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Abstract

We propose a semantically-aware novel paradigm to per-
form image extrapolation that enables the addition of new
object instances. All previous methods are limited in their
capability of extrapolation to merely extending the already
existing objects in the image. However, our proposed ap-
proach focuses not only on (i) extending the already present
objects but also on (ii) adding new objects in the extended
region based on the context. To this end, for a given im-
age, we first obtain an object segmentation map using a
state-of-the-art semantic segmentation method. The, thus,
obtained segmentation map is fed into a network to com-
pute the extrapolated semantic segmentation and the cor-
responding panoptic segmentation maps. The input image
and the obtained segmentation maps are further utilized to
generate the final extrapolated image. We conduct exper-
iments on Cityscapes and ADE20K-bedroom datasets and
show that our method outperforms all baselines in terms
of FID, and similarity in object co-occurrence statistics.
Project url: https://semie-iccv.github.io/

1. Introduction
Image extrapolation or out-painting refers to the problem

of extending an input image beyond its boundaries. While
the problem has applications in virtual reality, sharing pho-
tos on social media like Instagram, and even generating
scenes during game development especially if the scenes are
repetitive, it is relatively under-explored compared to the
image inpainting counterpart, which has been extensively
researched. Image inpainting solutions based on deep net-
works and generative adversarial networks (GANs), when
applied to the out-painting problem, have been shown to
yield poor results [36]. This has led to researchers explor-
ing and proposing new solutions to the out-painting prob-
lem [47, 41, 38]. However, the solutions have been mainly
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Figure 1. Illustration of our results. Dotted white rectangle refers
to the input image. Our method not only extrapolates the objects
present in the input but also generates new objects (blue bounding
boxes) while maintaining the texture consistency.

restricted to images that involve outdoor domains like natu-
ral scenes where the problem is limited to just extending the
existing textures for ‘stuff’ classes like mountains, water,
trees [11, 36] or single-object images of classes like faces,
flowers, and cars. These methods are not suitable to other
domains like traffic scenes and indoor scenes where a desir-
able image extrapolation necessitates 1) extending not only
the ‘stuff’ classes but also the ‘things’ classes like cars, per-
sons, beds, tables that have very definite structure as well
as 2) adding new objects based on the context that were not
present in the original image. So, why cannot we use the
existing techniques [47, 41, 38, 36] for such domains? The
answer is they fail spectacularly by filling the extrapolated
region with artifacts (see figures 5 and 6). They attempt to
extrapolate the image by capturing the low-level statistics
like textures and colors from the input image while ignor-
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ing the high-level information like object semantics and ob-
ject co-occurrence relationships. In short, they are limited
in their ability to perform satisfactory image extrapolation
that demands the creation of new object instances and the
extension of multiple objects from diverse classes.

We address the shortcomings of the previous works by
extrapolating the image in the semantic label map space,
which enables us to generate new objects in the extrapo-
lated region. Additionally, semantic label maps belong to a
lower dimensional manifold than images, making it easier
to extrapolate them. However, just having a semantic label
map does not allow us to have control over every instance
in the extrapolated image. We propose to generate an es-
timate of the panoptic label directly from the extrapolated
semantic label map, different from [20, 4]. Instance bound-
ary maps obtained from panoptic labels also help in cre-
ating crisper boundaries between objects belonging to the
same semantic category. Unlike semantic label map to im-
age generation [31, 15, 37], we have to maintain texture
consistency between the input region and the extrapolated
output. To account for this, we propose Instance-aware con-
text normalization (IaCN), which leverages the estimated
panoptic label maps to transfer average color information
as a feature map for texture consistency in the extrapolated
object instances. In addition, we propose the use of patch
co-occurrence discriminator [32] to maintain global texture
similarity in input and extrapolated region.

Our contributions can be summarized below:
• We propose a novel paradigm for image out-painting

by extrapolating the image in the semantic label space
to generate novel objects in the extrapolated region.

• We propose the generation of panoptic label maps from
the extrapolated semantic label maps to facilitate the
generation of high quality object boundaries in the ex-
trapolated image.

• We propose Instance-aware Context Normalization
(IaCN) and the use of patch co-occurrence discrimi-
nator to maintain texture consistency of extrapolated
instances.

Through extensive experiments on Cityscapes and
ADE20K datasets, we show that our method outperforms
all previous state-of-the-art methods in terms of FID and
similarity in object co-occurrence metrics.

2. Related Work
Image Extrapolation: Prior works in image synthesis have
had great breakthroughs in image inpainting [25, 42, 44] ,
conditional image synthesis [15, 26, 31, 37, 39], and uncon-
ditional image synthesis [1, 28, 7]. On the contrary, image
extrapolation models have been relatively less successful.
The works on image extrapolation can be broadly classified
on whether they use non-parametric methods or parametric

methods. Several non-parametric methods [8, 9] have been
able to perform only a limited peripheral texture extension.
Furthermore, their heuristics do not capture the variation in
color, texture and the information of shape and structure of
an object. These methods [9] limit themselves to simple
pattern extrapolation and are very brittle to increasing ex-
trapolation. Other classical approaches [3] leverage patch
matching to extrapolate the image. However, these methods
are limited in their ability to generate new objects or hal-
lucinate new textures. With the advent of GAN [10] based
approaches, significant progress has been made in image ex-
trapolation. [47, 41, 36] use a single-stage method to extrap-
olate the input image. Most of these works deal with scene
completion using object completion or merely extending the
significant texture near the image boundary. [38] proposed
a method of feature expansion from input region to predict
context for the extrapolated image, while [12] generates the
extrapolated image by incrementally extending image on
each side using a generated reference image. Consequently,
as we go further from the input boundary, the relative vol-
ume information from input reduces resulting in the gen-
eration of substandard extrapolation. Moreover, all of these
approaches currently lack the semantic understanding of the
scene and semantic structure of objects in the scene.
Semantic Editing for Image Manipulation: Recently,
there have been a few works that manipulate images by edit-
ing in the semantic label space. [2] concentrates on synthe-
sizing images using semantic label space but in an uncondi-
tional setting, where the semantic label space is generated
from scratch from a random seed. [14, 22] proposed meth-
ods to insert an object in an image by editing the semantic
label of the input image, given the class information and
the bounding box of the object. Such methods are unsuit-
able to be adapted for image out-painting as we do not have
the class information and the bounding boxes for the new
objects to be inserted in the extrapolated region. Another
drawback of such methods is that they require as many for-
ward passes as the number of the new objects and hence
are not scalable in terms of time complexity. [30] proposes
to edit an image by allowing the user to provide a seman-
tic guideline of the regions to be manipulated. Different
from the above works, our image extrapolation method au-
tomatically extrapolates the semantic label map of the im-
age without any user input and estimates the corresponding
panoptic label map for the extrapolated image to be gen-
erated. The closest work to ours is an in-painting model,
SPGNet [34] where the hole in an image is firstly filled in
the semantic label space before the final image is gener-
ated. However, unlike SPGNet, we generate an estimate
of panoptic label map, along with the semantic extrapola-
tion, and further leverage it to ensure texture transfer for the
extrapolated instances and sharp instance boundaries in the
final image. We show through experiments that our method
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is significantly better than SPGNet.

3. Our Method
Our goal is to extrapolate a given image X ∈ Rh×w×c

on its periphery using a sequence of deep neural networks.
Y ∈ Rh1×w1×c is the extrapolated image where h1 ≥ h
and w1 ≥ w. Here, c represents the number of channels
corresponding to the image, which is 3 for an RGB image.
The pipeline shown in figure 2 involves four major stages:

• Image segmentation: Generation of semantic label
map from the input image.

• Semantic label map extrapolation: Extend periphery in
the semantic label space.

• Panoptic label generation: The semantic label map is
processed to obtain an apriori estimate of correspond-
ing panoptic label map.

• Instance-aware image synthesis: Generation of image
from the semantic label map and panoptic label map
by leveraging the proposed IaCN module and patch co-
occurrence discriminator.

3.1. Image Segmentation

Given an image X ∈ Rh×w×c, corresponding one-hot
vector for semantic label map L1 ∈ {0, 1}h×w×c1 can be
obtained using state-of-the-art segmentation techniques [48,
35, 4, 46, 43]. For our method, we use PSPNet [48].

3.2. Semantic Label Extrapolation

We train a network, dubbed ‘Peripheral Object Genera-
tion (POGNet)’, GS to semantically extrapolate L1 and ob-
tain an estimate of the semantic label map, L2 of the final
extrapolated image to be generated. In addition to generat-
ing L2, we also output the corresponding instance bound-
ary channel. Although [34] uses input image with semantic
label map to generate extrapolated semantic label map, hav-
ing explicit supervision with ground truth instance bound-
ary map acts as a better regularizer during training for ob-
taining more precise object shapes. POGNet is trained us-
ing a multi-scale discriminator as proposed in [37], enabling
GS to capture the object co-occurrence information at vari-
ous scales.
Adversarial Loss: Instead of regular GAN loss [10], we
use LS-GAN loss [27] (LGAN ).
Focal Loss: We use focal loss to compute the discrep-
ancy between the ground truth semantic label map and the
output of the POGNet. By giving higher weight to hard-
to-generate object classes, focal loss allows us to generate
some of the rare classes. The focal loss between the ground-
truth and the output at any location is given as:

l(z, y) = −y × log(z)

LCE(z, y) = Σh,w,cl(z, y)

LFL(z, y) = Σh,w,cl(z, y)× (1− z)γ

The final focal loss, Lall
FL is given by the sum of focal losses

across all locations in the semantic label map. We use the
following training objective for semantic label map extrap-
olation (we show only the generator losses here):

Lgen = LGAN + LFM + λFLLall
FL + λCELCE , (1)

where LCE is the cross-entropy loss between the ground-
truth instance boundary and the corresponding output chan-
nel in POGNet and LFM is the discriminator feature match-
ing loss. More details can be found in the supplementary.

3.3. Panoptic Label Map Generation

As mentioned earlier, we wish to estimate the panoptic
label maps (for the to-be-generated extrapolated image) that
can be leveraged for IaCN module (discussed in 3.4) as well
as obtain crisp and precise boundaries between the object
instances. Traditionally, the panoptic label maps are gen-
erated from the images. But how do we estimate panop-
tic label maps, apriori, without knowing the image itself?
We adapt the method elucidated in Panoptic-DeepLab [4]
by predicting the class-agnostic pixel-wise instance center
maps and off-set maps from the instance centers for objects
belonging to ‘things‘ classes, directly from the semantically
extrapolated map, i.e the output of POGNet. Specifically,
we train a generator-only network that takes in the extrap-
olated segmentation map and produces heat maps for in-
stance centers and the pixel-wise offsets from the nearest
instance center. The center heat-maps and the offset out-
puts are further processed along with the segmentation map
to obtain the instance maps. The ground-truth center maps
are represented by Gaussian blobs of standard deviation of
8 pixels, centered at the instance centers. We use L2 loss to
compute the instance center loss and L1 loss to compute the
offset losses. The final loss for stage-3 is the weighted sum
of the center loss and the offset losses. During the test time,
we adapt the procedure mentioned by [4] to group the pixels
based on the predicted centers and off-sets to form instance
masks. The instance masks and the semantic label map (the
input to stage-3) are combined by majority voting to obtain
the panoptic label map. An expanded version of the details
of training of the network and post-processing are provided
in the supplementary material.

3.4. Instance-aware Image Synthesis

This is the final stage (stage-4) which converts the ex-
trapolated semantic label map back into a colored image.
This stage takes in input X′(∈ Rh1×w1×c′) (Figure 2),
which is concatenation of the extrapolated semantic label
map obtained from the second stage, the cropped (input)
image, the boundary map obtained using the panoptic label
map obtained from the previous stage and the feature map
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Figure 2. Overview of the pipeline: Stage1: The input image is fed into a pre-trained segmentation network to obtain its label map. Stage2:
The stage 1 output fed into a network to obtain the extrapolated label map. Stage3: The extrapolated label map is fed into another network
to obtain the panoptic label map. Stage4: The input image, extrapolated label map and the panoptic label map are used in conjunction with
Instance-aware context normalization module to obtain the final extrapolated image.

Input Image Image Segmentation Semantic Extrapolation Instance map Generation Final Image Synthesis

(a) (b) (c) (d) (e)

Figure 3. Stage-wise results: The input (cropped) image is converted to semantic label map in stage-1, which is then extrapolated in
stage-2 to form the outpainted semantic label map. Panoptic label maps are generated from this semantic label map in stage-3. The input
image, the (outpainted) semantic label map and the panoptic label map are used to synthesize the final image in stage-4.

obtained using the proposed Instance-aware Context Nor-
malization. The output is an RGB image Y ∈ Rh1×w1×3.

This is different from prior conditional GANs problems
[15, 26, 31, 37] since they synthesize RGB images from se-
mantic label maps, but we have to synthesize RGB images
from semantic label maps, given some pixel information
of the to-be-synthesized RGB image, which is the cropped
image in our case. Here, we have to take care of texture
consistency in the synthesized image while maintaining an
identity mapping from the cropped image to the final image.
To maintain this texture consistency for the extrapolated in-
stances, we concatenate the feature maps to the input, which
are generated using Instance-aware Context Normalisation
module.

Generator
We use SPADE [31] normalization residual blocks for each
of the layers in the generator. We use similar learning ob-
jective functions, as used in SPADE [31] and pix2pixHD

[37]: GAN loss with hinge-term [24, 29, 45] (LGAN ), Fea-
ture matching loss [37] based on the discriminator (LFM )
and VGGNet [33] for perceptual losses [6, 16] (LV GG)

Instance-aware Context Normalization (IaCN)
Outpainting-SRN [38] proposed Context Normalization
(CN) to maintain texture consistency between the inside
(cropped) region and the outside (outpainted) region. It in-
volves transferring the mean feature or color from the inside
region to the outside region. However, we believe that trans-
ferring this input mean color directly to the outside region
is not suitable for images which have very diverse object
instances (like outdoor images, street images).

To this end, we propose Instance-aware Context Normal-
ization (IaCN) (Figure 2), which takes as input the cropped
image and the instance map. IaCN module computes the
mean color using the input (cropped) image for all the par-
tial instances. Partial instances refer to the instances which
get extrapolated in the final image. Since the problem with
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Figure 4. Patch Discriminator: Dpatch takes in input 4 reference
patches, a fake patch and a real patch. The reference patches are
randomly selected from the real image. The fake patch and real
patch are the same patches, randomly selected but made sure that
some part of them is inside while other part is outside, from fake
image and real image respectively. The discriminator tries to dis-
tinguish between fake patch and the real patch, making use of the
reference patches. All the patches are of size 64× 64.

texture consistency occurs only for partial instances, there-
fore we compute features only for them. These computed
feature maps are then concatenated to the input.
Discriminators
We propose to use two discriminators, i) a traditional im-
age discriminator (multi-scale discriminator) that attempts
to differentiate between the real and the fake image, ii) a
patch co-occurrence discriminator similar to [32], which
employed a patch co-occurrence discriminator to ensure
texture transfer [17, 40] from an input image to the target
image to be edited. We employ a similar idea wherein the
region in the image that needs to be extrapolated takes the
role of the target image (equation 2). This facilitates con-
sistent texture transfer from the inside region (source) to the
extrapolated region (target) (illustrated in Figure 4).

LCooccurGAN (G,Dpatch) =

Ex,y[−log(Dpatch(crop(G(x)), crop(y), crops(y)))]
(2)

Here x is the input and y is the corresponding ground-truth
image. crop(y) function takes a random patch from image y
and crops(y) takes 4 random patches from image y, which
serve as the reference patches.

The details of the network architectures for all generators
and discriminators for the various stages are provided in the
supplementary material.
Variational Autoencoder
To ensure appropriate style transfer, we use an encoder
that processes the cropped image, which is then fed to the
generator. We use the encoder used in [31]. This encoder
forms a VAE [19] with the generator. In the objective
function, we add a KL-Divergence Loss term [19] (LKLD).

Final Objective
The training objective is as shown below in equation 3:

min
G

{LGAN + λFMLFM + λV GGLV GG

+ λKLDLKLD + LCooccurGAN}
(3)

4. Experiments
We evaluate the proposed approach on two different

datasets which have a sufficient disparity between each
other to show that our approach is fairly robust and is ap-
plicable to diverse scenes. We utilize the publicly available
Cityscapes [5] and ADE20K-bedroom subset [49] datasets
both of which contain large variety of distinct object cat-
egories. While Cityscapes comprises of outdoor street im-
ages, ADE20K bedroom subset consists of bedroom scenes.
The ADE20K processed subset1 consists of 31 classes in-
cluding bed, lamp, wall, floor and table. Cityscapes con-
sists of 2975 training images and 500 validation images.
Each image has its corresponding semantic label map and
instance label map along with the original image. The bed-
room subset of ADE20K [49] has 1389 images in the train-
ing set and 139 in the validation set. In order to limit the size
of our model, we downsample the images in Cityscapes to
a resolution of 256× 512 and the ADE20K bedroom by re-
sizing all its images to a standard size of 384 × 512 while
training. For both the datasets, the input image is taken as
centre crop of resized image with half the height and width.
Implementation details
We train PSPNet [48] on Cityscapes as well as ADE20K
bedroom subset at the resolution discussed earlier and use
them to generate segmentation maps of the input (cropped)
images. We adopt cGAN based generator for stage1, stage2
and stage4 models similar to SPADE [31]. In stage2 we
replace tanh with sigmoid activation in the final layer to
produce one hot encodings and semantic label map. For
the training of stage2, in our final objective (Eq. 1), we
use λFL = 5, λCE = 5 and γ = 5. For the training of
stage4, we use the same weights for loss terms as [31], i.e.
λFM = 10, λV GG = 10 and λKLD = 0.05 in Eq 3. We
use ADAM solver [18] with β1 = 0 and β2 = 0.9 for both
the stages. The training is done for 200 epochs.
Baselines
We compare our method with various baselines both
in quantitative (with FID and Similarity in Object Co-
Occurrence metrics) and qualitative terms. We compare the
proposed approach with five baselines ‘Outpainting-SRN’
[38], ‘Boundless’ [36], ‘SPGNet’ [34], ‘SPGNet++’ and
partial convolutions (‘PConv’) [25]. ‘PConv’ [25] was orig-
inally proposed for image inpainting, like in [36], we adapt
it for the task of image out-painting in our setting. We also

1To obtain the processed subset, we contacted the authors of [21].
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Input Image PConv Boundless Outpainting_srn OursSPG-Net

Figure 5. Cityscapes dataset: Our method is able to generate new objects in the extrapolated region leading to realistic image extrapolation.
Except ours and SPGNet, all other methods fail to generate new objects in the extrapolated region.

Input Image PConv Boundless Outpainting_srn OursSPG-Net

Figure 6. ADE20K dataset: Our method is able to generate new objects in the extrapolated region leading to realistic image extrapolation.
Only our, all other methods try to copy texture patches from inside region in the extrapolated region.

use SPGNet [34] as a baseline since it also operates in se-
mantic label space but for image inpainting task; but we
adapt it for out-painting task. We create a modified version
of SPGNet, SPGNet++ using [31] base generator and mul-
tiscale discriminator used in our method while retaining the
exact training procedure and loss functions used in [34] and
use it to compare with our method. We train these baselines
on our kind of input-crop (25% of the original image).
Evaluation Metrics
To compare the perpetual quality of the generated RGB im-
age we use Frêchet Inception distance (FID) [13] metric.
However, since we additionally focus on generation of new
objects in the extrapolated region, we also evaluate the re-
sults in semantic label space using similarity in object co-
occurrence (SOCC) statistics [23].

FID: It is a standard metric used to calculate the fidelity
of GAN generated images and provides a measure of the
distance between the generated images and the real images.

SOCC: The co-occurrence measure for two classes ca
and cb can be calculated as the ratio of the number of times
they occur together to the total number of times one of
them occurs in the entire dataset. Let Nca represent the
frequency of a class ca in the input image, and Ncab

be
the number of times there is atleast one instance of class

cb present in the extrapolated region, given ca is present
in the input. The probability of co-occurrence p(ca, cb) of
the two classes can be calculated as Ncab

Nca
. The similarity

in co-occurrence probability of a pair of classes between
generated outputs and the training set, therefore, reflects
the extent of faithful emulation of scene distribution. The
similarity in co-occurrence for class c2 in the output to the
training set, given c1 is present in the output, is defined as
s(ca, cb) = 1 − |ptrain(ca, cb) − pgen(ca, cb)|. The closer
is this score to 1, the greater is the similarity between the
outputs of the model and the training set images.

4.1. Qualitative performance

In figure 3, we show the various stage-wise results of our
pipeline. In figures 5 and figure 6, we compare our results
with the baselines for the Cityscapes and ADE20K dataset
respectively. It can be seen that our method not only extrap-
olates the existing objects, ensuring texture and structural
consistency but is also capable of adding very precise novel
objects, which the baselines fail to do. Almost all the base-
line methods that operate on RGB space (except [34]) have
trivial block like patches in the extrapolated region which is
more noticeable in ADE20K dataset results.
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Method (Bed, Lamp) (Wall, Window) (Bed, Curtain) (Floor, Table) (Wall, Painting)
Outpainting-SRN 0.66 0.82 0.94 0.77 0.64
Boundless 0.79 0.82 0.87 0.75 0.76
Pconv 0.75 0.85 0.83 0.77 0.83
SPGNet 0.77 0.53 0.51 0.84 0.82
SPGNet++ 0.79 0.87 0.85 0.81 0.83
Ours 0.82 0.90 0.84 0.87 0.84

Table 1. Results: Similarity in object co-occurrence scores (higher is better) for our method vs the baselines on ADE20K-bedroom dataset.

Method (Parking, Car) (Person, Person) (Pole, Traffic Light) (Person, Rider) (Car,Sidewalk)
Outpainting-SRN 0.85 0.89 0.68 0.91 0.85
Boundless 0.82 0.89 0.99 0.94 0.82
Pconv 0.83 0.88 0.57 0.9 0.83
SPGNet 0.91 0.84 0.87 0.86 0.91
SPGNet++ 0.94 0.87 0.93 0.94 0.93
Ours 0.96 0.92 0.96 0.96 0.94

Table 2. Results: Similarity in object co-occurrence scores (higher is better) for our method vs the baselines on Cityscapes dataset.

Method Cityscapes ADE20K
Pconv 86.82 147.14
Boundless 77.36 136.98
Outpainting-SRN 66.89 140.98
SPGNet 83.84 197.69
SPGNet++ 52.14 97.23
Ours 47.67 90.45

Table 3. Results: FID scores (lower is better) for our method vs
the baselines on Cityscapes and ADE20K-bedroom dataset.

4.2. Quantitative performance

Table 3 shows the FID scores of our method compared to
the baselines on the two datasets. Note that all these scores
are on the validation split of the two datasets. We outper-
form all the baselines by very significant margins.

Table 2, 1 show the SOCC scores for different pairs of
object classes in both the datasets. Our method is able to
generate results that consistently resemble the object co-
occurrence statistics for most class pairs in the datasets.

5. Ablation study

In this section, we discuss the importance of individual
components of the proposed approaches in our pipeline. Ta-
ble 4 shows the FID scores for variants of our method on
cityscapes dataset.

5.1. Use of Boundary maps as an extra channel for
semantic extrapolation

As discussed in Section 3.2, we use the semantic class
boundary map to enforce the object shape information into

Method FID
SPGNet++ 52.14

Our (base w/o Dpatch w/o IaCN ) 48.77
Our (w/ Dpatch w/o IaCN) 48.72
Our (w/o Dpatch w/ IaCN) 47.76

Our (final) 47.67

Table 4. Ablation: FID ablation study on cityscapes dataset

the network during the training time. In Figure 7, while
other approaches (SPG-Net and SPG-Net++) resulted in
blobs representing newly generated instances, the shapes of
those instances are much better when enforced with bound-
ary maps during training.

5.2. Use of Panoptic label maps (Stage3)

We use the synthesized panoptic label maps to obtain (i)
boundary maps and (ii) the feature maps for IaCN module.
The boundary maps are used to generate crisp boundaries
between instances of the same class (Figure 8).
Use of IaCN module
As discussed in Section 3.4, we use the feature maps gen-
erated by IaCN to preserve the texture of the extrapolated
instances. Figure 9 shows that the relative texture of the ex-
trapolated instances for both ‘things’ (van) and ‘stuff’ (tree)
class are maintained when IaCN is used.

5.3. Use of patch co-occurrence discriminator

Figure 10 shows that sharper images are produced when
patch co-occurrence discriminator is used. It also ensures
much better consistent textures at the boundary of input and
extrapolated regions.

14906



Input Segmentation map SPG-Net SPG-Net++ Ours w/o boundary channel Ours w/ boundary channel

Figure 7. Semantic label extrapolation ablation: Shapes of the extrapolated or newly synthesized instances are more realistic when
boundary channel is used.

(b) Ours w/ instance
boundary map

(a) Ours w/o instance
boundary map

Figure 8. Instance boundary map ablation: Crisp boundaries
between instances are clearly visible in the region highlighted
with white box between (a) 2 cars (Cityscapes) (b) pillows on the
bed (ADE20K), when boundary maps derived from the estimated
panoptic label maps are used. We show the complete extrapolated
image at the top-left of each image.

6. Discussions and Conclusion
We propose a new solution for image extrapolation that

is amenable for adding novel objects as well extending the
existing objects and textures. Our solution distinguishes it-
self from all previous works in the image extrapolation by
extrapolating the image in semantic label space. We show in
the paper that this helps us achieve our objective of adding
new objects. We also propose the generation of panoptic
label maps from just segmentation maps, which enables
us to create multiple instances of the same classes and as
well allow us to have control over the instances thus cre-
ated. We show in our supplementary video how our method
can be recursively applied to generate image extrapolations
of arbitrary dimensions. We hope our work encourages re-
searchers to develop solutions for image editing in semantic
label space.

(a) Ours w/o IaCN (b) Ours w/ IaCN

Figure 9. IaCN ablation: Texture is consistently transferred for
extrapolated instances in the region highlighted with white box in
(a) red van (‘things’ class) (Cityscapes) (b) yellowish-green tree
(‘stuff’ class) (Cityscapes), when IaCN is used. The complete ex-
trapolated image is present at top-left of each image.

(a) Ours w/o Dpatch (b) Ours w/ Dpatch

Figure 10. Dpatch ablation: Sharper images with consistent tex-
ture are produced in the region highlighted with white box in (a)
blue bed-sheet (ADE20K) (b) off-white floor (ADE20K) when
patch co-occurrence discriminator is used.
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