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Abstract

Scene graph generation has emerged as an important

problem in computer vision. While scene graphs provide

a grounded representation of objects, their locations and

relations in an image, they do so only at the granularity of

proposal bounding boxes. In this work, we propose the first,

to our knowledge, framework for pixel-level segmentation-

grounded scene graph generation. Our framework is ag-

nostic to the underlying scene graph generation method and

address the lack of segmentation annotations in target scene

graph datasets (e.g., Visual Genome [24]) through transfer

and multi-task learning from, and with, an auxiliary dataset

(e.g., MS COCO [29]). Specifically, each target object be-

ing detected is endowed with a segmentation mask, which

is expressed as a lingual-similarity weighted linear combi-

nation over categories that have annotations present in an

auxiliary dataset. These inferred masks, along with a Gaus-

sian masking mechanism which grounds the relations at a

pixel-level within the image, allow for improved relation

prediction. The entire framework is end-to-end trainable

and is learned in a multi-task manner. Code is available at

github.com/ubc-vision/segmentation-sg.

1. Introduction

Scene graph generation, has emerged as a dominant
problem in computer vision literature over the last couple
of years [36, 44, 50, 51, 53]. The task involves producing
a graph-based grounded representation of an image, which
characterizes objects and their relationships. A scene graph
representation, first introduced in [50], encodes a scene as
a graph where nodes correspond to objects (encoding ob-
ject instances with corresponding class labels and spatial lo-
cations) and directed edges corresponding to relationships.
The ultimate goal of scene graph generation is to produce
such representation from a raw image [24] or video [18].
Scene graph representations have proved to be important
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Figure 1. Segmentation-grounded scene graph generation. The
image on top is the output of an existing scene graph generation
method [45]. The bottom image is the output of augmenting our
approach to [45]. The effective grounding of objects to pixel-level
regions within the image leads to better relation predictions.

for a variety of higher level tasks (e.g., VQA[16, 45], image
captioning [10, 52] and others). Most approaches to date
have focused on appropriate modeling of context [51, 55],
data imbalance in labels [30, 44] and, most recently, struc-
tural dependencies among the output variables [42].

One of the dominant limitations of all existing scene
graph generation techniques, mentioned above, is the fact
that both the nodes (objects) and edges (relations) are
grounded to (rectangular) bounding boxes produced by the
object proposal mechanism directly (e.g., pre-trained as part
of R-CNN) or by taking a union of bounding boxes of ob-
jects involved in a relation. A more granular and accu-
rate pixel-level grounding would naturally be more valu-
able. This has been shown to be the case in other visual and
visual-lingual tasks (e.g., referring expression comprehen-
sion [15, 31], video segmentation with referring expression
[22] and instance segmentation with Mask-RCNN [11]).
In addition, grounding to segmentations could improve the
overall performance of the scene graph generation by focus-
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ing node and edge features on irregular regions correspond-
ing to objects or interface between objects, constituting an
interaction. The goal of our approach is to do just that.

However, pixel-level grounding comes with a number of
unique challenges. The foremost of which is that traditional
scene graph datasets, such as Visual Genome [24], do not
come with instance-level segmentation annotations. This
makes it impossible to employ a traditional fully supervised
approach. Further, even if we were to collect segmentation
annotations, doing so for a large set of object types typ-
ically involved in Scene Graph predictions would be pro-
hibitively expensive1. To address this, we propose a trans-
fer and multi-task learning formulation that uses an exter-
nal dataset (e.g., MS COCO [29]) to provide segmentation
annotations for some categories; while leveraging standard
scene graph dataset (e.g., Visual Genome [24]) to provide
graph and bounding box annotations for the target task.

On a technical level, for a target object that lacks seg-
mentation annotations, its mask is expressed as a weighted
linear combination over categories for which annotations
are present in an external dataset. This transfer is realised
by leveraging the linguistic similarities between the target
object label and these supervised categories, thus enabling
grounding objects to segmentation masks without introduc-
ing any annotation cost. For a pair of objects that share a re-
lation, our approach additionally employs a Gaussian mask-
ing mechanism to assign this relation to a pixel-level region
within the image. Through joint optimization over the tasks
of scene graph and segmentation generation, our approach
achieves simultaneous improvements over both tasks. Our
proposed method is end-to-end trainable, and can be easily
integrated into any existing scene graph generation method
(e.g., [45, 55]).

Contributions: Our foremost contribution is that we pro-
pose the first, to our knowledge, framework for pixel-level
segmentation-grounded scene graph generation/prediction,
which can be integrated with any existing scene graph gen-
eration method. For objects, these groundings are realised
via segmentation masks, which are computed through a
lingual-similarity based zero-shot transfer mechanism over
categories in an auxiliary dataset. To effectively ground
relations at a pixel level, we additionally propose a novel
Gaussian masking mechanism over segmentation masks.
Finally, we demonstrate the flexibility and efficacy of our
approach by augmenting it to existing scene graph archi-
tectures, and evaluating performance on the Visual Genome
[24] benchmark dataset, where we consistently outperform
baselines by up to 12% on relation prediction.

2. Approach

We propose a novel multi-task learning framework that
leverages instance-level segmentation annotations, obtained

1As per [1], labelling one image in VOC [7] takes 239.7 seconds.

via a zero-shot transfer mechanism, to effectively generate
pixel-level groundings for the objects within a scene graph.
Our approach, highlighted in Figure 2, builds on existing
scene graph generation methods, but is agnostic to the un-
derlying architecture and can be easily integrated with ex-
isting state-of-the-art approaches.
2.1. Notation

Let Dg = {(xg
i ,G

g
i )} denote the dataset containing

graph-level annotations G
g
i for each image x

g
i . We repre-

sent the scene graph annotation G
g
i as a tuple of object and

relations, Gg
i = (Og

i ,R
g
i ), where O

g
i 2 Rni⇥dg represents

object labels and R
g
i 2 Rni⇥ni⇥d0

g represents relationship
labels; ni is the number of objects in an image xg

i ; dg and d0g
are the total number of possible object and relation labels,
respectively, in the dataset.

In addition, we assume availability of the dataset Dm =
{(xm

i ,Mm
i )}, where each image x

m
i has corresponding

instance-level segmentation annotations M
m
i . Finally, dm

are the total number of possible object labels in Dm.
As is the case with existing scene graph datasets like Vi-

sual Genome [24], Dg does not contain any instance-level
segmentation masks. Also, Dm can be any dataset (like MS
COCO [29]). Note, that in general, the images in the two
datasets, Dg and Dm, are disjoint and the object classes in
the two datasets may have minimal overlap (e.g., MS COCO
provides segmentations for 80, while Visual Genome pro-
vides object bounding boxes for 150 object categories2).

For brevity, we drop subscript i for the rest of the paper.

2.2. Scene Graph Generation

Given an image x
g 2 Dg , a typical scene graph model

defines the distribution over the scene graph G
g as follows,

Pr (Gg|xg) = Pr (Bg|xg) · Pr (Og|Bg,xg) · Pr (Rg|Og,Bg,xg)
(1)

The bounding box network Pr (Bg|xg) extracts a set of
boxes Bg = {bg

1, . . . ,b
g
n} corresponding to regions of in-

terest. This can be achieved using standard object detectors
such as Faster R-CNN [39] or Detectron [46]. Specifically,
these detectors are pretrained on Dg with the objective to
generate accurate bounding boxes Bb and object probabili-
ties Lg = {lg1, . . . , lgn} for an input image xg . Note that this
only requires access to the object (node) annotations in G

g .
The object network Pr (Og|Bg,xg), for each bounding

box b
g
j 2 B

g , utilizes feature representation z
g
j , where zgj is

computed as RoIAlign(xg,bg
j ), which extracts features

from the area within the image corresponding to the bound-
ing box b

g
j . These features, alongside object label proba-

bilities l
g
j , are fed into a context aggregation layer such as

2Visual Genome has a ⇠47% image overlap with MS-COCO. How-
ever, they have differing object categories and annotations. We make no
use of this implicit image overlap in our formulation.
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Figure 2. Model Architecture. For an image, the object detector provides a set of bounding boxes, and for each box, additionally
generates instance-level segmentations via a zero-shot transfer mechanism. These inferred segmentation masks are incorporated into the
nodes and edges of the underlying graph, before passing it into an existing scene graph prediction architecture like [55, 45]. The inferred
segmentation masks are additionally refined by leveraging the global context captured by the context aggregation step of the scene graph
prediction method. The proposed method is end-to-end trainable, and can be augmented to any existing scene graph method.

Bi-directional LSTM [55], Tree-LSTM [45], or Graph At-
tention Network [51], to obtain refined features zo,gj . These
refined features are used to obtain the object labels Og for
the nodes within the graph G

g . Similarly, for the rela-
tion network Pr (Rg|Og,Bg,xg), features corresponding to
union of object bounding boxes are refined using message
passing layers and subsequently classified to produce pre-
dictions for relations.

Existing models ground the objects in the scene graph
to rectangular regions in the image. While bounding boxes
provides an approximate estimate of the object locations,
having a more granular pixel-level grounding achievable
through segmentation masks is much more desirable. A
major challenge is the lack of segmentation annotation in
scene graph datasets like Visual Genome [24]. Further-
more, manually labelling segmentation masks for such large
datasets is both time consuming and expensive. As a solu-
tion, we derive segmentation masks via a zero-shot transfer
mechanism from a segmentation head trained on an external
dataset Dm(e.g. MSCOCO [29]). This inferred segmenta-
tion mask is then used as additional input to the object and
relation networks to generate better scene graphs. Our ap-
proach factorizes the distribution over Gg as,

Pr (Gg|xg) = Pr (Bg|xg) ·Pr (Mg|xg) · Pr (Og|Bg,Mg,xg)

·Pr (Rg|Og,Bg,Mg,xg)
(2)

where M
g = {mg

1, . . . ,m
g
n} are the inferred segmentation

masks corresponding to the bounding boxes Bg . Such a fac-
torization enables grounding scene graphs to segmentation
masks and affords easy integration to existing architectures.

2.3. Segmentation Mask Transfer

For each image xg 2 Dg , we derive segmentation masks
M

g using annotations learned over classes in an external
dataset Dm. To facilitate this, like described in Section 2.2,

we pretrain a standard object detector (like Faster R-CNN
[39]) on the scene graph dataset Dg . However, instead of
training the detector just on images in Dg , we additionally
jointly learn a segmentation head fM on images in Dm.
Note that when training the object detector jointly on im-
ages in Dg and Dm, the same backbone and proposal gen-
erators are used, thus reducing the memory overhead.

For an image x
g 2 Dg , let zgj be the feature representa-

tion for a bounding box b
g
j 2 B

g . Let, emg
j = fM(zgj ),

where emg
j 2 Rdm⇥m⇥m, dm represents the number of

classes in Dm, and m is the spatial resolution of the mask.
Per class segmentation masks mg

j 2 Rdg⇥m⇥m are then de-
rived from emg

j using a zero-shot transfer mechanism3. Let
S 2 Rdg⇥dm be a matrix that captures linguistic similari-
ties between classes in Dg and Dm. For a pair of classes
cg 2 [1, dg], cm 2 [1, dm], the element Scg,cm is defined as,

Scg,cm = g
>
cggcm (3)

where gcg and gcm are 300-dimensional GloVe [37] vector
embeddings for classes cg and cm respectively4. mg

j is then
obtained as a linear combination over emg

j as follows,

m
g
j = S

> emg
j (4)

Note that such a transfer doesn’t require any additional la-
belling cost as we rely on a publicly available dataset Dm.

2.4. Grounding Nodes to Segmentation Masks

As mentioned in Equation 2, we incorporate the
inferred segmentation masks in the object network

3Note that dg >> dm in our case.
4For class names that contain multiple words, individual GloVe word

embeddings are averaged.
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Pr (Og|Bg,Mg,xg) to ground objects in Dg to pixel-level
regions within the image.

Specifically, for a particular image x
g , the model

Pr (Bg|xg) outputs a set of bounding boxes B
g . For each

bounding box b
g
j 2 B

g , it additionally computes a feature
representation z

g
j and object label probabilities lgj 2 Rdg+1.

Following the procedure described in Section 2.3, per-class
segmentation masks mg

j are inferred for each bounding box
b
g
j . We define a segmentation aware representation ẑ

g
j as,

ẑ
g
j = fN

�
[zgj ,m

g
j ]
�

(5)

where fN is a learned network and [., .] represents concate-
nation. Contrary to existing methods like [45, 55] that use
the segmentation agnostic representation z

g
j , we feed ẑ

g
j and

l
g
j as inputs to the object network Pr (Og|Bg,Mg,xg).

2.5. Grounding Edges to Segmentation Masks

To facilitate better relation prediction, we leverage
the inferred segmentation masks in the relation network
Pr (Rg|Og,Bg,Mg,xg). Specifically, for a pair of objects,
we utilize a Gaussian masking mechanism to identify rela-
tion identifying pixel-level regions within an image.

Given a pair of bounding boxes (bg
j ,b

g
j0) 2 B

g that con-
tain a possible edge and their corresponding object label
probabilities (lgj , l

g
j0), their respective segmentation masks

(mg
j ,m

g
j0) are computed via the procedure described in

Section 2.3. We define z
g
j,j0 as the segmentation agnos-

tic feature representation representing the union of boxes
(bg

j ,b
g
j0), which is computed as RoIAlign(xg,bg

j[b
g
j0)

5.
Contrary to existing works that rely on this coarse rect-

angular union box, our approach additionally incorporates
a intersection of the segmentation masks (mg

j ,m
g
j0) to pro-

vide more granular information. To this end, we define the
union segmentation mask m

g
j,j0 as,

m
g
j,j0 = (Kj ~m

g
j )� (Kj0 ~m

g
j0) (6)

where ~ is the convolution operation, and � computes
an element-wise product. Kj ,Kj0 are � ⇥ � sized Gaus-
sian smoothing spatial convolutional filters parameterized
by variances �2

x, �2
y and correlation ⇢x,y . These parameters

are obtained by learning a transformation over the object
label probabilities lgj . Specifically, �2

x,�
2
y, ⇢x,y = fN

�
l
g
j

�
,

where fN is a learned network. Kj0 is computed analo-
gously using l

g
j0 . The attended union segmentation mask

m
g
j,j0 affords the computation of a segmentation aware rep-

resentation ẑ
g
j,j0 as follows,

ẑ
g
j,j0 = fE

⇣
[zgj,j0 ,m

g
j,j0 ]

⌘
(7)

where fE is a learned network. ẑgj,j0 is then used as an input
to the relation network Pr (Rg|Og,Bg,Mg,xg).

5bg
j [ bg

j0 computes the convex hull of the union of the two boxes.

2.6. Refining Segmentation Masks

As described previously, our proposed approach incor-
porates segmentation masks to improve relation prediction.
However, we posit that the tasks of segmentation and re-
lation prediction are indelibly connected, wherein an im-
provement in one leads to an improvement in the other.

To this end, for each object bg
j 2 B

g , in addition to pre-
dicting the object labels Og , we learn a segmentation refine-

ment head fM0 to refine the inferred segmentation masks
m

g
j . However, as the scene graph dataset Dg does not con-

tain any instance-level segmentation annotations, training
fM0 in a traditionally supervised manner is challenging.

To alleviate this issue, we again leverage the auxiliary
dataset Dm, which contains segmentation annotations. For
an image x

m 2 Dm we compute the bounding boxes Bm.
Note that this does not require any additional training as the
object detector is jointly trained using both Dg and Dm as
described in Section 2.3. For a bounding box b

m
j 2 B

m,
the corresponding per class masks are computed as, mm

j =

fM
�
z
m
j

�
, where z

m
j is the feature representation for b

m
j ,

and fM is the segmentation head defined in Section 2.3.
The refined mask m̂

m
j is then computed as,

m̂
m
j = m

m
j + fM0

�
z
o,m
j

�
(8)

where z
o,m
j is the representation computed by the

context aggregation layer within the object network
Pr (Om|Bm,Mm,xm). Note that this network is identical
to the one defined in Equation 2. The segmentation refine-

ment head fM0 is a zero-initialized network that learns a
residual update over the mask m

m
j . As ground-truth seg-

mentation annotations are available for all objects Bm, fM0

is trained using a pixel-level cross entropy loss.
fM0 is trained alongside the scene graph generation

model, and the refined masks are used during inference to
improve relation prediction performance. Specifically, for a
particular image x

g 2 Dg , we follow the model described
in Equation 2 to generate predictions. However, instead of
directly using the inferred masks obtained using the zero-
shot formulation in Section 2.3, we additionally refine it
using fM0 . For a particular mask m

g
j corresponding to a

bounding box b
g
j , we compute m̂

g
j as,

m̂
g
j = m

g
j + fM0

�
z
o,g
j

�
(9)

where z
o,g
j is the representation computed by the context

aggregation layer. The refined mask is used in the object
and relation networks as described in Sections 2.4 and 2.5.

2.7. Training

Our proposed approach is trained in two stages. The
first stage involves pre-training the object detector to enable
bounding box proposal generation for a given image. Given
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datasets Dg and Dm, the object detector is jointly trained to
minimize the following objective,

Lobj = Lrcnn + Lseg (10)

where Lrcnn is the Faster R-CNN [39] objective, and Lseg

is the pixel-level binary cross entropy loss [11] applied over
segmentation masks. Note that images in Dg do not con-
tribute to Lseg due to lack of segmentation annotations.

The second stage of training involves training the scene
graph generation network to accurately identify relations
between pairs of objects. Given datasets Dg and Dm, the
scene graph generation network is jointly trained to mini-
mize the following objective,

L = Lsg + Lseg (11)

where Lsg depends on the architecture of the underlying
scene graph method our approach is augmented to. For
example, in the case of MOTIF [55], Lsg consists of two
cross-entropy losses, one to refine the object categorization
obtained from the pretrained detector, and the other to aide
with accurate relation prediction. Lseg is identical to the
segmentation loss described in Equation 10, and is used to
learn the refinement network fM0 (Section 2.6). As images
in Dm do not contain scene graph annotations, they only
contribute to Lseg . Similarly, images in Dm only affect Lsg .

3. Experiments

We perform experiments using two datasets: the Visual
Genome Dataset [24] and the COCO dataset [29].
Visual Genome. For training and evaluating the scene
graph generation performance, we use the Visual Genome
dataset [24]. We use the widely adopted prepossessed ver-
sion of Visual Genome from [50]. This subset contains
108k images across 150 object categories and 50 relation
labels. Images with more that 40 object bounding boxes are
filtered out from the test set due to memory constraints.
MS-COCO For training and evaluating the segmentation
masks, we use the MSCOCO 2017 dataset [29], which con-
tains 123k images, split into 118k training and 5k validation
images, across 80 categories. As the ground-truth annota-
tions for the test set are not available, as is common practice,
results are reported on the validation set.

Note that our approach is agnostic to the choice of the
auxiliary dataset Dm. The choice of using MS-COCO is
motivated by its popularity in the community. As MS-
COCO has images in common with Visual Genome, there is
a possibility of information leakage across the two datasets.
However, due to the differences in annotation types, such
leakage is not observed in practice. A further analysis is
presented in Section B of the supplementary. For simplic-
ity, this image overlap is not removed when computing the
results described in Section 4 (performance without overlap
is reported in supplementary Tables A4, A5).

3.1. Scene Graph Generation Model

Our proposed framework is generic and can be easily in-
tegrated with various scene graph generation models. In this
work we experiment with two scene graph architectures,
namely MOTIF [55] and VCTree [45].

In MOTIF [55], the object and relation networks (Equa-
tion 1) are each instantiated by bidirectional LSTMs [12].
For an image x

g
j 2 Dg , the extracted bounding boxes

B
g are arranged based on their x-coordinate position, and

passed through the bidirectional LSTM networks. Instead
of assuming a linear ordering between the objects, VCTree
[45] generates a dynamic binary tree, with the aim of explic-
itly encoding the parallel and hierarchical relationships be-
tween objects. The object and relation networks are instan-
tiated as bidirectional TreeLSTMs [43]. When augmenting
our approach with MOTIF [55] and VCTree [45], we iden-
tically replicate the object and relation networks proposed
in the respective works. Additional details are provided in
Section A of the supplementary.

3.2. Evaluation

Relationship Recall (RR). To measure the performance
of models we use the mean Recall @K (mR@K) metric
introduced in [4, 45]. The mean Recall metric calculates the
recall for predicate label independently across all images
and then averages the result. We report the mean Recall
instead of the conventional Regular Recall(R@K) due to
the long-tail nature of relation labelling in Visual Genome
that leads to reporting bias [44]. Mean Recall reduces the
influence of dominant relationships such as on and has,
and gives equal weight to all the labels in the dataset.
Zero-Shot Recall (zsR@K). Introduced in [33], zsR@K
computes the Recall@K for subject-predicate-object
triplets that are not present in the training data.

These evaluation metrics are computed for three differ-
ent sub-tasks: 1) Predicate Classification (PredCls): predict
the relation labels given the ground truth objct bounding
boxes and labels; 2) Scene Graph Classification (SGCls):
predict the object and relation labels given the ground truth
object bounding boxes; 3) Scene Graph Detection (SGDet):
given an image, predict the entire scene graph.
Segmentation Precision. As the Visual Genome dataset
[24] does not contain any instance-level segmentation an-
notations, as a proxy we use the MSCOCO dataset [29]
to measure the performance of the segmentation refinement
procedure described in Section 2.6. To make the evaluation
similar to scene graph generation, we analogously define
three sub-tasks to measure the improvement in the quality
of segmentation masks. These sub-tasks, namely (Pred-

Cls), (SGCls), and (SGDet), are identical to the ones de-
fined earlier. For each of these sub-tasks, the standard eval-
uation metrics on COCO are reported [11].
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Model Detector Method
Predicate Classification Scene Graph Classification Scene Graph Generation

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP [50] VGG-16 [41] - - 9.8 10.5 - 5.8 6.0 - 3.8 4.8
MOTIF [55] VGG-16 [41] - 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
VCTree [45] VGG-16 [41] - 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0

MOTIF†
VGG-16 [41]

Baseline 13.7 17.5 18.9 7.5 9.2 9.8 5.2 6.8 7.9
Seg-Grounded 14.6 18.7 20.3 7.9 9.8 10.5 5.6 7.3 8.1

ResNeXt-101-
FPN [34, 49]

Baseline 14.1 18.0 19.4 8.0 9.9 10.6 5.8 7.7 9.0
Seg-Grounded 14.5 18.5 20.2 8.9 11.2 12.1 6.4 8.3 9.2

VCTree†
VGG-16 [41]

Baseline 14.4 18.4 19.8 8.1 9.9 10.7 4.4 5.7 6.4
Seg-Grounded 14.8 18.9 20.5 8.7 10.8 11.6 5.3 7.0 7.8

ResNeXt-101-
FPN [34, 49]

Baseline 13.7 17.4 19.0 8.1 9.9 10.6 5.3 6.9 7.9
Seg-Grounded 15.0 19.2 21.1 9.3 11.6 12.3 6.3 8.1 9.0

Table 1. Scene Graph Prediction on Visual Genome. Mean Recall (mR) is reported for three tasks, across two detector backbones. Our
approach is augmented to and contrasted against MOTIF [55] and VCTree [45]. † denotes our re-implementation of the methods.

Detector Method
Predicate Classification Scene Graph Classification Scene Graph Generation

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

VGG-16 [41]
No Refine 31.5 63.8 28.1 21.8 36.4 43.9 32.5 58.9 31.8 17.0 35.3 42.3 23.2 44.7 21.6 8.1 26.0 35.1

MOTIF† + Refine 42.4 78.1 40.9 33.0 46.6 55.8 37.5 63.5 38.8 21.0 40.7 48.4 24.7 45.8 23.9 8.6 27.9 38.1
VCTree† + Refine 41.9 77.6 40.3 32.8 46.1 55.2 37.4 63.4 38.6 20.9 40.5 48.4 24.9 46.1 24.1 8.6 28.1 38.4

ResNeXt-101-
FPN [34, 49]

No Refine 54.8 87.6 58.3 46.3 57.8 68.1 51.6 76.7 56.9 37.9 53.7 62.2 39.2 61.2 42.4 20.0 42.3 55.7
MOTIF† + Refine 59.3 90.6 64.7 52.0 62.2 70.6 54.6 78.2 61.1 41.1 56.8 64.1 39.2 61.2 42.4 19.9 42.3 55.8

VCTree† + Refine 59.0 90.4 64.2 51.7 62.0 70.4 54.3 77.9 60.4 41.0 56.4 63.8 39.2 61.2 42.4 19.9 42.3 55.7

Table 2. Segmentation Refinement on MSCOCO. Standard COCO precision metrics are reported across three tasks and two detector
backbones. Task formulation is identical to Table 1. ‘No Refine’ is the baseline where the segmentation masks are obtained from the
pre-trained detector. As ground truth masks are unavailable in Visual Genome, evaluation on MSCOCO serves as a proxy.

3.3. Implementation Details

Detector. For our detector architecture, we use the two-
stage Faster-RCNN [39] framework. To demonstrate the
flexibility of our approach, we experiment with two dif-
ferent backbones within the Faster-RCNN framework: 1)
VGG-16 [41] pre-trained on the ImageNet [40] dataset,
and 2) ResNeXt-101-FPN [34, 49] backbone pre-trained on
the MSCOCO [29] dataset. We first fine-tune the detector
jointly on the Visual Genome and MSCOCO datasets, refin-
ing the classifiers and regressors, and simultaneously learn-
ing a segmentation network on images in MSCOCO. When
training the scene graph generators, the detector parame-
ters are freezed. Note that for the baselines, the detector is
fine-tuned only on the Visual Genome, and hence no seg-
mentation is learned.
Scene Graph Models. For training the scene graph mod-
els we use an SGD optimizer with an initial learning rate
of 10�2. Following prior works, we integrate the frequency
bias [55] into the training and inference procedure. During
inference, in SGDet task, we filter pairs of objects that do
not have any bounding box overlap for relation prediction.

4. Results

Relationship Recall. We report the mean Recall values
comparing the baseline and proposed method in Table 1. To

ensure a fair comparison, we additionally report the num-
bers obtained via re-implementing the baselines. Note that
in case of MOTIF [55], our re-implementation provides
significantly higher performance compared to the reported
numbers in [55]. For both the MOTIF [55] and VCTree
[45], irrespective of the backbone architecture, we observe
a consistent improvements in the recall rate across all three
tasks when incorporating our proposed approach.

For MOTIF [55], we observe an improvement of 7.0%
on average at mR@20, 50 and 100 across all settings and
backbones. Specifically, on the VGG backbone [41], we
obtain a relative improvement of 6.5%, 5.3%, and 7.7% on
mr@20 across the three tasks. Similarly, for the ResNeXt-
101-FPN [34, 49] backbone, we observe relative improve-
ments of 2.8%, 11.2%, and 10.3% on mr@20. Similarly
for VCTree [45], an average improvement of 12.6% is ob-
served across tasks and backbones. We attribute the per-
formance improvement to the ability of our model to effec-
tively ground objects and relations to pixel-level regions,
thus providing more discriminative features. We provide
additional results and individual relation recall comparisons
in Section C of the supplementary.
Zero-Shot Recall. We report the Zero-Shot Recall value
zsR@20 and zsR@100 in Table 3. We observe an consis-
tent improvement in zero-shot recall when using the pro-
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Figure 3. Qualitative Results. Visualizations of scene graphs generated by using VCTree [45] (in purple) and our approach augmented to
VCTree (in green). The left two images contrast performance on relation retrieval. The right two images contrast performance on zero-shot
relation retrieval, with the zero-shot triplet shown in yellow. Our approach additionally generates pixel-level object groundings.

Model Detector Method PredCls SGCls SGDet

zsr@20/100 zsr@20/100 zsr@20/100

MOTIF†
VGG-16 [41] BL 1.7/6.7 0.2/1.1 0.0/0.4

SG 3.2/9.3 0.4/1.6 0.1/0.5

ResNeXt-101-
FPN [34, 49]

BL 1.9/7.2 0.3/1.2 0.0/0.5
SG 4.1/10.5 0.8/2.5 0.1/1.0

VCTree†
VGG-16 [41] BL 1.8/7.3 0.6/1.8 0.1/0.5

SG 3.5/10.2 0.7/2.4 0.3/0.9

ResNeXt-101-
FPN [34, 49]

BL 1.8/7.1 0.4/1.2 0.1/0.7
SG 4.3/10.6 0.8/2.5 0.3/1.5

Table 3. Zero-Shot Recall on Visual Genome. Results are re-
ported for three tasks across two detector backbones. Our ap-
proach is augmented to and contrasted against MOTIF [55] and
VCTree [45]. † denotes our re-implementation of the methods.

posed scene graph generation framework. Our method out-
performs the baselines by an average of 94.5% and 97.9%
on MOTIF and VCTree respectively.
Segmentation Accuracy. As segmentation annotations are
not present in Visual Genome [24], we evaluate our pro-
posed segmentation refinement on the MSCOCO dataset
[29]. This provides a suitable proxy, wherein segmentation
improvements on the MSCOCO dataset can be translated,
to some degree, on Visual Genome. We report the stan-
dard COCO evaluation metrics, namely AP (averaged over
IoU thresholds), AP50, AP75, and APS , APM , APL (AP
at different scales), on three different scene graph evalua-
tion tasks in Table 2. ‘No Refine’ acts as a strong baseline,
wherein the segmentation masks are generated from the pre-
trained detector. It is evident that our proposed segmenta-
tion refinement improves on mask quality across tasks and
detector backbones. As the ground truth bounding boxes
and labels are available for the Predicate Classification task,
the observed improvement here is the largest (34.6% higher
AP on VGG). Analogously, the observed improvement on
the Scene Graph Generation (SGDet) task is the lowest
(7.3% higher AP on VGG) as any errors made by the pre-
trained detector are forwarded to the scene graph network.
To further highlight the effectiveness of our joint training
approach, we report per-class improvement on AP in Sec-

Scene Graph Classification

Ablation mR@20 mR@50 mR@100 zsr@20/100

Base 8.1 9.9 10.6 0.3/1.2
Joint 8.5 10.5 11.1 0.4/1.5
Joint + OG 9.0 11.1 11.8 0.6/2.1
Joint + OG + EGavg 9.1 11.4 12.2 0.8/2.4
Joint + OG + EGunion 9.1 11.3 12.2 0.7/2.4
Joint + OG + EGGaussian 9.3 11.5 12.2 0.7/2.3
Final Model 9.4 11.6 12.3 0.8/2.5

Table 4. Ablation. Mean Recall (mr) and Zero-shot Recall (zsr)
are reported. VCTree [45] is the base architecture for all methods.
Please refer Section 4 for model definitions.

tion C of the supplementary. Note that no noticeable im-
provement is observed for the SGDet task when using the
ResNeXt-101-FPN [34, 49] backbone. We believe this is a
direct consequence of the backbone using feature pyramid
networks (FPNs) [28] to extract features. As FPNs effec-
tively capture global context using lateral connections, the
detector provides much richer object representations. This
makes the context aggregation in the scene graph network
redundant, making refining segmentation masks harder.
Ablation. We conduct an ablation study over the various
components in our model using VCTree. All models are
trained with the ResNeXt-101-FPN [34, 49] backbone. The
results on the SGCls task are shown in Table 4. ‘Base’ is
defined as the vanilla VCTree model learned over the de-
tector trained only on the Visual Genome dataset. To un-
derstand the effect our joint detector pre-training has on the
overall performance, we define ‘Joint’ as the VCTree model
learned over this jointly pre-trained detector. It can be seen
that just the joint pre-training of the detector provides con-
siderable improvements (5% on mR@20).

We incrementally add components of our proposed ap-
proach to the ‘Joint’ detector to better highlight their im-
portance. ‘Joint + OG’ is defined as the model that uses
the jointly trained detector and the object grounding mech-
anism described in Section 2.4. Similarly, ‘Joint + OG +
EGx’ describes the model that additionally uses our pro-
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posed relation grounding mechanism defined in Section 2.5.
The subscript x in EGx refers to the type of masking mech-
anism used to combine the segmentation masks for a pair
of objects. We experiment with averaging (avg), taking
the logical or (union), and the proposed Gaussian mask-
ing (Gaussian). Finally, our complete model with the ad-
ditional segmentation mask refinement (Section 2.6) is de-
noted as ‘Final Model’. From Table 4 it can be seen that
using both object and relation grounding helps with perfor-
mance, and using a Gaussian masking mechanism is supe-
rior to other alternatives. Additionally, fine-tuning the seg-
mentation masks not only helps improve its quality, but also
provides better scene graph generation performance.
Qualitative Results. We qualitatively contrast the per-
formance of the VCTree model [45] augmented with our
proposed approach against its vanilla counterpart in Figure
3. The two images on the left show results from the relation
retrieval task. Our approach (in green) predicts more granu-
lar and spatially informative relationships standing on
and behind, as opposed to the baseline (in purple) which
is heavily biased towards the more common and less in-
formative relation on. The two images on the right high-
light the ability of our approach to generalize in zero-shot
scenarios. As the triplets of cat with sign are absent
from the training dataset, the baseline approach (in pur-
ple) defaults to predicting incorrect relations of above and
in-front-of. On the contrary, our approach accurately
predicts the correct relation under.

5. Related Work

Scene Graph Generation. Scene graph generation is a
popular topic in the vision community [23, 26, 30, 36, 44,
50, 51, 53, 54, 55]. First introduced in [50], they pro-
posed an iterative message passing module to refine the
features of node and edge prior to classification. Subse-
quent works proposed use of different architectures such as
Bi-directional LSTM [55], Tree-LSTM [45], Graph Neu-
ral Networks [51] and novel message passing algorithm
[27, 38] for representation learning. While improved con-
text aggregation can lead to better scene graph performance,
recent works have focused more on alleviating issue rising
from long tail distribution of relation labels. Tang et al.
[44] propose the use of a causal inference framework to de-
bias the prediction of model obtained from biased training.
Knyazev et al. [23], proposed a graph density aware loss to
address the imbalance in the Visual Genome dataset.
Zero-Shot Segmentation. Zero-shot learning is an ac-
tive area of research in computer vision [9, 48]. The sub-
field of zero-shot segmentation, however, is relatively recent
[2, 13, 14, 20, 21, 58]. A majority of work in this area has
been on zero-shot semantic segmentation [2, 13, 20, 47, 58],
where the aim is correct categorize each pixel in an image.
Zhao et al. [58] propose the open-vocabulary scene parsing

task, wherein hypernym/hyponym relations from WordNet
[35] are leveraged to build label relationships, and subse-
quently segment classes. Bucher et al. [2] combine visual-
semantic embeddings along with a generative model and
classifier to obtain masks for unseen classes. Kato et al.
[20] leverage a semantic to visual variational mapping over
class labels, along with a data driven distance metric, to gen-
erate zero-shot segmentation masks. Hu et al. [13] intro-
duce uncertainty aware losses to mitigate the effect of noisy
training examples for robust semantic segmentation. For the
task of zero-shot instance-level segmentation, Khandelwal
et al. [21] leverage linguistic and visual similarities to learn
a transformation over segmentation heads from classes with
abundant annotations to classes with zero/few annotations.
Multi-task Learning. Multi-task Learning (MTL) involves
optimizing for several tasks simultaneously and transfer-
ring information across task for improved performance [3].
Most methods in MTL [5, 32, 57] learn a shared represen-
tation of layers along with multiple independent classifiers.
Another line of work involves explicitly modelling the the
relation between tasks, either by grouping [17, 19, 25] or in
the form of task-covariance [6, 8, 56].

6. Conclusion

We present a novel model-agnostic framework for seg-
mentation grounded scene graph generation. Contrary to
tradition scene graph generation frameworks that grounds
object in a scene graph to bounding boxes, our proposed
methodology allows for a more granular pixel-level ground-
ing, obtained via a zero-shot transfer mechanism. Our pro-
posed framework leverages these groundings to provide sig-
nificant improvements across various scene graph predic-
tion tasks, irrespective of the architecture it is augmented
to. Finally, we highlight the benefits of simultaneously op-
timizing the tasks of scene graph and segmentation genera-
tion, which leads to improved performance on both.
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Taylor, Aaron Courville, and Eugene Belilovsky. Graph
density-aware losses for novel compositions in scene graph
generation. British Machine Vision Conference (BMVC),
2020.

[24] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, Michael Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. International

Journal of Computer Vision (IJCV), 123(1):32–73, 2017.
[25] Abhishek Kumar and Hal Daume III. Learning task grouping

and overlap in multi-task learning. International Conference

on Machine Learning (ICML), 2012.
[26] Yikang Li, Wanli Ouyang, Zhou Bolei, Shi Jianping, Zhang

Chao, and Xiaogang Wang. Factorizable net: An efficient
subgraph-based framework for scene graph generation. In
Proceedings of the European Conference on Computer Vi-

sion (ECCV), 2018.
[27] Yikang Li, Wanli Ouyang, Bolei Zhou, Jianping Shi, Chao

Zhang, and Xiaogang Wang. Factorizable net: an efficient
subgraph-based framework for scene graph generation. In
Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 335–351, 2018.
[28] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2117–2125, 2017.

15887



[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 740–755, 2014.
[30] Xin Lin, Changxing Ding, Jinquan Zeng, and Dacheng Tao.

Gps-net: Graph property sensing network for scene graph
generation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June
2020.

[31] Chenxi Liu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, and
Alan Yuille. Recurrent multimodal interaction for referring
image segmentation. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), 2017.
[32] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S

Yu. Learning multiple tasks with multilinear relationship net-
works. Advances in Neural Information Processing Systems

(NeurIPS), 2017.
[33] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-

Fei. Visual relationship detection with language priors. In
Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 852–869, 2016.
[34] Francisco Massa and Ross Girshick. maskrcnn-benchmark:

Fast, modular reference implementation of Instance Seg-
mentation and Object Detection algorithms in PyTorch.
https://github.com/facebookresearch/
maskrcnn-benchmark, 2018.

[35] George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

[36] Alejandro Newell and Jia Deng. Pixels to graphs by asso-
ciative embedding. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), pages 2171–2180, 2017.
[37] Jeffrey Pennington, Richard Socher, and Christopher D Man-

ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543,
2014.

[38] Mengshi Qi, Weijian Li, Zhengyuan Yang, Yunhong Wang,
and Jiebo Luo. Attentive relational networks for mapping
images to scene graphs. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3957–3966, 2019.
[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), pages 91–99, 2015.
[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[41] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations (ICLR),
2015.

[42] Mohammed Suhail, Abhay Mittal, Behjat Siddiquie, Chris
Broaddus, Jayan Eledath, Gerard Medioni, and Leonid Si-
gal. Energy-based learning for scene graph generation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 13936–13945, 2021.
[43] Kai Sheng Tai, Richard Socher, and Christopher D. Man-

ning. Improved semantic representations from tree-
structured long short-term memory networks. In Proceed-

ings of the 53rd Annual Meeting of the Association for Com-

putational Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (Volume 1: Long

Papers), pages 1556–1566, Beijing, China, July 2015. Asso-
ciation for Computational Linguistics.

[44] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from bi-
ased training. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages
3716–3725, 2020.

[45] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo,
and Wei Liu. Learning to compose dynamic tree structures
for visual contexts. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
pages 6619–6628, 2019.

[46] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.

[47] Yongqin Xian, Subhabrata Choudhury, Yang He, Bernt
Schiele, and Zeynep Akata. Semantic projection network
for zero-and few-label semantic segmentation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 8256–8265, 2019.
[48] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot

learning-the good, the bad and the ugly. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4582–4591, 2017.
[49] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
pages 1492–1500, 2017.

[50] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.
Scene graph generation by iterative message passing. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5410–5419, 2017.
[51] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi

Parikh. Graph r-cnn for scene graph generation. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 670–685, 2018.
[52] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai.

Auto-encoding scene graphs for image captioning. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 10685–10694,
2019.

[53] Alireza Zareian, Svebor Karaman, and Shih-Fu Chang.
Bridging knowledge graphs to generate scene graphs. In
Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 606–623, 2020.

15888



[54] Alireza Zareian, Zhecan Wang, Haoxuan You, and Shih-Fu
Chang. Learning visual commonsense for robust scene graph
generation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 642–657, 2020.
[55] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin

Choi. Neural motifs: Scene graph parsing with global con-
text. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5831–
5840, 2018.

[56] Yi Zhang and Jeff Schneider. Learning multiple tasks with
a sparse matrix-normal penalty. In Advances in Neural In-

formation Processing Systems (NeurIPS), volume 6, page 2,
2010.

[57] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Facial landmark detection by deep multi-task learning.
In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 94–108, 2014.
[58] Hang Zhao, Xavier Puig, Bolei Zhou, Sanja Fidler, and An-

tonio Torralba. Open vocabulary scene parsing. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion (ICCV), pages 2002–2010, 2017.

15889


