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Figure 1: A visual comparison between the image harmonization results of the direct composition (DC), the current state-of-
the-art methods, and the proposed SSH. Best viewed in color and zoomed in.

Abstract
Image harmonization aims to improve the quality of im-

age compositing by matching the “appearance” (e.g., color
tone, brightness and contrast) between foreground and
background images. However, collecting large-scale anno-
tated datasets for this task requires complex professional
retouching. Instead, we propose a novel Self-Supervised
Harmonization framework (SSH) that can be trained us-
ing just “free” natural images without being edited. We
reformulate the image harmonization problem from a rep-
resentation fusion perspective, which separately processes
the foreground and background examples, to address the
background occlusion issue. This framework design al-
lows for a dual data augmentation method, where diverse
[foreground, background, pseudo GT] triplets can be gen-
erated by cropping an image with perturbations using 3D
color lookup tables (LUTs). In addition, we build a real-
world harmonization dataset as carefully created by expert
users, for evaluation and benchmarking purposes. Our re-
sults show that the proposed self-supervised method outper-
forms previous state-of-the-art methods in terms of refer-
ence metrics, visual quality, and subject user study. Code
and dataset are available at https://github.com/
VITA-Group/SSHarmonization.

1. Introduction
Image harmonization is a crucial step in image com-

positing that aims at adjusting (harmonizing) the appear-

ance—e.g., the color, saturation, brightness and contrast—
of a foreground object to better match the background im-
age so that the resulting composite is more realistic. For
example, a subject captured under sunlight looks different
from one on a cloudy day and its appearance needs to be
edited when composited into a cloudy scene.

Previous approaches tackle this issue by transferring
the statistic information between the foreground and back-
ground regions, including color [19, 36] and texture [31].
More recently, [33, 5, 6] train deep neural networks to ad-
dress the image harmonization problem, necessitating the
large-scale dataset of input-harmonized composite training
pairs. However, collecting a large-scale high-quality har-
monization dataset, in general, requires tedious professional
expert retouching. Instead, existing methods [33, 5, 6] by-
pass this by selecting foreground objects in existing images,
perturb their color to simulate an unharmonized composite,
and train the network to regress the original input image, as
manifested in Fig. 2 left. While these approaches [33, 5, 6]
are effective to an extent, they have several limitations:

• Limited ground truth paired data. Collecting high-
quality paired harmonization data is time-consuming and
laborious. Even in the constrained case presented above,
it requires an accurate mask of the foreground object in
each image, shown as Fig. 2 left.

• Background occlusion. Due to synthesizing by naively
composing, existing methods cannot make effective use
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Figure 2: Comparison between previous supervised methods [5, 6, 33] and the proposed SSH. Unlike previous methods
that demand annotated masks in the training process, our self-supervised framework requires NO mask during training. The
annotated mask is only needed at testing for actually making the composed image.

of the background context for harmonization. For exam-
ple, when the foreground object occupies a large part of
the image, their performance commonly degrade.

• Limited harmonization variability. Current meth-
ods only consider simple low-dimensional color trans-
fer functions to generate training (and even testing) data.
That does not generalize well to real-world scenarios with
drastically complex appearance discrepancies.

To tackle these limitations, we propose a new Self-
Supervised image Harmonization framework, dubbed SSH.
Different from previous approaches [33, 5, 6] which di-
rectly take the compositing image as the input (as shown
in Fig. 2 left), the proposed SSH method attempts to re-
formulate the harmonization problem from a representation
fusion perspective. The proposed framework separately ex-
tracts the “content” and “appearance” representation from
foreground and background images, and then aggregates
these representations to synthesize the harmonized output.
Based on this form, we introduce a novel dual data augmen-
tation engine to generate various synthesized data that can
be directly taken as [foreground, background, pseudo GT]
triplets to support self-supervised training (shown in Fig. 2
right). Meanwhile, we propose to adopt the 3D lookup ta-
ble (LUT) to replace the traditional color transfer augmen-
tation, which generates diverse visual examples on-the-fly.
To this end, the proposed approach has no requirement for
any foreground mask during training, and also allows us
to leverage the entire background image to generate high-
quality harmonization results.

Previous methods evaluate their performance synthe-
sized data [5] or real-world data without ground truth [33]).
In view of this gap, we build a new real-world, high-
quality benchmark of harmonized composite images, that

are retouched by professional Photoshop users. This col-
lected dataset contains 216 composite images whose fore-
grounds include both the human portraits and general ob-
jects, while their backgrounds cover diverse environments
such as mountains, rivers, buildings, sky and more (details
are described in Sec. 3.3). Experiments demonstrate that
SSH significantly outperforms state-of-the-art harmoniza-
tion methods on the realistic data.

We summarize our contributions below:

• We propose the first self-supervised harmonization
framework that needs neither human-annotated mask nor
professionally created images for training.

• We develop a novel dual data augmentation scheme, em-
powered by leveraging more complex 3D LUTs, to simu-
late more diverse and realistic training data on-the-fly.

• We collect the first-of-its-kind real-world benchmark set,
containing 216 high-quality composite images that are
professionally curated, to evaluate state-of-the-art image
harmonization methods. Our method also significantly
outperform existing approaches.

2. Related Works

Image Harmonization: Traditional image harmoniza-
tion methods mainly target at better adjusting the low-level
appearance statistics, such as color distribution [27, 29] and
multi-scale features [14, 26, 32]. Besides traditional ap-
proaches, several recent works try to adopt learning-based
method on harmonization task to better understand the con-
text information between foreground and background im-
ages. Zhu et al. [42] propose to use a discriminative model
that can distinguish between natural images and compos-
ite images. Tsai et al. firstly adopt segmentation mask
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as semantic information to train an end-to-end deep learn-
ing method. Cun et al. [6] propose the channel-wise and
spatial-wise attention mechanism that further improve the
visual quality of harmonized results. The most recent ap-
proaches DoveNet [5] treats the image harmonization as a
domain adaptation problem and successfully use adversar-
ial learning to achieve notable performance. However, these
methods [33, 6, 5] mainly rely on the annotated segmenta-
tion mask to synthesize training pairs. Different from those
methods, our method tackles the issue of expensive human
annotation thanks to the superiority of self-supervision.

Self-Supervised Learning: Self-supervised learning
has been popular in high-level tasks by learning under pre-
text tasks [11, 24] or contrasting augmenting views [4, 12].
For low-level tasks, self-supervision is often implemented
by self-generating synthetic data pairs, such as blur ker-
nel in deblurring [23, 17], or bicubic interpolation in super
resolution [7]. Recently, [18] applies self-supervised learn-
ing on image denoising without accessing clean reference
images. However, most of these approaches meet severe
challenges when tested on real-world data [3, 30, 15]. To
the best of our knowledge, SSH is the first self-supervised
learning method on the image harmonization task.

Comparing Image Harmonization and Style Trans-
fer: Style transfer can be traced back to the seminal work
of Gatys et al. [10], followed by many improved methods
aiming at improving either transfer efficiency [13, 16] or
scalability [39, 37, 9]. Nevertheless, its powerful ability on
abstracting the texture feature makes it in general unsuit-
able for harmonizing the realistic photography images. A
particularly relevant route to us is the photorealistic style
transfer [22, 20, 38], which adds a photorealism regular-
ization term on standard style transfer, resulting in a visu-
ally pleasing and photorealistic output. Although their goal
is very similar to ours, existing works in this vein either
need semantic segmentation masks to indicate specific re-
gions [22], or require two input images to share a similar
layout [20, 38] (e.g., building-to-building). Different from
all of them, SSH can be adopted on arbitrary photography
images without needing the segmentation mask or assum-
ing similar layouts. We compare with the state-of-the-art
photorealistic style transfer method WCT 2 [38] in our ex-
periments to better illustrate the differences.

3. Method
An overview of our proposed self-supervised harmoniza-

tion framework (SSH) is shown in Fig. 3. Our main goal
is to avoid the expensive human annotation that would be
otherwise required for the harmonization task and define
pseudo ground truths that can instead serve as proxies for
this task. To this end, our method utilizes a content network
and a reference network to extract representation about an
input image’s content and appearance respectively. The rep-

resentations are extracted in different image crops. Then
these features are concatenated and fed into a fusion net-
work which aims at reconstructing the harmonized image.
In addition, processing the foreground and background im-
ages individually (rather than in a composite image [5]) al-
lows us maximize information and avoid the background
occlusion problem (Fig. 6).

We observe that the different crops from one image tend
to share the same appearance (color, lighting condition, and
contrast) since they are captured from the same environ-
ment (lighting, weather condition) and camera setting. Thus
the different crops and their different appearance version
with proper perturbations can serve as a pseudo triplet (the
foreground, background and ground truth) for the content
and reference networks. Inspired by this observation, we
propose a dual data augmentation scheme, consisting of
a content augmentation and an appearance augmentation.
We will first introduce the dual data augmentation strategy,
then proceed to explaining the details of our self-supervised
framework and the data collection procedure.

3.1. Dual Data Augmentation

The goal of dual data augmentation is to provide pseudo
training triplets that contain various appearance and also
mimic real testing scenarios. In each iteration, we perform
both content and appearance augmentations. The content
augmentation samples two different crops with some over-
lapping region. Meanwhile, the appearance augmentation
applies multiple 3D color lookup table (LUT) for the given
image to obtain its corresponding stylized images.

3.1.1 Content Augmentation

To simulate real testing scenarios where the foreground and
background images are totally different, we apply content
augmentation in the data synthesis process. The content
augmentation adopts a simple yet effective multi-cropping
method to generate different crops of one original image.
The cropping size ranges from a local region to a global
region, and thus can mimic diverse environments which re-
duces the gap between synthetic data and real testing data.
The bottom left image in Fig. 3 shows a typical example
where we can obtain different looks from an image by this
cropping method.

3.1.2 Appearance Augmentation

Synthesizing data with various appearance is a common
step in training image harmonization models [5, 33, 6].
Existing approaches either choose to adopt a single color
transfer method [33], or simply extend it to several different
color transfer approaches [5]. However, in real harmoniza-
tion scenarios, the appearance mismatch between the fore-
ground and background images can be significantly more
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Figure 3: Details of Training and Testing Stage. The left figure illustrate the main pipeline of our self-supervised frame-
work. We firstly use the proposed dual data augmentation engine to generate Content α β and Reference α β, serving as
the input of content network GC and reference network GS respectively (α and β represents two different appearances after
applying different 3D LUTs). After that the training pipeline learns to synthesize content β from content α when the refer-
ence β is given, and also learns to reconstruct content α itself when reference α is given. The translation and reconstruction
process result in both the harmonization loss and the reconstruction loss. The right figure describe our testing stage. Noted
that, the human annotated mask is needed only in the testing stage for necessary composition.

complex and include contrast, brightness, and saturation
differences. To tackle this issue, we propose to use a 3D
color lookup table as the basic transformation approach.

A 3D Color Lookup Table (LUT) maps one color space
to another, and is widely used in film post-production indus-
try. It is essentially a 3D-to-3D mapping that can transform
any RGB color of an input image to any other RGB color.
It can also represents functions like contrast enhancement
where the tonal range of the input image is manipulated.

A LUT has a number of advantages including: 1) Unlike
simple color transfer functions, it can represent complex ap-
pearance adjustments; for example, the bottom left image in
Fig. 3 shows that the LUT can provide a non-linear trans-
formation where the appearance of different parts of the im-
age are transformed differently (e.g., the skin can be trans-
formed to red color while the T-shirt remains white color),
2) Given one input image, there exist hundreds of LUTs
that can be applied to generate its stylized versions and dra-
matically enrich the training data, and 3) LUT processing
is real-time so that it can be applied as an on-the-fly data
augmentation strategy.

3.2. Self-Supervised Framework

The proposed self-supervised framework SSH takes the
foreground as content imageC and the background as refer-
ence image R. We adopt a reference network Gr to capture

the appearance representation (color, brightness, and con-
trast etc.) from reference image R, and a content network
Gc to capture the content representation (structure, texture
etc.) from content input C. Then the fusion network F
aggregates the appearance and content representation and
learns to synthesize the output C

′
, so that the output C

′

matches the appearance of reference imageR and preserves
the content of content image C. We formulate the process
as following:

C
′
= F (Gc(C), Gr(R)) (1)

Using the proposed dual data augmentation, we can gen-
erate pseudo triplets [foreground, background, and ground
truth] from one image, and adopt it for training SSH. As
shown in the left part of Fig. 3, we generate two image with
their appearance perturbed by two different 3D LUTs sepa-
rately (denoted by α and β). Therefore, content crops (de-
noted as Cα, Cβ) and reference crops (denoted as Rα, Rβ)
corresponding to them can be obtained.

Here Cα contain similar appearance information with
Rα and the same content information as Cβ . Then the net-
work is expect to map Cα to Cβ when taking Rβ as the ref-
erence, and reconstruct the Cα to itself when taking Rα as
the reference. This special design simulate real testing sce-
narios where the foreground and background does not share
the same content while the output is expected to have same
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Figure 4: The Main Pipeline of Dataset Collection. The
detailed pipeline of how the composite image is retouched
by professional user is shown above. It includes both
the object annotation and appearance matching (brightness,
color/saturation, contrast adjustment, and local polish).

the appearance as the background and the same content as
the foreground. The mapping process and reconstruction
process use the following harmonization loss Lharm and
reconstruction loss Lharm:

C
′

β = F (Gc(Cα), Gs(Rβ)) (2)

C
′

α = F (Gc(Cα), Gs(Rα)) (3)

Lharm = ||C
′

β − Cβ ||
2

(4)

Lrecon = ||C
′

α − Cα||
2

(5)

Since the reference network Gr needs to capture the ap-
pearance information from given image, it is expected to ex-
tract similar representation when receiving different crops
with the same appearance. Meanwhile, the content network
Gc is expected to capture the same feature given the same
crops with different appearance. Thus we design another
disentanglement loss Ldis formulated as following:

Ldis = ||Gc(Cα)−Gc(Cβ)||2 + ||Gs(Cα)−Gs(Rα)||2
(6)

Combining with harmonization loss and reconstruction loss
defined above, the overall loss function for training SSH is
thus written as:

Loss = Lharm + w1 ∗ Lrecon + w2 ∗ Ldis (7)

Where w1 and w2 is set to 0.4 and 0.05 in experiments.
Therefore, the proposed SSH can translate a image to a syn-
thesized one that the synthesized output can match the ap-
pearance of another images. As shown in the right part of
Fig. 3, only in the testing stage, we adopt the object mask
to composite synthesized output and background/reference
image to generate the harmonized output

3.3. Dataset Preparation

3.3.1 Training Data and LUT Collection

Since SSH requires only self-supervision (rather than the
labeled object masks or harmonization ground truth from
professionals user required by previous methods [33, 6, 5]),
we are able to collect a larger-scale unlabeled training set
of images with diverse semantics, environmental lighting
conditions and contents. Our unlabeled training set consists
of 81917 images from several datasets [21, 2, 41] and the
Internet 12, containing mountain, river, sky, general object,
human portrait under diverse lighting conditions. In addi-
tion, we also collect 100 3D color lookup tables from the
Internet. We randomly select two LUTs from the collec-
tion in each training iteration, causing 100 × 100 possible
combinations that enable diversity during training.

3.3.2 Real-World Image Harmonization Benchmark

Although there exist several testing datasets [33, 5] for eval-
uating the harmonization performance, all of them are gen-
erated by perturbing the foreground objects with simple
color-transfer methods [29, 35, 8, 28]. Moreover, these
methods [5, 33] apply the same data synthesis procedure
for both training stage and testing stage. For learning-based
approaches, the evaluation results will be inevitably biased
and cannot faithfully probe their real-world generalization.

To bridge the gap between current evaluation proto-
cols with real image harmonization demands, we propose
a Real-world HarMonization dataset for evaluation, named
RealHM. However, collecting a well-annotated real-world
testing dataset is not a trivial task, as several elements need
to be adjusted together and the best result is beyond one im-
age. In particular, at least three main steps are required to
generate high-quality harmonized composition, as follows:
1) A challenging compositing pair need to be picked where
directly compositing these two images will cause severe vi-
sual disharmony. 2) A high-quality mask to cut out the fore-
ground objects is needed, where the hard boundary and soft
boundary (hair/fur region) are treated differently. 3) Match-
ing the appearance (color,brightness,saturation,contrast) of
the foreground with the background by using PhotoShop
tools, where some particular local region needs further ad-
justment. A typical example is shown in Fig. 4.

Finally, we collect 216 high-quality, high-resolution
foreground/background pairs with corresponding harmo-
nized outputs, where the foregrounds include both the hu-
man portraits and general objects and the backgrounds
cover diverse environments such as mountain, river, build-
ings, sky and else.

1https://unsplash.com
2https://www.flickr.com/
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DC GT WCT 2 [38] DIH [33] S2AM [6] DoveNet [5] SSH

Figure 5: Comparison with the State-of-the-art methods. The first column “DC” represents the direct compositing results
of foreground and background images, second column “GT” represents the ground truth harmonized results annotated by
human expert users. The rest five column shows the output of comparing methods and our proposed SSH methods. More
visual results will be shown in the supplementary. Best viewed zoomed in.

4. Experiments

4.1. Implementation

SSH is first trained from scratch for 70 epochs with the
learning rate of 2e-4, followed by another 30 epochs with
the learning rate linearly decayed to 0. We adopt a scale jit-
tering range of [256, 320] and then crop a 224× 224 image
in the training stage. We use the Adam optimizer and the
batch size is set to be 64. The whole training process takes
20 hours on 8 Nvidia 2080Ti GPUs. We implement it with
PyTorch [25] framework. We use 256 × 256 resolution for
full-reference metrics evaluation (PSNR, MSE, SSIM, and
LPIPS) and use the original resolution when showing the
visual comparison for better view. We follow [1] to gen-
erate high-resolution visual examples using color mapping
function.

4.2. Comparing with the State-of-the-art methods

In this section we compare the performance of our pro-
posed method SSH with the current state-of-the-art meth-
ods. We conduct both the quantitative and qualitative eval-
uation, including visual quality comparison, referenced im-
age quality assessment (IQA) and human subjective test.

4.2.1 Visual Quality Comparison

We firstly compare our SSH framework with current state-
of-the-art methods in terms of visual quality, shown in
Fig. 5. The first column shows the results by directly
compositing foreground and background images. The sec-
ond column represents the annotated harmonized results re-
touched by the human expert user with professional editing
skill. The third to seventh column shows the output gen-
erated by: WCT 2 [38], DIH[33], S2AM [6], DoveNet[5],
and our proposed SSH methods. From the results in Fig. 5,
photorealistic style transfer method [38] generates the worst
results due to the foreground and background do not share
similar layout, violating the prerequisite of its suitable sce-
narios. The results of DIH show subtle adjustment com-
pared to the inputs since they only use one color transfer
method to synthesize training data. The results of S2AM
and DoveNet either show incorrect color or disharmony
contrast. In contrast, SSH successfully not only learns to
extract correct color but also avoids contrast/brightness mis-
matching. More results will be shown in the supplementary.

4.2.2 Full-referenced metrics

We next evaluate the performance of these methods on
our RealHM benchmark. Specifically, the human anno-
tated harmonized output is set to be the ground truth la-
bel in each example, and the direct compositing results is
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Methods PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓
DC 25.91 409.54 0.9385 0.049

WCT2[38] 22.13 446.85 0.8559 0.096
DIH [33] 23.96 433.52 0.8661 0.082
S2AM [6] 26.77 283.27 0.9366 0.053

DoveNet [5] 27.41 214.11 0.9416 0.044
SSH 27.91 206.85 0.9479 0.039

Table 1: Comparing with the State-of-the-art methods. We compare the the proposed method SSH with others with
referenced-metric including PSNR, MSE, SSIM, and perceptual metrics. Here ↓ represents the lower the better and ↑ repre-
sents the higher the better. Our method outperforms previous methods under all these four metrics.

Methods Score ↑
WCT2[38] 0.821
DIH [33] 1.201
S2AM [6] 1.744

DoveNet [5] 1.256
SSH 2.295

Table 2: Human Subjects Evaluation. The higher score
indicates the better result.

Methods PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓
Single-Crops 24.80 376.74 0.9203 0.069
Multi-Crops (ours) 27.91 206.85 0.9479 0.039

Table 3: Evaluation of Content Augmentation. The first
row shows the results of SSH with single-cropping augmen-
tation and second row shows the results of SSH with ran-
dom multi-cropping augmentation (the proposed one).

considered as a baseline score here. Following previous
work [6], we adopt referenced metrics, including PSNR,
Mean Squared Error (MSE), SSIM [34], and LPIPS [40].
The results are shown in Table 1. To be more detailed,
WCT 2 [38] shows the worst performance since its appli-
cable scenarios requires the two images to share the simi-
lar layout (e.g., building-to-building). Besides, S2AM [6]
outperforms DIH [33] due to its dual attention module.
DoveNet [5] is slightly better than S2AM thanks to its do-
main verification discriminator. However, these learning-
based method all requires human annotated object mask.
Different from those approaches, SSH reaches the best per-
formance among all these four metrics without the necessity
of any labels, demonstrating the effectiveness of the pro-
posed self-supervised framework. We also include a typical
example in Fig. 6 to show that the back ground occlusion is-
sue can be well addressed by the proposed SSH framework.

4.2.3 Human Subjects Evaluation

We conduct a human subjective review to compare the per-
formance of SSH with other methods. We randomly se-

Methods PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓
color transfer 27.01 311.96 0.9451 0.043

Saturation 26.68 337.11 0.9432 .0460
3D LUT (ours) 27.91 206.85 0.9479 0.039

Table 4: Evaluation of Appearance Augmentation. We
evaluate different “appearance” augmentation strategy in-
cluding color transfer, random saturation change, and our
proposed 3D color lookup table (LUT) augmentation.

Methods PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓
w/o recon loss. 24.05 475.45 0.9095 0.0780

w/o disentangle loss 24.94 372.21 0.9217 0.0643
SSH 27.91 206.85 0.9479 0.039

Table 5: Evaluation of Loss Function Design Choices.
The first row shows the results generated by SSH without
reconstruction loss and the second row shows the results
without disentanglement loss

lect 15 foreground and background pairs from the RealHM
benchmark. Each image is first processed by five methods
WCT 2 [38], DIH [33], S2AM[6], DoveNet[5], and SSH),
and then displayed on a screen for comparison. The hu-
man annotated ground truth is also provided as a reference.
We then ask 50 subjects to independently score the visual
quality, considering the following factors: 1) whether the
image contains color/saturation disharmony; 2) whether the
foreground and the background has different illumination;
and 3) whether the composite images show texture distor-
tions/artifacts. The score of visual quality ranges from 0
to 4 (worst to best quality). As shown in the Table 2, the
photorealistic style transfer method WCT 2 [38] shows the
worst performance since it is not suitable for image harmo-
nization task, which is consistent with the observation from
full reference evaluation. The learning-based image harmo-
nization methods [33, 6, 5] show comparably good perfor-
mance, while the proposed method SSH achieves best score.
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BG DC DoveNet [5] SSH
Figure 6: Background occlusion problem. “BG” and
“DC” represent the background image and the direct com-
positing result, respectively. Since DoveNet [5] only takes
the direct compositing image as the input, it fails to capture
the true appearance of the background when the foreground
object is too large, while SSH successfully generates a har-
monized output.

4.3. Ablation Study

4.3.1 Effectiveness of Dual Data Augmentation

As the superiority of SSN is built upon the strong dual
data augmentation, we evaluate each component starting
from the content augmentation and appearance augmenta-
tion. The content augmentation act as a crucial role in our
framework as it generate two different crops of the same im-
age, simulating the real scenarios where the foreground and
background images are totally different. We ablate it by re-
placing the multi-cropping method with a single-cropping
method and then make the content and reference network
receive the same crop as the input. As shown in Table 3,
we observe that without adopting multi-cropping strategy,
the performance largely degrades due to the pseudo label is
exactly same as the input in the training stage, making the
model easily minimizing the loss without actually learning
the representation of the appearance.

Furthermore, we study the effectiveness of 3D LUT by
comparing it with other appearance augmentation such as
color transfer and random saturation adjustment. As shown
in Table 4, the proposed 3D LUT augmentation strategy
outperforms both the color transfer and random saturation
change. This is because 3D LUT provides a stronger ap-
pearance change thanks to its diverse color mapping way.
Also, 3D LUT enable local appearance change instead of a
simple global translation.

4.3.2 Evaluation of Loss function

To study the effectiveness of reconstruction loss and disen-
tanglement loss, we conducted the ablation experiments by
removing them separately. As shown in Table 5, either re-
moving the reconstruction loss or the disentanglement loss
will cause performance degradation, demonstrating the ef-
fectiveness of these loss. We also find that the disentangle-
ment loss can help stabilize the performance our method,
the visual examples will be shown in the supplementary.

DC Output

Location 1
Location 2

Background

Figure 7: Locality-aware harmonization. “DC” denotes
direct compositing results.

4.4. Locality-aware Harmonization

Since the proposed self-supervised framework takes the
full reference images as the inputs without annotated mask,
the missing locality information brought by the annotated
mask becomes a probable concern of current approach. In
practice, we find that this issue can be well addressed by
a proper cropping strategy during the inference stage. We
take a spatially-variant colorful image as a typical back-
ground example, shown in Fig. 7. The background contains
two different appearance in different location, top right and
bottom left. However, the appearance of the harmonized
output is expected to be close to the region where the fore-
ground object is placed. To avoid the harmonized output
being affected by the misleading environment, we show that
simply adopt the cropping method can well preserve the lo-
cality information. By separately considering the top right
and bottom left cropping box as the background, the pro-
posed methods successfully extract correct “appearance”
representation and generate reasonable and pleasing visual
results, demonstrating the effectiveness of SSH in this chal-
lenging scenario.

5. Conclusion

We propose a self-supervised framework for image har-
monization, named SSH. The proposed method does not
require any human annotated labels in the training phase
thus reduce the tedious effort of collecting a large-scale
high-quality human annotated dataset retouched by profes-
sional users. Furthermore, we propose a dual data augmen-
tation which include both the content data augmentation and
appearance data augmentation to not only provide stable
pseudo labels but also enrich the diversity of training data.
Besides, we built a real harmonization benchmark that fills
the gap in real testing scenarios. Our method outperforms
all previous methods in a variety of metrics.
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[26] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson
image editing. In ACM SIGGRAPH 2003 Papers, pages 313–
318. 2003. 2

4840



[27] Francois Pitie, Anil C Kokaram, and Rozenn Dahyot. N-
dimensional probability density function transfer and its ap-
plication to color transfer. In Tenth IEEE International Con-
ference on Computer Vision (ICCV’05) Volume 1, volume 2,
pages 1434–1439. IEEE, 2005. 2
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