, the MPRD estimates the pairwise pseudo
labels for feature learning. As illustrated in Figure 2, the
CNN learns discriminative features supervised by the pair-
wise pseudo labels generated by GCN; while the GCN es-
timates the pairwise pseudo labels based on CNN features.
This interdependency is practically solved via alternating
optimization of the GCN and the CNN.

3.1. CNN

Network backbone. The CNN module extracts discrim-
inative features, which allows nearest neighbor search in the
feature space. For simplicity, we adopt the backbone network
in [8] as our CNN choice*, which consists of a feature extrac-
tion module and a feature memory module. In practice, the
feature extraction moduleF extracts a d-dimensional feature
F(xi) from each input image xi, and then `2-normalized by
F̃(xi) ← F(xi)/‖F(xi)‖2, ‖F(xi)‖2 indicates the norm
of F(xi), the feature memoryM stores all the features of
training images. The feature memory is updated at the tth

iteration as follows.

M(t)[i]← γ(t)F̃(xi) + (1− γ(t))M̃(t−1)[i],

M̃(t)[i]←M(t)[i]/‖M(t)[i]‖2,
(1)

*Our method is compatible with various network backbones.

where γ(t) denotes an iteration-dependent updating rate.
This feature memory mechanism practically implements a
smoothing operation over the iterations, potentially reducing
violent oscillations in features.

Loss function. Suppose the pairwise pseudo labels are
provided by GCN, we introduce the Binomial Deviance (BD)
loss [30] function LF to train the CNN, which aims to min-
imize the distance in positive pairs and to maximize the
distance in negative pairs.

LF =
1

n

n∑
i=1

δ

| Pi |
∑

xj∈Pi

ζ(α(λ1 − 〈F̃(xi),M̃[j]〉))

+
1

| N∗i |
∑

xj∈N∗i

ζ(α(〈F̃(xi),M̃[j]〉 − λ2)),

(2)

where 〈·, ·〉 represent inner product, since both F̃ (xi) and
M̃[j] are `2-normalized unit vector, 〈F̃(xi),M̃[j]〉 denote
the cosine similarity between them, ζ(x) = log(1 + ex), n
is the batch size, | · | denotes the cardinality (number of ele-
ments), δ indicates the importance of positive pairs against
negative pairs, λ1 and λ2 denote two margin parameters, and
α is an amplification factor. Besides, Pi and Ni represent
the positive pair list and the negative pair list, respectively.
As |Ni|�|Pi| in practice, we further focus on the hard neg-
ative pair list N∗i with fixed size r as follows.

N∗i = {xj | xj ∈ top(〈F̃(xi),M̃[j]〉, r), xj ∈ Ni}, (3)

where top(·, r) represent the r largest samples. Therefore,
N∗i contains the r closest negative samples to the query xi

in the embedding feature space.
After training the CNN, all positive pairs concentrate

within a radius of λ1; while all negative pairs locate else-
where with a distance of at least λ2. Afterwards, a nearest
neighbor searching algorithm can be applied to solve the
person Re-ID problem.
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Figure 3. Illustration of the pairwise neighborhood structure and the training strategy of MPRD, where the red arrow means prohibit
execution until training the CNN model after tth iteration, the blue line means the pairs’ relationship is not yet judged, the green line means
the pair is considered to have the positive label, and the red line indicates negative label.

3.2. GCN

Network backbone. The GCN estimates the pseudo la-
bels of sample pairs, so as to guide the CNN training with
unlabeled data. As shown in Figure 2 (b), it takes the pair-
wise neighborhood structures Gij = (Aij ,Vij) as inputs,
where Aij denotes the adjacent matrix, and Vij indicates
the node embedding. For image xi and each images xj in
NNk(xi) = top(〈M̃[i],M̃[j]〉, k), the pairwise neighbor-
hood structure can be constructed by connecting images xi

and xj with their neighbors. Therefore, the adjacent matrix
of Gij can be defined as follows:

Aij(b, a) = Aij(a, b) =

{
1, xa∈NNk(xb)
0, otherwise

, (4)

where b ∈ {i, j} denotes an image index in the extracted
sample pair (xi, xj). Besides, the node embedding of Gij

can be achieved in two steps as follows. (1) We use the
Double-Radius Node Labeling (DRNL) [32] to generate
the position embedding of each node in Gij , which can
distinguish nodes with different positions relative to sample
pair (xi, xj). (2) We concatenate the position embedding
and the feature embedding of the nodes in Gij as Vij .

The structure of our GCN is shown in Figure 2 (b), which
consists of two graph convolutional layers, one graph aggre-
gation layer and one multi-layer perception. In particular, the
multi-layer perception (with its parameters denoted as Θm)
contains two fully-connected layers, the graph aggregation
layer (with its parameters denoted as Θa) includes a max-
pooling layer and a 1-D convolutional layer. The recursive

function of our graph convolutional layers is,

Y
(l+1)
ij = σ(D−1(Aij + I)Y

(l)
ij Θg(l)), Y

(0)
ij = Vij , (5)

where Θg(l) indicates the parameters of the lth layer, D is
the Laplacian matrix of Gij , σ denotes ReLU as the activa-
tion function, and Y

(l)
ij means the node-level embedding of

the lth layer. In the training process, the graph convolutional
layers extract features from the pairwise neighborhood struc-
tures, the graph aggregation layer aggregates the node-level
features into the graph-level features, and the multi-layer
perception estimates the pseudo labels of sample pairs.

Loss function. Our GCN takes the pairwise neighbor-
hood structure as input, and outputs the likelihood of xi

and xj being of the same identity. Let G denotes the map-
ping function of our GCN, whose parameters are ΘG =
{Θg(1) , · · · ,Θg(L) ,Θa,Θm}. To obtain this mapping func-
tion, we apply the Binary Cross Entropy (BCE) loss to su-
pervise the training process:

LG =
−1

n′

n′∑
i=1

1

|Pi
g|

∑
Gij∈Pi

g

log(gij)+

1

|Ni
g|

∑
Gij∈Ni

g

(1− log(gij)),

(6)

where gij denotes the prediction of Gij , n′ is the batch size,
Pi

g is the set of positive samples, in which the sample Gis

in Pi
g has the positive sample pair (xi, xs), and Ni

g is the

3664



Algorithm 1: Training MPRD.
Input: Initial F , Initial G, Unlabeled data X,

Labeled data Z, Feature memoryM,
Training epoch T .

Output: Best CNN model F .
1 Initial P = {Pi = {i}|1 < i < N};
2 for t = 1, t ≤ T, t++ do
3 for each xi in X do
4 Randomly select zj in Z;
5 Generate pairwise neighborhood structures

and its labels for G;
6 Train G with parameters ΘG by Eq. (9);
7 end
8 for each xi in X do
9 UpdateM by Eq. (1);

10 Update Pi by Eq. (7);
11 Train F with parameters ΘF by Eq. (8);
12 end
13 end

negative ones. In practice, we obtain the labels of Gij in
two ways to train our GCN model, which will be described
in Section 4.2.

4. Optimization
Our CNN and GCN are optimized in an alternating man-

ner, with the overall procedure summarized in Algorithm 1.

4.1. Updating F with G Fixed

Labels for CNN. Since the ground-truth labels for CNN
training are unavailable, we resort to the GCN for pairwise
pseudo labels. For each image pair (xi,xj), we construct the
pairwise neighborhood structures for GCN in three steps, as
shown in Figure 3 (a): (1) CNN extracts the current feature
F̃(xi); (2) Memory feature M̃[i] is updated by Eq. (1); and
(3) the pairwise neighborhood structure Gij is obtained by
connecting image xi and the image xj in NNk(xi) with their
neighbors. Afterwards, Gij is fed into the GCN to predict
pairwise label gij . To refine gij , we subsequently apply a
binary filtering to improve the fidelity of Pi as follows.

Pi = {xj | xj ∈ NNk(xi), gij > µ}, (7)

where µ is a predefined likelihood threshold that ensures
xi and xj are of the same identity. Concurrently, the hard
negative sample list N∗i is obtained according to Eq. (3).

Parameter update. We apply the Stochastic Gradient
Descent (SGD) algorithm to update the parameters of our
CNN model, which can be formulated as follows,

Θ
(t)
F = Θ

(t−1)
F − β1

∂LF
∂ΘF

∣∣∣∣
Θ

(t−1)
F

, (8)

where Θ
(t)
F denotes the parameters of our CNN model at the

tth iteration, and β1 means the learning rate.

4.2. Updating G with F Fixed

Labels for GCN. To ensure the quality of the generated
pseudo pairwise labels by GCN, we propose to generate
an initial, accurate pairwise neighborhood structure with a
tiny amount of labeled meta data Z = {zm}Mm=1, where M
is the number of labeled identities (we set M = 5, which
is approximately 0.5% of all data. The labeled data is re-
served exclusively to jump start GCN training, and these
annotations are never presented to CNN training.).

After the initial jump start phase, the GCN is primarily
trained with the remaining 99.5% unlabeled data. The label
generation process is summarized as follows.

1. At the first iteration, for each xi in the unlabeled training
set X, we generate positive pairs with different data aug-
mentation techniques, including random Gaussian blur
and grayscale conversion, to get its perturbed image x′i.
We assume pairs such as (xi,x

′
i) are positive pairs. At

subsequent iterations, the cardinality of Pi gradually in-
creases. If |Pi|>1, we first randomly draw a sample xri

from Pi. For every xrj ∈ Pi where ri 6= rj , we assign
(xri , xrj ) with a pseudo positive pair label if and only if
xrj ∈ NNk(xri).
Concurrently at the first iteration, we randomly draw
different images to form negative pairs. At subsequent
iterations, we randomly select |Pi| images from |N∗i | to
generate negative pairs.

2. For each image zi in the labeled meta dataset Z, we ran-
domly draw two images of the same identity to generate
one positive pair, and two images of different identities
to generate one negative pair. Besides, each image xj in
X can be paired with zi to generate one negative pair.

After obtaining the sample pairs with pseudo labels, we
construct a pairwise neighborhood structure Gij , and insert
it into Pi

g or Ni
g , accordingly.

Parameter update. With the pairwise neighborhood
structures and pseudo labels ready, we apply the SGD algo-
rithm to update the parameters of GCN as follows.

Θ
(t)
G = Θ

(t−1)
G − β2

∂LG
∂ΘG

∣∣∣∣
Θ

(t−1)
G

, (9)

with β2 being the learning rate. In practice, we select n′/2
and n′/2 images from the labeled meta data and unlabeled
data, respectively. Then we construct pairwise neighborhood
structures to calculate ∂Lu

G/∂ΘG from unlabeled data and
∂Lm
G /∂ΘG from labeled meta data, and compute a linear

combination of them,

∂LG
∂ΘG

=
∂Lu
G

∂ΘG
+ η(t) ∂Lm

G
∂ΘG

, (10)
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where η(t) is an iteration-dependent weighting factor, which
represents the ratio of the number of pairwise neighborhood
structure generated by metadata and generated by generated
by the unlabeled data in each mini-batch. It is monotonically
decreases with iterations. At early stages of training, a larger
η(t) value helps alleviate the influence of noisy labels in the
unlabeled data. At later iteration stages, the number of pair-
wise neighborhood structures with pseudo labels extracted
from the unlabeled portion increases, hence η(t) is set to be
smaller to match this trend.

5. Experiments
5.1. Datasets and Evaluation Protocol

Datasets. We evaluate our method on three standard large-
scale Person Re-ID datasets, including Market-1501 [34],
DukeMTMC-reID [20], and MSMT17 [26]. Market-1501
consists of 32,668 images of 1,501 identities captured by 6
cameras, in which the training set comprises 12,936 images
of 751 identities, and the test data set comprises 19,732 im-
ages of 750 identities. DukeMTMC-reID consists of 36,411
images of 1,812 identities captured by 8 cameras, where the
training dataset includes 16,522 images of 702 identities.
MSMT17 is the largest Person Re-ID dataset, it includes
126,411 images of 4,101 identities captured by 15 cameras,
and its training set has 32,621 images of 1,041 identities,
while its test dataset has 93,820 bounding boxes of 3,060
identities.

Evaluation Protocol. Following [34, 20, 26], we evalu-
ate performance with the retrieval precision metric Cumula-
tive Matching Characteristic (CMC) scores, and the recall
metric Mean Average Precision (mAP).

5.2. Implementation Details

We implement our method in PyTorch [17] with a single
NVIDIA GeForce GTX 1080Ti GPU. For the CNN part, we
adopt ResNet50 [8], with the layers after pooling-5 removed,
and a batch normalization layer appended. For an input
image, F produces a 2048-dimensional feature. Similar
to [24, 11], for the input image we use CamStyle [38] for
data augmentation and resize it at 256× 128, and then pre-
process it with random crop, random rotation, random color
jitter, and random erasing. For the perturbed image, we add
random grayscale conversion and random Gaussian blur.

In an alternating manner, we train the CNN F and the
GCN G using SGD with a 0.9 momentum. The number of
training epochs is set to 40. For F , the initial learning rate
for the ResNet50 backbone is set to 0.01, and 0.1 for all
other layers. The learning rate is reduced by a factor of 10
after 20 epochs, and the training mini-batch size is 32. For G,
the initial learning rate is 0.001, the likelihood threshold µ
is 0.5, and the mini-batch size of 32. For the feature memory
M, the updating rate γ(t) starts at 1 at the first epoch and

Methods Market-1501 DukeMTMC-reID
Rank-1 mAP Rank-1 mAP

Super. 87.0 68.5 75.6 56.7
KNN 72.7 35.2 59.4 32.9
SS 72.8 39.9 60.0 34.3
MPLP* 80.0 44.5 64.6 39.8
MPRD w/o 75.8 43.1 61.1 34.9
MPRD # 73.0 39.3 57.4 36.7
MPRD 83.0 51.1 67.4 43.7
Single 46.1 15.5 38.3 14.6

Table 1. Performance with different pseudo label generation meth-
ods. “Super.” and “Single” are baselines representing performance
upper and lower bounds, respectively. All methods have incorpo-
rate the same Binomial deviance loss. The “*” mark in “MPLP*”
indicates this implementation is based on released code from the
authors. “MPRD#” and “MPRD w/o” denote ablated MPRD with
CamStyle data augmentation removed and its GCN trained without
unlabeled data, respectively.

linearly decreases to 0.5 at the 40th epoch. In the binomial
deviance loss, the weight δ is fixed at 5 and r is the number
of 1% negative samples as in [24]. Moreover, we set α = 4.0
and λ1 = λ2 = 0.2. The small amount of labeled meta data
involves five labeled identities that are randomly selected
from the training data. Specifically, the small amount of
labeled metadata is only used for training G. The value of k
is the maximum between 8 and the number of images whose
cosine similarity to the input image is larger than 0.6.

5.3. Ablation Study

Effectiveness of MPRD. We compare MPRD against
other pseudo label generation methods, including the KNN
search, cosine similarity score (denoted as “SS”), and selec-
tion by MPLP. SS selects positive samples with a similarity
threshold. MPLP is proposed in [24], which predicts pseudo-
labels with high accuracy via similarity scores and cycle
consistency. For KNN, we empirically set K = 8, where its
performance peaks; for SS, we set the similarity threshold
at 0.6; for MPLP, we incorporate it with the binomial de-
viance loss based on its released code by the authors. Under
the same setting (Section 5.2), we also conduct 2 baseline
experiments, i.e., fully supervised re-ID with ground-truth
(denoted as “Super.” in Table 1); erroneously supervised
re-ID with image index as labeles (denoted as “Single” in
Table 1), which serve as the performance upper bound and
lower bound, respectively. Additionally, two ablated vari-
ants of MPRD are compared, i.e., MPRD with CamStyle
data augmentation removed (“MPRD#”), and MPRD with
its GCN trained purely on labeled meta data (i.e., without
vast majority of the unlabeled data, denoted as “MPRD w/o”
in Table 1).

According to Table 1, SS outperforms KNN, which could
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Figure 4. Evaluation of different likelihood threshold µ in GCN.

be attributed to its more flexible pseudo-labels. After in-
corporating the GCN model, MPRD achieves dramatic per-
formance advantages over SS, i.e., with rank-1 accuracy
increased from 72.8% to 83.0%, and mAP increased from
39.9% to 51.1% on Market-1501. Comparing “MPRD w/o”
and MPRD, we also verify the necessarity of incorporating
the vast majority of unlabeled data in training G. On Market-
1501, MPRD achieves 7.2 and 8 percentage points advantage
over “MPRD w/o” in Rank-1 accuracy and mAP, respec-
tively. A similar trend also appears on DukeMTMC-reID.
Additionally, “MPRD#” achieves 73.0% rank-1 accuracy
and 39.3% mAP without CamStyle. These results demon-
strate the effectiveness of the proposed MPRD, and show
that CamStyle boosts the performance.

Impact of the likelihood threshold µ. In Eq. (7), µ
determines whether two images are of the same identity, and
its sensitivity analysis is presented in Figure 4. Performance
is analyzed with µ values from 0.1 to 0.9 at a step size
of 0.1. We observe that both rank-1 accuracy and mAP
metrics increase slowly and smoothly till approximately 0.5
and abruptly drop afterwards. We speculate that extreme µ
values degrade performance, i.e., too small µ values lead
to many false positive pairs while too large µ values incur
many false negative pairs. Based on these experiments, we
empirically fix µ = 0.5.

Effect of small amount of labeled meta data. Since our
approach introduces a small amount of labeled meta data to
jump start the training of GCN, we analyze its impacts on
the competing MLCR method. For fair comparison, we let
MLCR have access to the same amount of labeled meta data
as extra supervision. We also compare the effect of different
amounts of labeled meta data in different variants of MPRD.

We let MLCR have access to the same labeled meta data
by replacing the pseudo labels with the ground-truth labels,
whenever the input training data belong to the labeled meta
dataset. In Table 2, the upper part shows that with the
extra small amount of labeled meta data, “MLCR(+5id)*”
marginally outperforms its original version MLCR*, possi-
bly due to the portion of such labeled meta dataset is too
small (approximately 0.5% of all data).

The bottom part of Table 2 compares MPRD variants

Methods market-1501 DukeMTMC-reID
Rank-1 mAP Rank-1 mAP

MLCR* 80.1 44.7 64.9 40.6
MLCR(+5id)* 80.2 45.0 65.3 40.9
MPRD(0id) 80.9 46.8 65.6 40.1
MPRD 83.0 51.1 67.4 43.7

Table 2. Ablation study of the effect of meta data. “MLCR(+5id)*”
denotes a modified MLCR that have extra access to the
same amount (5 identities) of meta data as extra supervision.
“MPRD(0id)” represents an ablated version of our proposed MPRD
with the labeled meta data-based jump start procedure completely
removed.

with different amounts of labeled meta dataset, where “5id”
means five labeled identities (meta data is only used for
training the GCN). If this labeled data-based jump start
portion is completely removed, “MPRD(0id)” suffers from
only a small performance degradation, and still outperforms
the competing “MPLR*” in Table 1. When the amount of
labeled identities is 5, we observe that both rank-1 accuracy
and mAP increase on Market-1501 and DukeMTMC-reID.

5.4. Comparison with the State-of-the-Art

We evaluate the proposed MPRD on Market-1501 [34],
DukeMTMC-reID [20] and MSMT17 [26] datasets. Al-
though a small amount of labeled meta data are used to
guide the training process of the GCN, our method also be-
longs to unsupervised Person Re-Identification because there
are only few labeled data are used to train GCN, and train-
ing the feature extraction CNN module only uses unlabeled
data. The proposed method is compared against the state-of-
the-art unsupervised Person Re-ID methods: LOMO [12],
BOW [34], BUC [13], DBC [6], and the recent TSSL [27],
SSLR [15], MLCR [24], JVTC [11]. Table 3 and Table 4
summarize the comparison.

Table 3 shows the results of the proposed method and
state-of-the-art methods on Market-1501 and DukeMTMC-
reID. On Market-1501, our MPRD achieves 2.7% higher
rank-1 accuracy and 5.6% higher mAP than MLCR. Com-
pared with JVTC, our MPRD achieves 10.1% higher rank-
1 accuracy and 9.3% higher mAP. On DukeMTMC-reID,
our MPRD achieves 2.2% higher rank-1 accuracy and 3.5%
higher mAP than MLCR. Compared with JVTC, our MPRD
has a sight 0.2% lower rank-1 accuracy but achieves 1.5%
higher mAP. We also conduct experiments on MSMT17, and
the results are presented in Table 4. From the table, our
MPRD achieves 37.7% rank-1 accuracy and 14.6% mAP.

Of all the competing algorithms, MLCR is the most rele-
vant one to our proposed MPRD. As is verified in the above
results, MPRD outperforms it on Market-1501, DukeMTMC-
reID and MSMT17. We speculate that this performance ad-
vantage arise from the following aspects. Our proposed
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Methods Market-1501 DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

LOMO [12] (CVPR15) 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8
BOW [34] (ICCV15) 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3
BUC [13] (AAAI19) 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5
DBC [6] (BMVC19) 69.2 83.0 87.8 41.3 51.5 64.6 70.1 30.0
TSSL [27] (AAAI20) 71.2 - - 43.3 62.2 - - 38.5
SSLR [15] (CVPR20) 71.7 83.8 87.4 37.8 52.5 63.5 68.9 28.6
MLCR [24] (CVPR20) 80.3 89.4 92.3 45.5 65.2 75.9 80.0 40.2
JVTC [11] (ECCV20) 72.9 84.2 88.7 41.8 67.6 78.0 81.6 42.2
MPRD 83.0 91.3 93.6 51.1 67.4 78.7 81.8 43.7

Table 3. Unsupervised person re-ID performance with state-of-the-art methods on Market-1501 and DukeMTMC-reID datasets.

Methods MSMT17
Rank-1 Rank-5 Rank-10 mAP

MLCR [24] 35.4 44.8 49.8 11.2
JVTC [11] 39.0 50.9 56.8 15.1
MPRD 37.7 51.3 57.1 14.6

Table 4. Unsupervised person re-ID performance with state-of-the-
art methods on MSMT17 dataset.

MPRD introduces the neighbor structure information be-
tween sample pairs via its GCN. Through iterative and al-
ternating training, the GCN gradually learns and refines the
distinctions in neighborhood structure between positive and
negative sample pairs, and provides higher fidelity pseudo-
supervision for the CNN training. The alternating, collabora-
tive training of the GCN and the CNN could be responsible
for the performance benefits.

5.5. Qualitative Results

To intuitively understand the effectiveness of MPRD, we
visualize via t-SNE [23] the learned features on Market-1501
training set, without and with the GCN, as shown in Figure 5.
By comparing the two sets of learned features side-by-side,
after introducing the GCN, points of the same identity are
pulled closer to each other, as shown in Example3 where
yellow dots are more concentrated on the right. Challenging
cases (Example1 and Example2) where points of different
identities are embedded too close to each other without GCN
are resolved with the introduction of GCN. With Example2,
the magenta points, blue points, and cyan points are highly
proximate to one another in the embedding space without
GCN. On the contrary, they are well separated in the embed-
ding space with GCN.

6. Conclusion
In this paper, we propose the MPRD method to address

the unsupervised person Re-ID task. Unlike previous meth-
ods that estimate the pseudo labels through either iterative

(a) Without GCN (b) With GCN

Example1 Example2 Example3

Figure 5. T-SNE visualization of learned features on 100 identities
of Market-1501 training set. Points with the same color are of the
same identity. The distribution of the features learned (a) without
GCN, and (b) with the GCN.

clustering or classification, it is unnecessary for our method
to determine the number of clusters in the training stage. The
proposed MPRD reformulates the unsupervised discrimina-
tive feature learning task into a pairwise relationship estima-
tion problem. A GCN is used to estimate the pairwise rela-
tionship of sample pairs based on the graph structure among
the pairs’ neighbors. CNN learns the discriminative features
from input images according to these estimated pairwise
relationship labels. Extensive experiments on Market-1501,
DukeMTMC-reID, and MSMT17 datasets demonstrate the
effectiveness of the proposed method for the unsupervised
Person Re-ID task.
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