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Abstract

Self-supervised depth estimation for indoor environ-
ments is more challenging than its outdoor counterpart in
at least the following two aspects: (i) the depth range of in-
door sequences varies a lot across different frames, making
it difficult for the depth network to induce consistent depth
cues, whereas the maximum distance in outdoor scenes
mostly stays the same as the camera usually sees the sky;
(ii) the indoor sequences contain much more rotational mo-
tions, which cause difficulties for the pose network, while
the motions of outdoor sequences are pre-dominantly trans-
lational, especially for driving datasets such as KITTI. In
this paper, special considerations are given to those chal-
lenges and a set of good practices are consolidated for
improving the performance of self-supervised monocular
depth estimation in indoor environments. The proposed
method mainly consists of two novel modules, i.e., a depth
factorization module and a residual pose estimation mod-
ule, each of which is designed to respectively tackle the
aforementioned challenges. The effectiveness of each mod-
ule is shown through a carefully conducted ablation study
and the demonstration of the state-of-the-art performance
on three indoor datasets, i.e., EuRoC, NYUv2 and 7-Scenes.

1. Introduction

Depth estimation plays an essential role in a variety of
3D perceptual tasks, such as autonomous driving, virtual
reality (VR), and augmented reality (AR). In this paper, we
tackle the problem of estimating the depth map from a sin-
gle image in a self-supervised manner. Compared to the su-
pervised methods [5, 8], self-supervision [9, 46, 12] frees us
from having to capture the ground-truth depth using depth
sensors (e.g., LiDAR) and therefore, it is more attractive in
scenarios where obtaining the ground-truth is not possible.

*Joint first authorship. P. Ji is the corresponding author (pe-
terji530@gmail.com). R. Li’s contribution was made during an internship
with OPPO US Research Center.

Recently, self-supervised methods [12] have achieved
significant success, producing depth prediction that is com-
parable to that produced by the supervised methods [14, 8].
For example, on the KITTI dataset [10], Monodepth2 [12]
achieves an absolute relative depth error (AbsRel) of 10.6%,
which is not far from the AbsRel of 7.2% by supervised
DORN [8]. However, most of these self-supervised depth
prediction methods [9, 46, 12] are only evaluated on outdoor
datasets such as KITTI, leaving their performance opaque
for indoor environments. A few methods [45, 44] have con-
sidered indoor self-supervised depth prediction, but their
performance still trail far behind the one on the outdoor
datasets by methods such as [9, 46, 12] or the supervised
counterparts [8, 41] on indoor datasets. For instance, on the
indoor NYUv2 dataset [33], the method by Zhao et al. [44]
reaches an AbsRel of 18.9%, which is much higher than
what Monodepth2 can achieve on KITTI.

In view of the performance discrepancies between the
indoor and outdoor scenes, we examine what makes in-
door depth prediction more challenging than the outdoor
case. Our first conjecture is that this is partly due to the
fact that the scene depth range of indoor sequences varies
a lot more than in the outdoor. This results in more diffi-
culties for the depth network in inducing consistent depth
cues across images. Our second observation is that the pose
network, which is commonly used in self-supervised meth-
ods [46, 12], tends to have large errors in rotation predic-
tion. A similar finding in [47] shows that predicted poses
have much higher rotational errors (e.g., 10 times larger)
than geometric SLAM [26] even after using a recurrent
pose network. This problem is not prominent on KITTI
because the motions therein are mostly translational. How-
ever, since indoor datasets are often captured by hand-held
cameras [33] or MAVs [31] which inevitably undergo fre-
quent rotations, the inaccurate rotation prediction becomes
detrimental to the self-supervised training of a depth model
for indoor environments.

Given the above considerations, we propose MonoIn-
door, a monocular self-supervised depth estimation method
tailored for indoor environments. Our MonoIndoor consists
of two novel modules: a depth factorization module and a
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residual pose estimation module. In the depth factorization
module, we factorize the depth map into a global depth scale
(for the current image) and a relative depth map. The depth
scale factor is separately predicted by an extra branch in the
depth network. In such a way, the depth network has more
model plasticity to adapt to the depth scale changes during
training. In the residual pose estimation module, we miti-
gate the issue of inaccurate rotation prediction by perform-
ing residual pose estimation in addition to an initial large
pose prediction. Such a residual approach leads to more ac-
curate computation of the photometric loss [12], which in
turn leads to better model training for the depth network.

In summary, our contributions are:

• A novel depth factorization module that helps the
depth network adapt to the rapid scale changes;

• A novel residual pose estimation module that mitigates
the inaccurate rotation prediction issue in the pose net-
work and in turn improves depth prediction;

• State-of-the-art performance of self-supervised depth
prediction on three publicly available indoor datasets,
i.e., EuRoC [31], NYUv2 [33], and 7-Scenes [32].

2. Related Work
In this section, we review both supervised and self-

supervised methods for monocular depth estimation.

2.1. Supervised Monocular Depth Estimation

Early depth estimation methods are mostly supervised.
Saxena et al. [30] regress the depth from a single image with
superpixel features and a Markov Random Field (MRF).
Eigen et al. [6] propose the first deep-learning based method
for monocular depth estimation using a multi-scale con-
volutional neural network (CNN). Later methods improve
the performance of depth prediction either by better net-
work architecture [19] or via more sophisticated training
losses [21, 8, 41]. A few methods [36, 34] rely on two
networks, one for depth prediction and the other for mo-
tion, to mimic geometric Structure-from-Motion (SfM) or
Simultaneous Localization and Mapping (SLAM) in a su-
pervised framework. Training these methods needs ground-
truth depth data, which is often expensive to capture. Some
other methods then resort to generating pseudo ground-
truth depth labels with traditional 3D reconstruction meth-
ods [23, 22], such as SfM [31] and SLAM [26], or 3D
movies [28]. Such methods have better capacity of gen-
eralization across different datasets, but can not necessarily
achieve the best performance for the dataset at hand.

2.2. Self-Supervised Monocular Depth Estimation

Self-supervised depth estimation has attracted a lot of
attention recently as it does not require training with the
ground truth. Along this line, Garg et al. [9] propose the

first self-supervised method to use color consistency loss
between stereo images to train a monocular depth model.
Zhou et al. [46] employ two networks (i.e., one depth net-
work and one pose network) to construct the photometric
loss across temporal frames. Many follow-up methods then
try to improve the self-supervision by new loss terms. Go-
dard et al. [11] incorporate a left-right depth consistency
loss for the stereo training. Bian et al. [1] put forth a tempo-
ral depth consistency loss to encourage neighboring frames
to have consistent depth predictions. Wang et al. [37] ob-
serve the diminishing issue of the depth model during train-
ing and come up with a simple normalization method to
counter this effect. Yin et al. [42] and Zou et al. [48]
use three networks (i.e., one depth network, one pose net-
work, and one extra flow network) to enforce cross-task
consistency between optical flow and dense depth. Wang et
al. [39] and Zou et al. [47] leverage recurrent neural net-
works, such as LSTMs, to model long-term dependency
in the pose network and/or the depth network. Tiwari et
al. [35] form a self-improving loop with monocular SLAM
and a self-supervised depth model [12] to improve the per-
formance of each one. Notably, Monodepth2 [12] signif-
icantly improves the performance over previous methods
via a set of techniques: a per-pixel minimum photometric
loss to handle occlusions, an auto-masking method to mask
out static pixels, and a multi-scale depth estimation strategy
to mitigate the texture-copying issue in depth. Due to its
good performance, we implement our self-supervised depth
estimation framework based on Monodepth2, but make im-
portant changes to both the depth and the pose networks.

Most of the aforementioned methods are only evalu-
ated on outdoor datasets such as KITTI. A few other re-
cent methods [45, 44, 2, 43] focus on indoor self-supervised
depth estimation. Zhou et al. [45] propose an optical-flow
based training paradigm and handle large rotational motions
by a pre-processing step that removes all the image pairs
with “pure rotation”. Yu et al. [43] utilize patch-match and
plane-regularization to improve self-supervised structure-
from-motion. Zhao et al. [44] adopt a geometry-augmented
strategy that solves for the depth via two-view triangulation
and then uses the triangulated depth as supervision. Bian et
al. [2] argue that “the rotation behaves as noise during train-
ing” and thus propose a rectification step to remove the ro-
tation between consecutive frames. We have an observation
similar to [45] and [2] that large rotations cause difficul-
ties for the network. However, we take a different strategy.
Instead of removing rotations from training data, we pro-
gressively estimate them via a novel residual pose module.
This in turn improves depth prediction.

3. Method
In this section, we give detailed descriptions of perform-

ing self-supervised depth estimation using MonoIndoor.
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Figure 1. Overview of the proposed MonoIndoor. Depth Factorization Module: We use an encoder-decoder based depth network to
predict a relative depth map and a non-local scale network to estimate a global scale factor. Residual Pose Estimation Module: We use
a pose network to predict an initial camera pose of a pair of frames and residual pose network to iteratively predict residual camera poses
based on the predicted initial pose.

Specifically, we first introduce the background of the self-
supervised depth estimation. Then, we describe the good
practices in predicting depth with our MonoIndoor.

3.1. Self-Supervised Depth Estimation

Similar to [46, 12, 47], we also consider the self-
supervised depth estimation as a novel view-synthesis prob-
lem by training a model to predict the target image from
different viewpoints of source images. The image synthesis
process is trained and constrained by using the depth map
as the bridging variable. Such a system requires both the
predicted depth map of the target image and the estimated
relative pose between a pair of target and source images.
Specifically, given a target image It and a source image It′
from another view, the system is jointly trained to predict a
dense depth map Dt of the target image and a relative cam-
era pose Tt→t′ from the target to the source. The photo-
metric reprojection loss can then be constructed as follows:

LA =
∑
t′

ρ(It, It′→t), (1)

and
It′→t = It′⟨proj(Dt, Tt→t′ ,K)⟩, (2)

where ρ denotes the photometric reconstruction error [46,
12]. It is a weighted combination of the L1 and Structured
SIMilarity (SSIM) loss defined as

ρ(It, It′→t) =
α

2

(
1−SSIM(It, It′→t)

)
+(1−α)∥It, It′→t∥1.

(3)

It′→t is the source image warped to the target coordinate
frame based on the depth of the target image. proj() is the
transformation function to map image coordinated pt from
the target image to its pt′ on the source image following

pt′ ∼ KTt→t′Dt(pt)K
−1pt, (4)

and ⟨·⟩ is the bilinear sampling operator which is locally
sub-differentiable. Following [12], the camera intrinsics K
of all images are assumed to be the same, and an edge-ware
smoothness term is employed as

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt|, (5)

where d∗t = d/d̄t is the mean-normalized inverse depth
from [37]. During training, we adopt the auto-masking
scheme [12] to handle static pixels.

Similar to [1], we use an additional depth consistency
loss to enforce consistent depth prediction across neighbor-
ing frames. We first warp the depth image Dt′ of the source
image by Equation (2) to generate Dt′→t, which is a corre-
sponding depth map in the coordinate system of the source
image. We then transform Dt′→t to the coordinate system
of the target image via Equation (4) to produce a synthe-
sized target depth map D̃t′→t. The depth consistency loss
can be written as

Lc =
|Dt − D̃t′→t|
Dt + D̃t′→t

. (6)

The overall objective to train the model is

L = LA + τLs + γLc, (7)
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where τ and γ are the weights for the edge-aware smooth-
ness loss and the depth consistency loss respectively.

Even though existing monocular self-supervised meth-
ods are able to produce competitive depth maps in outdoor
environments, these methods still suffer from worse perfor-
mance in indoor environments, especially compared with
fully-supervised methods. As discussed in Section 1, the
main challenges in indoor environments come from the fact
that the depth range changes a lot and indoor sequences con-
tain regular rotational motions which are difficult to predict.
To handle these issues, we propose MonoIndoor, a monoc-
ular self-supervised depth estimation framework, as shown
in Figure 1, to enable improved predicted depth quality in
indoor environments.

The system takes as input a single color image and out-
puts a depth map via our MonoInoor which consists of two
core parts: a depth factorization module and a residual pose
estimation module. We present our main contributions in
the following sections.

3.2. Depth Factorization

We use the Monodepth2 [12] as the backbone model for
depth prediction. The depth model in Monodepth2 employs
an auto-encoder structure with skip connections between
the encoder and the decoder. The depth encoder takes as in-
put a color image I , and the decoder outputs its depth map.
Note that the final depth prediction is not directly from the
convolutional layers, but after a sigmoid activation function
and a linear scaling function as follows,

d = 1/(aσ + b), (8)

where σ is the value after the sigmoid function, a and b
are specified to constrain the depth map D within a cer-
tain depth range. Practically, a and b are respectively pre-
defined as a minimum depth value and a maximum depth
value which can be obtained in a known environment. For
instance, on the KITTI dataset [10], a is chosen as 0.1 and
b as 100. The reason for setting a and b as fixed values is
that the depth range is consistent across the video sequences
when the camera always sees the sky at the far point. How-
ever, this setting is not valid for most indoor environments.
As scene varies, the depth range varies a lot. For example,
the depth range in a bathroom (e.g. 0.1m∼3m) can be very
different from the one in a lobby (e.g. 0.1m∼10m). Pre-
setting depth range will act as an inaccurate guidance that
is harmful for the model to capture accurate depth scales.
This is especially true when there are rapid scale changes,
which are commonly observed in indoor scenes. To over-
come this problem, we propose a depth factorization mod-
ule (see Figure 1) to learn a disentangled representation in
the form of a relative depth map and a global scale factor.
We employ the depth network of Monodepth2 [12] to pre-
dict relative depth and propose a self-attention-guided scale

regression network to predict the global scale factor for the
current view.
Scale Network. We design the scale network as a new
branch which takes as input a color image and outputs its
global scale factor. Since the global scale factor is closely
informed by certain areas (e.g., the far point) in the images,
we explore to use a self-attention block [40] so that the net-
work can be guided to pay more attention to a certain area
which is informative to induce the depth scale factor of the
current view in a scene. Given the feature representations F
learnt from the input image, we utilize a self-attention block
to take F as input, forming the query, the key and the value
output by

ψ(F) = WψF ,
ϕ(F) = WϕF ,
h(F) = WhF ,

(9)

where Wψ , Wϕ and Wh are parameters to be learnt.
The query and key values are then combined in
GF = softmax(FTWT

ψWϕF)h(F) as the learnt self-
attentions. Finally, the self-attention GF and F jointly con-
tribute to the output SF by using

SF = WSFGF + F . (10)

Once we obtain the attentive representations as SF , we ap-
ply two residual blocks including two convolutional lay-
ers in each, followed by three fully-connected layers with
dropout layers in-between, to output the global scale factor
S for the current image.
Probabilistic Scale Regression Head. To predict a global
scale, a high-dimensional feature map has to be mapped into
a single positive number. One straightforward way is to let
the network directly regress the scale number. However,
we observe unstable training using this approach. To mit-
igate this issue, inspired by [4], we propose to use a prob-
abilistic scale regression head to estimate this continuous
value. Given a maximum bound that the global scale factor
is within, the probability of each scale s is calculated from
the output of the scale network S̃ via the softmax operation
softmax(·). The predicted global scale S is calculated as
the sum of each scale s weighted by its probability as

S =

Dmax∑
s=0

s× softmax(S̃). (11)

By doing so, the regression problem is smoothly resolved
by a probabilistic classification-based strategy (see Sec-
tion 4.1.1 for more ablation results).

3.3. Residual Pose Estimation

As mentioned in Section 3.1, self-supervised depth es-
timation is built upon the novel view synthesis, which re-
quires both accurate depth maps and camera poses. Es-

12790



source view virtual view target view

residual poseinitial pose

inverse warping 
single-stage pose

𝑰𝒕𝟎" 𝑰𝒕𝒊" 𝑰𝒕

Figure 2. Residual Pose Estimation. Here we give an illustrative
example of how a single-stage pose can be decomposed into an
initial pose and a residual pose by virtual view synthesis.

timating accurate relative poses is key for the photomet-
ric reprojection loss because inaccurate poses might lead
to wrong correspondences between the target and source
pixels, causing problems in predicting the depth. Exist-
ing methods mostly employ a standalone PoseNet to esti-
mate the 6 Degrees-of-Freedom (DoF) pose between two
images. In outdoor environments (e.g., driving scenes like
KITTI), the relative camera poses are fairly simple because
the cars are mostly moving forward with large translations
but minor rotations. This means that pose estimation is nor-
mally less challenging. In contrast, in indoor environments,
the sequences are typically recorded with hand-held devices
(e.g., Kinect), so there are more complicated ego-motions
involved as well as much larger rotational motions. It is
thus more difficult for the pose network to learn accurate
camera poses.

Unlike existing methods [45, 2] that concentrate on “re-
moving” or “reducing” rotational components during data
preprocessing, we instead propose a residual pose estima-
tion module to learn the relative camera pose between the
target and source images in an iterative manner (see Fig-
ure 2). In the first stage, the pose network takes a target
image It and a source image It′0 as input and predicts an
initial camera pose Tt′0→t, where the subscript 0 in t′0 indi-
cates that no transformation is applied yet. We then follow
Equation (2) to bilinearly sample from the source image,
reconstructing a virtual view It′0→t which is expected to be
the same as the target image It if the correspondences match
accurately. However, it will not be the case due to inaccu-
rate pose prediction. Note here the transformation is defined
as

It′0→t = It′⟨proj(Dt, T
−1
t′0→t,K)⟩. (12)

Next, we utilize a residual pose network (see Residual-
PoseNet in Figure 1) which takes the target image and the
synthesized view It′0→t as input and outputs a residual cam-
era pose T res(t′0→t)→t, representing the camera pose of the
synthesized image It′0→t with respect to the target image.

Now, we bilinearly sample from the synthesized image as

I(t′0→t)→t = It′0→t⟨proj(Dt, T
res −1
(t′0→t)→t,K)⟩. (13)

Once we obtain a new synthesized view, we can continue to
estimate the next residual poses for next view synthesis. For
simplicity of notation in Equation (13), we replace the sub-
script t′0 → t with t′1 to indicate that one warping transfor-
mation is applied, and similarly for the ith transformation.
Thus, a general form of Equation (13) is defined by

It′i→t = It′i⟨proj(Dt, T
res−1
t′i→t ,K)⟩, i = 0, 1, · · · . (14)

After we estimate multiple residual poses, the camera pose
of source image I ′t with respect to the target image It can
be written as Tt→t′ = T−1

t′→t where

Tt′→t =
∏
i

Tt′i→t, i = · · · , k, · · · , 1, 0 . (15)

By iteratively estimating residual poses, we expect to ob-
tain more accurate camera poses compared with the pose
predicted from a single-stage pose network, so that a more
accurate photometric reprojection loss can be built up for
better depth prediction.

4. Experiments
Datasets. We evaluate the proposed framework MonoIn-
door on two challenging indoor datasets: the EuRoC
MAV [31] dataset, the NYUv2 depth dataset [33] and RGB-
D 7-Scenes dataset [32](see supplementary materials for
more quantitative results).
Evaluation Metrics. For evaluation, we follow [6] to
use the mean absolute relative error (AbsRel), root mean
squared error (RMS), and the accuracy under threshold
(δi < 1.25i, i = 1, 2, 3) on both datasets.
Implementation Details. We implement our model using
PyTorch [27]. In the depth factorization module, we use the
same depth network as in [12]; for the scale network, we use
two basic residual blocks followed by three fully-connected
layers with a dropout layer in-between. The dropout rate
is set to 0.5. In the residual pose module, we let the resid-
ual pose networks use a common architecture [12] which
consists of a shared pose encoder and an independent pose
regressor. Each experiment is trained for 40 epochs using
the Adam [17] optimizer and the learning rate is set to 10−4

for the first 20 epochs and it drops to 10−5 for remaining
epochs. The smoothness term τ and consistency term γ are
set as 0.001 and 0.05, respectively.

4.1. EuRoC MAV Dataset

The EuRoC MAV Dataset [31] contains 11 video se-
quences captured in two main scenes, a machine hall and
a vicon room. Sequences are categorized as easy, medium
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Table 1. Ablation results of design choices and the effectiveness
of components in the depth factorization module of our model
(MonoIndoor) on EuRoC [31]. Porb. Reg.: the probabilistic scale
regression block. Note: here we also use the residual pose estima-
tion module when experimenting with different network designs
for the depth factorization module.

Network Design Attention Prob.
Reg.

Error Metric Accuracy Metric
AbsRel RMSE δ1 δ2 δ3

I. ScaleCNN ✓ ✓ 0.140 0.518 0.821 0.956 0.985
II. ScaleNet ✓ ✓ 0.141 0.519 0.817 0.959 0.988

III. ScaleRegressor ✗ ✗ 0.139 0.508 0.817 0.960 0.987
III. ScaleRegressor ✓ ✗ 0.135 0.501 0.825 0.964 0.989
III. ScaleRegressor ✓ ✓ 0.125 0.466 0.840 0.965 0.993

and difficult according to the varying illumination and cam-
era motions. For the training, we use three sequences
of “Machine hall” (MH 01, MH 02, MH 04) and two se-
quences of “Vicon room” (V1 01 and V1 02). Images are
rectified with provided camera intrinsics to remove image
distortion. During training, images are resized to 512×256.
Following [13], we use the Vicon room sequence V2 01 for
testing where the ground-truth depths are generated by pro-
jecting Vicon 3D scans onto the image planes.

4.1.1 Ablation Study

We perform ablation studies for our design choices of the
depth factorization module on the EuRoC MAV dataset.
Firstly, we consider the following designs as the backbone
of our scale network: I) a pre-trained ResNet-18 [15] fol-
lowed by a group of Conv-BN-ReLU layers; II) a pre-
trained ResNet-18 [15] followed by two residual blocks;
III) a lightweight network with two residual blocks which
shares the feature maps from the depth encoder as in-
put. These three choices are referred to as the ScaleCNN,
ScaleNet and ScaleRegressor, respectively in Table 1. Next,
we validate the effectiveness of adding new components
into our backbone design. As described in Section 3.2, we
mainly integrate two sub-modules: i) a self-attention block
and ii) a probabilistic scale regression block.

As shown in Table 1, the best performance is achieved
by ScaleRegressor that uses self-attention and probabilis-
tic scale regression. It proves that sharing features with
the depth encoder is beneficial to scale estimation. Com-
paring the results of three ScaleRegressor variants, the per-
formance gradually improves as we add more components
(i.e., attention and Prob. Reg.). Specifically, adding the
self-attention block improves the overall performance over
the baseline backbone; adding the probabilistic regression
block leads to a further improvement, which validates the
effectiveness of our proposed sub-modules.

4.1.2 Quantitative Results

Since there are not many public results reported on the Eu-
RoC MAV [31] dataset, we mainly compare our model with

Table 2. Ablation results of our MonoIndoor and quantitative com-
parison with the baseline on the test sequence V2 01 of EuRoC.
Best results are in bold.

Method Depth
Factorization

Residual
Pose

Error Metric Accuracy Metric
AbsRel RMSE δ1 δ2 δ3

Monodepth2 [12] ✗ ✗ 0.157 0.567 0.786 0.941 0.986
MonoIndoor ✓ ✗ 0.149 0.535 0.805 0.955 0.987
MonoIndoor ✗ ✓ 0.141 0.518 0.815 0.961 0.991
MonoIndoor ✓ ✓ 0.125 0.466 0.840 0.965 0.993

Input Monodepth2 [12] Ours

Figure 3. Qualitative comparison of depth prediction on EuRoC.
Our model produces more accurate and cleaner depth maps.

the baseline model Monodepth2 [12] and validate the effec-
tiveness of each module of our MonoIndoor. As shown in
Table 2, adding our depth factorization module reduces the
AbsRel from 15.7% to 14.9%, and our residual pose module
decreases the AbsRel to 14.1%, which verifies the useful-
ness of each module. Our full model achieves the best per-
formance across all evaluation metrics. Specifically, com-
pared to Monodepth2, the AbsRel by our MonoIndoor is
significantly decreased from 15.7% to 12.5% and the δ1 is
improved by around 6%, from 78.6% to 84.0%.

4.1.3 Qualitative Results

Figure 3 gives a qualitative comparison of depth maps pre-
dicted by Monodepth2 [12] and our MonoIndoor. From
Figure 3, it is clear that the depth maps generated by
our model are much better than the ones by Monodepth2.
For instance, in the first row, our model can predict pre-
cise depths for the hole region at the right-bottom corner
whereas such a hole structure in the depth map by Mon-
odepth2 is missing. Besides, in the second row, our model
can predict much sharper depth map of the ladder at the
right-top area while Monodepth2 cannot. These observa-
tions are also consistent with the better quantitative results
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Table 3. Ablation results of the effectiveness of each module of
our MonoIndoor on NYUv2. “No. Residual Pose Block” means
the number of residual poses we estimate in the residual pose esti-
mation module.

Model Depth
Factorization

No. Residual
Pose Block

Error Metric Accuracy Metric
AbsRel RMS δ1 δ2 δ3

Monodepth2 [12] ✗ 0 0.16 0.601 0.767 0.949 0.988
MonoIndoor ✓ 0 0.152 0.576 0.792 0.951 0.987
MonoIndoor ✗ 1 0.142 0.553 0.813 0.958 0.988
MonoIndoor ✓ 1 0.134 0.526 0.823 0.958 0.989
MonoIndoor ✗ 2 0.141 0.548 0.814 0.958 0.988
MonoIndoor ✓ 2 0.141 0.546 0.818 0.958 0.989

in Table 2, proving the superiority of our model.

4.2. NYUv2 Depth Dataset

In this section, we evaluate our MonoIndoor on the
NYUv2 depth dataset [33] which contains 464 indoor video
sequences captured by a hand-held Microsoft Kinect RGB-
D camera with a resolution of 640× 480. We use the official
training and validation splits which include 302 and 33 se-
quences respectively. We rectify the images with provided
camera parameters to remove distortions. Following [44, 2],
the raw dataset is firstly downsampled 10 times along the
temporal dimension to remove redundant frames, resulting
in ∼ 20K images for training. During training, images are
resized to 320×256. We use officially provided 654 images
with dense labelled depth maps for testing.

4.2.1 Ablation Study

We perform another ablation study for the depth factoriza-
tion module on NYUv2 [33]. In Table 3, comparing with
Monodepth2 which predicts depth without any guidance of
global scales, using the depth factorization module with a
separate scale network can improve the performance, de-
creasing the AbsRel from 16% to 15.2% and increasing
δ1 to 79.2%. Next, we experiment to validate the effec-
tiveness of the residual pose estimation module. Compar-
ing the rows in Table 3, by adding the residual pose esti-
mation module with one residual pose block, we observe
an improved performance from 16.0% down to 14.2% for
the AbsRel and from 76.7% up to 81.3% for δ1. Further-
more, by applying both the depth factorization module and
the residual pose estimation module (i.e., our full MonoIn-
door), significant improvements can be achieved across all
evaluation metrics. For instance, the AbsRel is reduced to
13.4% and the δ1 is increased to 82.3%. However, referring
to the last two rows, when adding more residual pose blocks
and training with/without the depth factorization module,
the performance does not significantly improve or even be-
comes worse. We will leave the investigation of this phe-
nomenon for future work.

Table 4. Comparison of our method to existing supervised and self-
supervised methods on NYUv2 [33]. Best results among super-
vised and self-supervised methods are in bold.

Methods Supervision Error Metric Accuracy Metric
AbsRel RMS δ1 δ2 δ3

Make3D [30] ✓ 0.349 1.214 0.447 0.745 0.897
Depth Transfer [16] ✓ 0.349 1.210 - - -

Liu et al. [25] ✓ 0.335 1.060 - - -
Ladicky et al. [18] ✓ - - 0.542 0.829 0.941

Li et al. [20] ✓ 0.232 0.821 0.621 0.886 0.968
Roy et al. [29] ✓ 0.187 0.744 - -
Liu et al. [24] ✓ 0.213 0.759 0.650 0.906 0.976

Wang et al. [38] ✓ 0.220 0.745 0.605 0.890 0.970
Eigen et al. [5] ✓ 0.158 0.641 0.769 0.950 0.988

Chakrabarti et al. [3] ✓ 0.149 0.620 0.806 0.958 0.987
Laina et al. [19] ✓ 0.127 0.573 0.811 0.953 0.988

Li et al. [21] ✓ 0.143 0.635 0.788 0.958 0.991
DORN [8] ✓ 0.115 0.509 0.828 0.965 0.992
VNL [41] ✓ 0.108 0.416 0.875 0.976 0.994

Fang et al. [7] ✓ 0.101 0.412 0.868 0.958 0.986
Zhou et al. [45] ✗ 0.208 0.712 0.674 0.900 0.968
Zhao et al. [44] ✗ 0.189 0.686 0.701 0.912 0.978

Monodepth2 [12] ✗ 0.160 0.601 0.767 0.949 0.988
Bian et al. [2] ✗ 0.147 0.536 0.804 0.950 0.986

MonoIndoor(Ours) ✗ 0.134 0.526 0.823 0.958 0.989

4.2.2 Quantitative Results

We present the quantitative results of our model MonoIn-
door and both state-of-the-art (SOTA) supervised and self-
supervised methods on NYUv2 in Table 4. It shows that our
model outperforms previous self-supervised SOTA meth-
ods, reaching the best results across all metrics. Specif-
ically, compared to a recent self-supervised method by
Bian et al. [2] which removes rotations via “weak rectifi-
cation”, our method reduces AbsRel by 1.3% and increases
δ1 by 1.9%, reaching an AbsRel of 13.4% and δ1 of 82.3%.
In addition to that, our model outperforms a group of super-
vised methods and close the performance gap between the
self-supervised methods and fully-supervised methods.

4.2.3 Qualitative Results

Figure 4 visualizes the predicted depth maps on NYUv2.
Compared with the results from the Monodepth2 [12],
depth maps predicted from our model (MonoIndoor) are
more precise and closer to the ground-truth. For instance,
looking at the third column in the first row, the depth in the
region of chairs predicted from our model is much sharper
and cleaner, being close to the ground truth (the last col-
umn). On the rightmost area of the same image where there
is a shelf , our model can produce better depth predictions
that reflect its shape. These observations are consistent with
our quantitative results in Table 4.

5. Conclusions

In this work, we have presented a novel monocular self-
supervised depth estimation model, namely MonoIndoor,
to study good practices towards predicting accurate depth
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Input Monodepth2 [12] Ours GT

Figure 4. Qualitative comparison on NYUv2 [33]. Compared with Monodepth2 [12], our model produces accurate depth maps (in the third
column) that are closer to the ground-truth.

maps in indoor environments. We first introduce the depth
factorization module to jointly learn a global scale factor
and a relative depth map from an input image. To esti-
mate accurate camera poses for novel view synthesis, we
propose a residual pose estimation module that decomposes
a global pose into an initial pose and one or a few residual
poses, which in turn improves the depth model. We have
shown that our model achieves the state-of-the-art perfor-
mance among the self-supervised methods on three chal-

lenging indoor datasets, i.e., EuRoC, NYUv2 and 7-Scenes.

It is to be noted that our depth factorization module is in
itself agnostic to the types of supervision, so it may also be
helpful for supervised depth prediction. In the future, we
plan to investigate its effectiveness in a supervised setup.
Another interesting future direction would be to train our
method on multiple datasets with various depth ranges and
then test it for zero-shot cross-dataset transfer as in [28].
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