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Abstract

Three dimensional hand pose estimation has reached a level
of maturity, enabling real-world applications for single-hand
cases. However, accurate estimation of the pose of two closely
interacting hands still remains a challenge as in this case, one
hand often occludes the other. We present a new algorithm
that accurately estimates hand poses in such a challenging sce-
nario. The crux of our algorithm lies in a framework that jointly
trains the estimators of interacting hands, leveraging their inter-
dependence. Further, we employ a GAN-type discriminator of
interacting hand pose that helps avoid physically implausible
configurations, e.g. intersecting fingers, and exploit the visibil-
ity of joints to improve intermediate 2D pose estimation. We
incorporate them into a single model that learns to detect hands
and estimate their pose based on a unified criterion of pose
estimation accuracy. To our knowledge, this is the first attempt
to build an end-to-end network that detects and estimates the
pose of two closely interacting hands (as well as single hands).
In the experiments with three datasets representing challenging
real-world scenarios, our algorithm demonstrated significant
and consistent performance improvements over state-of-the-arts.

1. Introduction

Estimating hand pose finds numerous applications including
augmented and virtual reality, sign language recognition,
and gesture-based interfaces. The past decade has observed
significant progress in this field thanks to advances in deep
learning techniques. In particular, for isolated hands, skeletal
pose estimation techniques are mature enough for use in
practical applications. As such, recent effort has focused on
challenging cases where one estimates e.g. the pose of hands
captured in egocentric camera views [28, 54, 13] or interacting
with objects [47, 7, 8, 14, 4], or restores hand shape as well as
their skeletal pose [24, 3, 5, 57]. However, only recently, has
attention been paid to estimating the pose of two interacting
hands. This problem is challenging as interacting hands often
cause severe self-occlusions (see Fig. 1 for examples).

Most existing work in this scenario takes generative, model
fitting-based approaches, e.g. on depth maps [30, 49, 27, 42]

Figure 1: Example hand detection and 3D pose estimation
results on the InterHand2.6M dataset [25]: (Rows 1–2) skeletal
joints (overlaid on the inputs) estimated by Moon et al.’s
state-of-the-art system [25] and ours, respectively. Ours provides
more accurate pose estimation than [25] when two hands closely
interact with each other (last two columns). For interacting
hands, our joint estimation process is guided by the predicted
joint visibility as shown in the third row (yellow: invisible, green
and red: visible). For single-hands, visibility is not estimated
(see supplemental for cases where single-hand joint visibility is
also used). The last row visualizes our results in different views.

or RGB images [52] while very recently, convolutional neu-
ral network (CNN)-based discriminative learning approaches
have been investigated [25, 21]. CNN-based approaches have
been particularly successful in addressing occlusions occurring
in the context of egocentric views or objects under interac-
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tion [28, 54, 13, 47, 7, 8, 14, 4]. However, applying these tech-
niques to cases of interacting hands has been limited due to
the lack of training data: The Ego3D dataset [21] provides syn-
thetic hands of simulated characters from Mixamo while Tzionas
dataset [49] provides few two-hand examples provided with 2D
skeleton annotations. These datasets are limited in their scale, es-
pecially in their coverage of closely interacting hands cases. Re-
cent InterHand2.6M dataset provides million-scale real images
captured by multi-view cameras [25]. Still, closely interacting
cases (with the bounding box intersection over union, IOU score
larger than 0.5) therein are limited to around 18,000 instances.

In this paper, we propose a new CNN-based hand pose
estimation framework. Our system is trained on existing datasets
(Ego3D and InterHand2.6M) containing limited instances of
interacting hands. However, when tested on interacting hands, it
provides an accuracy level comparable to that of state-of-the-art
systems on single-hand pose estimation cases.

Our approach builds upon a hypothesis that the visible hands
contain useful information for inferring the pose of occluded
hands. We experimentally validate this via a statistical test of
independence across the joint positions of closely interacting
hands, and instantiate this into a new framework that leverages
such dependence by jointly estimating their pose. Further, we
exploit the structural dependence of two hands by training a
GAN-type discriminator helping avoid physically implausible
joint hand configurations, e.g. two intersecting fingers. We also
explicitly estimate visibility of the each joint and incorporate
this information to improve 2D pose estimation.

To facilitate the training of the hand pose estimator in this
scenario, we embed a hand detection network into our frame-
work and classify the detected hands into (closely) interacting
and non-interacting (or single-hand) categories, which are
subsequently fed to the respective pose estimators. This enables
us 1) to tailor our hand pose estimation system to challenging
cases of interacting hands (via the pose estimator of interacting
cases) while still retaining state-of-the-art performance on
single-hand cases (via the single-hand pose estimator) and 2)
to train the entire system in an end-to-end manner.

To the best of our knowledge, our system is the first end-
to-end trainable pipeline that performs both detection and pose
estimation of a single- or (two) interacting hands. In the experi-
ments with Ego3D [21], InterHands2.6M [25], and Tzionas [49],
we demonstrate that our joint estimation approach significantly
improves upon 1) the baseline system that independently
estimates hands and 2) state-of-the-art pose estimation systems.

2. Related work
Pose estimation of single (isolated) hands. Three-
dimensional pose estimation of single hands has made
significant progress in the past few years, either based on depth
maps [56, 29, 43, 50, 29, 55, 23, 34, 55, 2, 51, 1] or RGB
images [16, 6, 58, 17]. Depth-based 3D hand pose estimation
has been especially successful thanks to the rich 3D information

captured by depth maps [55]. Automatic data collection and
synthesis pipelines [56, 8] further help achieve high-levels of
accuracy. In the RGB domain, automatic data generation has
been more challenging: Synthetic datasets often exhibit visible
gaps to real-world data [34, 26, 38]. Recent attempts to acquire
quality 3D annotations exploited multi-view and/or temporal
information [12, 59, 39, 20]: Simon et al. [39] pioneered
collecting hand pose annotations enforcing label consistency
in a multi-camera setup [17] while Zimmermann et al. [59]
collected 3D annotations using eight multi-view RGB cameras.
In [12], Hampali et al. proposed a fully-automatic data collec-
tion pipeline involving 5 RGBD cameras and sptaio-temporal
consistency. Further, differentiable renderers and perspective
models [5, 9, 14, 22] have enabled training CNNs for 3D mesh
reconstruction from single RGB images without requiring ex-
plicit 3D mesh supervision. They typically use 2D/3D skeletons
and 2D segmentation masks as weak-supervision signals.

Existing methods can also be categorized into generative and
discriminative approaches: Generative approaches optimize the
parameters of 3D models (e.g. MANO [37]) to explain the input
point clouds and depth values [48, 46, 37, 44, 41, 36, 31]. In the
RGB domain, the 3D model is fit to intermediate representations
such as 2D skeletons [32]. Most of generative approaches, how-
ever suffer from local optima or slow convergence speed. With
the advent of CNNs and large-scale datasets [39, 55, 45, 55],
discriminative methods have shown promising results proving
powerful alternatives to generative approaches. More classical
approaches including the iterated closest point and random
forests-based methods can be found in [33, 18].

HPE for interacting hands. Only few existing work
has considered the pose estimation of interacting
hands [30, 49, 27, 52, 25, 21, 42, 40]. Oikonomidis et
al. [30] pioneered this domain by fitting 3D models to inter-
acting hands captured in RGBD sequences. Sridhar et al. [40]
aligned 3D articulated Gaussian mixtures to hands interacting
with objects. Tzionas et al. [49] constructed a database provided
with 2D annotations, and developed a generative model that uses
discriminatively detected salient points. Their approach requires
either single RGBD images or multi-view RGB images.

Taylor et al. [42] proposed to combine CNNs and random
forests for estimating palm orientations and hand segmentation
masks to fit 3D models. Mueller et al. [27] constructed a new
depth map dataset and presented a two-hand pose estimation
pipeline that fits the MANO hand model [37].

Recently, Wang et al. [52] proposed a singe RGB image-
based approach that fits the MANO model to estimated 2D
segmentation masks and 2D skeletons. Moon et al. [25] pre-
sented the InterHand2.6M dataset containing millions of frames
including closely interacting hands. Based on this dataset, they
trained a new CNN pose estimator InterNet tailored for two
interacting hands. This provides state-of-the-art performances
on Ego3D and InterHand2.6M. As their architecture does not
incorporate the hand detection capability, it requires an external
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Figure 2: A schematic diagram of the training process of our end-to-end hand detection and 3D pose estimation framework. Our system
first detects hands, extracts features therein, and classify them into three handedness classes: ‘left’ and ‘right’, and ‘interacting’ hands
(fDet). For single-hand cases (‘left’ and ‘right’), the corresponding 3D pose is independently estimated by applying a 2D joint heatmap
estimator fSH2D followed by a 3D depth estimator fSZ3D, each supervised by the respective losses L2D and L3D. For interacting hands,
fDet generates a single feature map that encodes both hands. These features are fed to the 2D joint heatmap estimator fTH2D, joint
visibility estimator fTJVE, visibility-guided heatmap enhancer fTVHE, and 3D depth estimator fTZ3D guided by the respective skeletal
joint position losses L2D and L3D, visibility loss LV, plus the supervision LD coming from a GAN-type joint hand pose discriminator.
This structure helps the entire pipeline exploit 1) the statistical dependence (via joint training) and 2) structural dependence (via GAN
discriminator) of two interacting hands. The black and green arrows denote the forward pass and supervision signals, respectively.

hand detector. In [21], Lin et al. proposed a pipeline combining
the detection and pose estimation of two hands. However, their
detection step is based on segmentation masks and therefore,
the entire pose estimation pipeline is not end-to-end trainable. In
the experiments, we demonstrate that our approach significantly
outperforms these state-of-the-art approaches.

3. End-to-end detection and pose estimation of
interacting hands

Problem definition and motivation. Our system receives
an input RGB image of arbitrary size and generates the 3D
joint positions of hands appearing therein. While the system
can detect and estimate the pose of arbitrary number of hands
(e.g. when multiple people appear in the input image), our
experiments will focus on cases where only one or both hands of
a person appear in each image. In this case, our system generates
one (for single-hands) or two (for interacting hands) vectors of
size J×3 with J being the number of joints encoding the pose
of a hand. We fix J at 21 throughout the entire experiments.

Estimating hand pose becomes especially challenging when
they closely interact with each other: In such cases, one hand
often occludes the other as exemplified in Fig. 1. Our approach
to face this challenge is to exploit the information of visible
hands to improve the estimation of their occluded counterparts.

Dependence of interacting hands. We performed prelimi-
nary experiments to verify the hypothesis that the 3D pose of vis-
ible hands communicate relevant information about the occluded

hand pose: A statistical test of independence of two interacting
hand joints was conducted based on the Hilbert-Schmidt inde-
pendence criterion (HSIC) [11] of two random vectors each en-
coding the pose of a hand. The bounding box of each hand is cen-
tered to remove the effect of spurious dependence caused by sim-
ilar absolute joint positions. With 95% quantile of the null distri-
bution (independence hypothesis), our test provided a strongly
positive answer (33 times higher test statistics value than the pass
threshold, indicating high certainty; see [11] for details). The
same independence test applied to cases where two hands do not
interact closely (i.e. when their IOU score is 0) also turned out
to be positive but with much lower certainty: The test statistics
value was only 1.56 times larger than the pass threshold.

Overview of detection and pose estimation networks. We
exploit the underlying statistical dependence of two closely
interacting hands by jointly training the corresponding pose
estimators: By sharing the early layers, our pose estimation
networks (for left and right hands) implicitly capture and take
advantage of such dependence. This makes our framework
an instance of multi-task learning. However, the results of our
test above also indicate that statistical dependence is weaker
when visible hands do not closely interact. We observed that
incorporating such cases into joint training can degrade the
performance (see the accompanying supplemental document
for the corresponding experiments). Therefore, we classify each
input instance into two categories 1) (closely) interacting and 2)
non-interacting hands based on the IOU of the hand bounding
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boxes. For interacting cases, the pose estimators are jointly
trained and tested while for non-interacting hands, single-hand
pose estimators are individually applied similarly to existing
hand pose estimation approaches. To facilitate this process, our
system incorporates a hand detection network.

For interacting hands, we also take account of their structural
dependence by simultaneously training a GAN-type skeletal
pose discriminator. This helps prevent generating physically
implausible joint configurations (e.g. two intersecting fingers).

The entire system is trained in an end-to-end manner
streamlining the training of all network components in a single
unified manner. Figure 2 shows an overview of our framework.

3.1. Network architectures

Our system f consists of a hand detector fDet and pose esti-
mator fHPE: f=fHPE◦fDet. The hand detector fDet :X→F×
H1 receives an input image x∈X and generates 28×28×256-
dimensional feature maps of localized hands {fi}⊂F and their
handedness {hi}⊂H (‘left hand’, ‘right hand’ and ‘two (inter-
acting) hands’). If the detected hands are interacting, fHPE jointly
estimates two J×3-sized pose vectors (y’s). For other cases,
fHPE independently generates a single pose vector y per hand.

3.1.1 Hand detection network fDet

Our hand detector combines a feature extraction network fFeat,
hand proposal network fHPN, hand classification and box
generation network fCB, and region of interest (ROI) feature
pooling network fFP [35]: fDet =[fFP,fCB◦fFP]◦fHPN◦fFeat.
We employ the ImageNet pre-trained ResNet-50 [15] for
feature extraction: fFeat receives an image x of size H×W and
generate ⌊H/32⌋×⌊W/32⌋×2,048-sized global feature map
g. Taking g as input, fCB◦fFP◦fHPN estimates the handedness
h. In parallel, fFP extracts a 28×28×256-sized local feature
representation f for each bounding box proposed by fHPN [35].

Hand proposal network fHPN. We adopt the Faster R-CNN
approach representing object bounding box proposals based
on anchor boxes of different aspect ratios as references [35]. It
is jointly trained with the feature extractor fFeat by minimizing
the loss below defined per image:

LHPN(fHPN,fFeat)=
1

NCls

∑
i

LCls(pi,p
∗
i )

+
1

NREG

∑
i

p∗iL
Reg(ti,t

∗
i ), (1)

where ti is a vector of four variables representing the i-th
box proposal. To facilitate training, fHPN also estimates
auxiliary variables {pi} representing the probability that the
corresponding box proposals contain hands: For this, the

1This is a slight abuse of notation: The range of fDet is actually the power
set 2F×H of F×H as it can generate more than one detections.

ground-truth labels {p∗i } are determined as p∗i = 1 when ti
overlaps significantly with a ground-truth hand box (i.e. the
IOU score is higher than 0.7) and p∗i = 0, otherwise. LCls

is the standard cross-entropy loss and LReg is the smooth
approximation of L1 loss proposed in [10]. p∗i is multiplied
to the second term as LReg is used only when ti overlaps with
a ground-truth. The balancing parameters NCls and NREG are
fixed at 256 and 240, respectively, following [35].

Hand classification and box generation network fCB. This
1) generates hand bounding boxes by selecting from and
refining the box proposals of fHPN and 2) determines the
class of each output box as ‘left hand’, ‘right hand’ or ‘(two)
interacting hands’. As many bounding boxes proposed by fHPN

do not actually contain any hand, we introduce an additional
‘background’ class to facilitate the training of fCB. During
training, it minimizes

LHand(fCB,fFeat)=1HandL
Reg(t,t∗)+LCls(pc,p

∗
c), (2)

where pc and p∗c are the predicted and ground-truth class proba-
bilities (of four class including ‘background’), respectively, and
1Hand is the indicator variable of three hand classes, i.e. LReg is
not applied for ‘background’ boxes. The ground truth p∗c is deter-
mined based on the hand IOU: If the IOU of the two hand boxes
is larger than a threshold τ , it is classified as ‘interacting’ hands.

Discussion. both fHPN and fCB predict bounding box
locations and their classes. They differ in that fHPN classifies
boxes into ‘background’ or ‘hand’ class, while fCB classifies
bounding boxes into single hands or interacting hands. Also,
fCB is designed to improve the initial bounding boxes obtained
from the fHPN (similarly to Faster-RCNN).

Determining the τ value is crucial: In training, the value
of τ determines the size of the training set for the joint pose
estimators: Large τ-values lead to small training sets focusing
on challenging closely interacting cases. On the other hand,
small τ values will offer large training sets, but they might
include loosely interacting (easy) cases. We observed that
τ=0.3 provides a good trade-off between rich and focused (on
challenging cases) training sets. For testing, τ value was more
conservatively determined at 0.5. The effect of varying τ values
are provided in the supplemental material.

3.1.2 Hand pose estimation network fHPE

This consists of two sub-networks fSHPE and fTHPE tailored for
single-hand (‘left’ or ‘right’) and interacting hands, respectively.

Single-hand 3D pose estimation network fSHPE. This net-
work combines a 2D heatmap estimator fSH2D :F→M and a
3D depth value estimator fSZ3D : [F,M ]→Z. The heatmap esti-
mator fSH2D converts the input feature map f to J 2D heatmaps
of size 28×28 each specialized on a skeletal joint. The resulting
combined heatmap m∈RJ×28×28 and f are fed to fSZ3D to
estimate a depth map vector z: [z]i corresponds to the i-th joint.
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(a) Without LD (b) With LD (c) Ground-truth

Figure 3: Example hand pose estimation results of our system
trained (a) without and (b) with the hand pose discriminator
loss LD (Eq. 6). Hand regions are cropped for improved
visualization. Without LD, our system can sometimes generate
physically implausible configurations as shown in (a): (top)
thumb and index finger intersect (bottom) third and middle
finger intersect. Such configurations are detected and penalized
by the discriminator dTHPE providing the corresponding
supervision signal via LD, helping correct such cases (b).

The final J skeletal joints {(xi,yi,zi)}Ji=1 are obtained by com-
bining the peak location (x,y) of each 2D heatmap in m with z.

Interacting hand pose estimation network fTHPE. This
consists of a 2D heatmap estimator fTH2D and a 3D depth
estimator fTZ3D. The size of fTHPE’s output is twice that of
fSHPE as the former generates the skeletal joints of two hands.

2D heatmap estimation networks fSH2D and fTH2D. These
consist of nine 2D convolutional layers each accompanying a
ReLU activation. For training, we use the standardL2 losses:

L2D(fSH2D)=∥fSH2D(f)−mSGT∥22,
L2D(fTH2D)=∥fTH2D(f)−mTGT∥22, (3)

where mSGT and mTGT denote ground-truth heatmaps of
single-hand (of size J×28×28) and interacting hands (of size
2×J×28×28).

Joint visibility estimation network fTJVE and visibility-
guided heatmap enhancement network fTVHE. Our joint
visibility estimate v∈V is a 42-dimensional vector each taking
values in [0,1] representing the visibility of the corresponding
joint. The joint visibility estimation network fTJVE : F → V
estimates v and the visibility-guided heatmap enhancement net-
work fTVHE :F×M→M receives v and improves the initial
heatmaps m by weighting them with the predicted visibility
v. These networks are trained based on the L2 losses:

LV(fTJVE)=∥fTJVE(f)−vTGT∥22,
L2D(fTVHE)=∥fTVHE(f,v⊙m)−mTGT∥22, (4)

where v ⊙ m denotes the heatmaps each weighted by the
corresponding visibility value. Weighting the visibility in this
way helps fTJVE focus on more reliable estimates, as joints with
high visibility v get more accurate heatmaps m. The details
of constructing the (pseudo) visibility ground-truths vTGT are
presented in the supplemental.

3D depth estimation networks fSZ3D and fTZ3D. Both
networks consist of two convolutional layers with ReLU ac-
tivations followed by two fully connected layers with sigmoidal
activations. Using sigmoid ensures that the output depth values
lie in the normalized interval of [0,1]. Both networks receive the
concatenation of holistic image features f and the corresponding
2D heatmaps m. Before training, we normalize the 3D joint
values to [0,1] and locate the Metacarpophalangeal (MCP) joint
of the middle finger at (0.5,0.5,0.5). The networks are trained
based on the L2 losses:

L3D(fSZ3D)=∥fSZ3D([f,m])−zSGT∥22,
L3D(fTZ3D)=∥fTZ3D([f,m])−zTGT∥22 (5)

with zSGT and zTGT being the corresponding singe-hand and
two-hand ground-truths. The detailed architectures of fSH2D

and fSZ3D are provided in the supplemental.

Interacting hand pose discriminator dTHPE. While training
the hand pose estimator fTHPE jointly on interacting hands helps
exploit their underlying statistical dependence, it sometimes
generates physically implausible configurations (Fig. 3a). We
account for this deficiency by capturing the structural depen-
dence via a GAN-type joint hand pose discriminator dTHPE. As
our interacting hand pose estimation network fTHPE consists
of two sub-networks fTH2D and fTZ3D, we decompose dTHPE

into the corresponding discriminators: The heatmap discrim-
inator dTH2D : M → [0,1] differentiates real heatmaps from
those synthesized by fTH2D while the 3D pose discriminator
dTZ3D :Y → [0,1] distinguishes real 3D skeletons from the esti-
mated ones constructed by combining m and z. Our discrimina-
tor dTZ3D sees the entire 3D joints y instead of only their depth
parts z. This provides a better context to dTZ3D: The depth values
by themselves do not provide enough information to check the
realism. It should be noted that dTZ3D cannot provide supervision
to the heatmap estimator fTH2D as thex−y values detected from
the 2D heatmaps are non-differentiable, hence we use dTH2D.

3.2. Training

Our network f is trained by minimizing a combination of
the losses for sub-networks (Eqs. 1–5):

L=LHPN(fHPN,fFeat)+LHand(fCB,fFeat)

+L2D(fH2D,fTVHE)+λ1L
3D(fZ3D)

+λ2L
D(fTH2D,fTZ3D,fTVHE)+λ3L

V(fTJVE), (6)

where the loss LD represents supervision provided by the
interacting hand pose discriminator dTHPE. The weighting
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parameters λ1, λ2, and λ3 are determined at 30, 0.01 and 1,
respectively based on cross-validation on the InterHand2.6M
dataset. Similarly to the Faster-RCNN training scheme [35],
we alternate between the updates of 1) the feature extraction
network fFeat and hand proposal network fHPN (via LHPN) and
2) the feature extraction network fFeat and hand classification
and box generation network fCB (via LHand), both followed by
the update of fHPE using L2D, L3D, and LD.

We observed that the hand detection network fDet converges
faster than the hand pose estimation network fHPE and thus, we
freeze the weight of fDet after 5 out of 10 total epochs, to speed
up the training process.

Data augmentation. We enlarged the original training dataset
by applying the standard data augmentation steps including
1) translation up to 10 pixels (within 10% of the ground-truth
box sizes), 2) rotation within [−45,45] degrees, 3) horizontal
flipping, 4) brightness and saturation changes in [−20%,60%]
and [−10%, 20%] of the original values, respectively. The
resulting dataset is around four times larger than the original set.

Implementation details. Python and PyTorch library are used
for our implementation.2 All network weights were initialized
by sampling from i.i.d Gaussian distribution with mean zero and
standard deviation 0.001. For optimization, we use the Adam
optimizer [19] with the initial learning rate of 0.001 and its
default parameter β=(0.9,0.999). The size of mini-batch and
the number of total epochs were fixed at 3 and 10, respectively.

4. Experiments
Datasets. We evaluated our method on three challenging
datasets containing two-hands interaction cases: Ego3D [21],
InterHand2.6M [25] and Tzionas [49] datasets.

For Ego3D, we adopted their ‘Static’ evaluation proto-
col [21] having 50,000 training and 5,000 testing images. It
provides 3D ground-truth annotations of 21 skeletal joints (1 for
wrist and 4 for each finger). For each data instance, the x−y-
coordinate values (the height and width of the image pane) were
normalized to [0,1] while its z-value was scaled such that the
bone length between the wrist and middle MCP becomes 10cm.

InterHand2.6M (v0.0) is the first realistic dataset having
RGB and 3D pose annotations for two-hand interactions. It
contains 2.6 million 512×334-sized images of 26 subjects (7
females, 19 males). We use the ‘Train (H)’ protocol suggested
by the authors of this dataset [25]: Total 284,716 images
(76,445 isolated hands and 208,271 interacting hands) were
used for training while 66,722 image were used for testing
(18,399 single-hands and 48,323 interacting hands).

For testing on Tzionas [49], we used their 7 two-hand
sequences containing 1,307 frames total. Since this dataset does
not have a separate training set, we applied our system trained
on InterHand2.6M.

2Our code builds upon the Faster R-CNN implementation provided by detec-
tron2: https://github.com/facebookresearch/detectron2

Baselines and evaluation metric. We compare with 3
state-of-the-art hand pose estimation approaches that are
explicitly designed for interacting hands: Moon et al.’s
InterHand2.6M-based system [25], Lin et al.’s global two-hand
pose estimation approach based on Ego3D [21], and Wang et
al.’s model-based approach [52]. To assess the performance
of our algorithm when applied to single-hand cases, we also
compare with Wei et al.’s convolutional pose machine [53] (for
2D hand pose only) and Boukhayma et al.’s joint hand pose
and mesh estimation approach [5].

For all baselines that we compare with, we show the results
reported in the respective publications. Our results are obtained
based on the same training and testing set splits making
direct comparisons possible (per dataset; shown shortly).
However, only [21, 52] and ours provide the explicit hand
detection capability while the remaining algorithms assume
that each input image focuses on individual hands. For the latter
approaches ([25, 5, 53]), the reported results were obtained
based on hand-focused images cropped using the ground-truth
bounding box annotations.

For evaluation, three error measures were used: 3D end
point error (EPE) and mean per joint position error (MPJPE)
both in mm unit, and 2D end point error (EPE) in pixel unit.
For Ego3D [21], 2D and 3D EPEs were used as in [53, 25, 21].
For InterHand2.6M, MPJPE was used following [25]. Tzionas
offers only 2D annotations for every 5 frames, therefore we
used 2D EPE to facilitate direct comparisons with [25, 5, 52].

Results. Table 1 summarizes the results. The previous
state-of-the-art results on Ego3D were reported by Moon et
al. [25] (in 3D EPE) and Wei et al. [53] (in 2D EPE). Our
algorithm achieved significant performance improvements from
these results (by 3.93% and 32.49% reduction of error rates,
respectively). It should be noted that Moon et al.’s algorithm
used the ground-truth hand bounding box annotations at testing
while ours achieved lower error rates even without relying on
such annotations. Wei et al.’s [53] approach is designed for 2D
hand pose estimation: For comparison in 2D, we projected the
initial 3D pose estimation results onto the image pane.

Our algorithm also improved Moon et al.’s state-of-the-art
results on InterHand2.6M by 4.05%. For Tzionas, the previous
best results were achieved by Boukhayma et al.’s approach [5].
Ours outperformed theirs by 3.80%. Overall, ours consistently
ranked best across all datasets.

Apart from our algorithm, Moon et al.’s approach ranked
the best on both Ego3D and InterHand2.6M [25]. We also
made an attempt to compare with this approach on Tzionas
using their publicly available code and network weights:3 The
corresponding results (Table 1) indicate that our approach
provide much more stable performance across different datasets.

Figure 4 shows example images and the corresponding
hand pose estimation results of Moon et al.’s algorithm [25]

3https://github.com/facebookresearch/InterHand2.6M
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(a) Moon et al. [25] (b) Ours (c) Ground-truths (d) Moon et al. [25] (e) Ours (f) Ground-truths

Single-hand Interacting hands

Figure 4: Example hand pose estimation results on Tzionas (top), Ego3D (second row), and InterHand2.6M (last two rows):
Hand regions are further cropped for improved visualization. Our system automatically detects hands in each input image. The
accompanying supplemental provides additional examples.

(using their code) and ours on single- and interacting-hands
cases. Both Moon et al.’s approach and our algorithm generated
highly accurate pose estimates for single-hand cases. However,
for interacting hands, severe occlusions can pose significant
challenges even for state-of-the-art Moon et al.’s approach
(fourth-column in Fig. 4). By exploiting the dependence lying in
interacting hands and thereby jointly training the corresponding
estimators, our approach can provide higher quality estimates.

The hand detection accuracy was measured at the mean AP
of 98.62 on InterHand2.6M. For handedness classification and
joint visibility estimation, the average classification accuracies
were 97.64% and 78.38%, respectively.

We used the joint visibility only at interacting hands as
constructing the ground-truth visibility can be challenging for
single-hands. Our supplemental document shows that when
available, such joint visibility can lead to a slight performance
gain for single-hands.

Ablation study. We assessed the contributions of the inter-
acting hands-specific designs in our system: We constructed

four variations of our original system by 1) removing the
contribution of the GAN discriminator LD in Eq. 6, denoted as
‘Ours (−LD)’, 2) further removing the joint visibility estimation
and visibility-guided heatmap enhancement networks (‘Ours
(−LV,LD)’), and 3) completely removing the joint training of
instances that belong to interacting hands class denoted as ‘Ours
(−Interaction, LD)’. These variations remove the capabilities
of capturing structural and statistical dependence of interacting
hands from our final system. We also assessed the effectiveness
of our end-to-end hand detection and pose estimation design via
4) a system that constructs and freezes the hand detector before
the training of the pose estimator (‘Ours (Separate detection)’).

We assessed their performances in two test cases of Inter-
Hand2.6M: The first case focuses on a subset containing only
closely interacting hands (with the corresponding IOU score
less than τ) while the second evaluates on the entire dataset.
Table. 2 shows the results. The results for closely interacting
cases demonstrate that our GAN discriminator, visibility-guided
heatmap enhancer, and joint training (of interacting hands)
strategy collectively and individually contribute to improving
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Table 1: Error rates of different hand pose estimation approaches. The best and second best results are highlighted in blue and green,
respectively. The algorithms marked with ‘✓’ on Box inf. column provide the hand detection capability. For the other algorithms
(with ✗), the bounding boxes of hands in each image were generated based on the ground-truth box labels. The results of Moon et
al.’s algorithm on Tzionas was obtained using code publicly available by Moon (see text for details).

Method Box inf. Ego3D [21] InterHand2.6M [25] Tzionas [49]

2D EPE (px) 3D EPE (mm) MPJPE (mm) 2D EPE (px)
Wei et al. [53] ✗ 7.11 N/A N/A N/A
Lin et al. [21] ✓ 8.11 17.42 N/A N/A
Boukhayma et al. [5] ✗ N/A N/A N/A 12.91
Wang et al. [52] ✓ N/A N/A N/A 13.31
Moon et al. [25] ✗ N/A 12.20 12.58 17.61
Ours ✓ 4.53 11.63 12.08 12.42

Table 2: Performances (MPJPE in mm) of alternative design
choices of our algorithm on InterHand2.6M. For interacting
hands, the error rates measured at only visible joints are also
shown in parentheses (calculated using the joint visibility
ground-truths which are available only for interacting hands).

Method MPJPE

Entire dataset

Ours (−Interaction, LD) 12.39
Ours (−LV,LD) 12.23
Ours (−LD) 12.17
Ours (Separate detection) 13.69
Ours 12.08

Only ‘interacting hands’ cases

Ours (−Interacting class, LD) 14.36 (14.16)
Ours (−LV,LD) 12.95 (12.47)
Ours (−LD) 12.39 (11.93)
Ours (Separate detection) 12.48 (12.04)
Ours 11.52 (11.11)

the performance. The corresponding accuracy improvements on
the entire dataset are less pronounced since all four algorithms
generate the same outputs for single-hand cases. It should be
noted that the average error rate of our final algorithm on inter-
acting hands is only 0.8% higher than that of the entire dataset
indicating that our algorithm achieves similar levels of accuracy
for single-hand and more challenging interacting hands cases.

5. Conclusion and discussion
Hand interactions pose a major challenge to pose estimation

due to severe occlusion of one hand by the other. We empirically
verified our conjecture that the information of visible parts of
interacting hands can help infer the pose of occluded hands: Our
pose estimation network is trained to jointly estimate the pose
of two interacting hands exploiting the underlying statistical
dependence as well as the visibility of individual joints. We

further enhanced the structural consistency of the estimated
hand joints using a GAN-type discriminator. Our algorithm
is instantiated as a new end-to-end network that automatically
detects and estimates the pose of hands on arbitrary RGB
images. Evaluated on three challenging datasets representing
real-world scenarios, our algorithm demonstrated significant
performance improvements over state-of-the-art approaches
(either specialized on interacting hands or single hands).

Our GAN discriminator sees only skeletal joints. While this
helps avoid generating physically implausible skeletal configura-
tions, it cannot directly capture the mechanics of interacting hand
surface geometry, e.g. skin deformations, which can provide ad-
ditional information for the pose of occluded hands. Future work
should explore the possibilities of estimating and leveraging
hand shape (meshes) e.g. by fitting MANO model [37] as well
as their dynamics e.g. by employing recurrent neural networks.

Our statistical dependence test across the joint positions of
interacting hands further supports the hypothesis that visible
hands contain useful information about the pose of occluded
hands. However, it is possible that our test reflects spurious
correlations which might exist even between non-interacting
hands. Such a possibility could be ruled out based on exper-
iments on datasets that record hands of multiple persons. Future
work should also investigate this, as well as the possibility of
applying our approach to estimating the poses and shapes of
hands and objects under interaction.

Acknowledgments

This work was supported by the NRF grants
(No. 2021R1F1A1047920 and No. 2021R1A2C2012195) and
IITP grants (No. 2020–0–01336, AIGS of UNIST, No. 2021–0–01778,
Development of human image synthesis and discrimination technology
below the perceptual threshold, No. 2020–0–00537, Development of
5G based low latency device - edge cloud interaction technology, and
No. 2021–0–00537, Visual Common Sense Through Self-supervised
Learning for Restoration of Invisible Parts in Images), all funded by
the Korea government (MSIT).

11196



References
[1] Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek,

Shreyas Hampali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie,
MingXiu Chen, Boshen Zhang, Fu Xiong, et al. Measuring
generalisation to unseen viewpoints, articulations, shapes and
objects for 3d hand pose estimation under hand-object interaction.
In ECCV, 2020. 2

[2] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Augmented
skeleton space transfer for depth-based hand pose estimation. In
CVPR, 2018. 2

[3] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Pushing
the envelop for RGB-based dense 3D hand pose estimation via
neural rendering. In CVPR, 2019. 1

[4] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Weakly-
supervised domain adaptation via GAN and mesh model for
estimating 3D hand poses interacting objects. In CVPR, 2020. 1, 2

[5] Adnane Boukhayma, Rodrigo de Bem, and Philip H. S. Torr. 3D
hand shape and pose from images in the wild. In CVPR, 2019.
1, 2, 6, 8

[6] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan. Weakly-
supervised 3d hand pose estimation from monocular rgb images.
In ECCV, 2018. 2

[7] Enric Corona, Albert Pumarola, Guillem Alenya, Francesc
Moreno-Noguer, and Gregory Rogez. GanHand: Predicting
human grasp affordances in multi-object scenes. In CVPR, 2020.
1, 2

[8] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and
Tae-Kyun Kim. First-person hand action benchmark with RGB-D
videos and 3D hand pose annotations. In CVPR, 2018. 1, 2

[9] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying
Wang, Jianfei Cai, and Junsong Yuan. 3D hand shape and pose
estimation from a single RGB image. In CVPR, 2019. 2

[10] Ross Girshick. Fast R-CNN. In ICCV, 2015. 4
[11] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bern-

hard Schölkopf. Measuring statistical dependence with
Hilbert-Schmidt norms. In ALT, 2005. 3

[12] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vincent
Lepetit. HOnnotate: A method for 3D annotation of hand and
objects poses. In CVPR, 2020. 2

[13] Shangchen Han, Beibei Liu, Randi Cabezas, Christopher D.
Twigg, Peizhao Zhang, Jeff Petkau, Tsz-Ho Yu, Chun-Jung Tai,
Muzaffer Akbay, Zheng Wang, Asaf Nitzan, Gang Dong, Yuting
Ye, Lingling Tao, Chengde Wan, and Robert Wang. MEgATrack:
monochrome egocentric articulated hand-tracking for virtual
reality. In SIGGRAPH, 2020. 1, 2

[14] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kalevatykh,
Michael J. Black, Ivan Laptev, and Cordelia Schmid. 3D hand
shape and pose estimation from a single RGB image. In CVPR,
2019. 1, 2

[15] Kaming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016. 4

[16] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen Gall,
and Jan Kautz. Hand pose estimation via latent 2.5D heatmap
regression. In ECCV, 2018. 2

[17] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain
Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh.

Panoptic studio: a massively multiview system for social motion
capture. In ICCV, 2015. 2
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