
Online-trained Upsampler for Deep Low Complexity Video Compression

Jan P. Klopp
National Taiwan University

kloppjp@gmail.com

Keng-Chi Liu
Taiwan AI Labs

calvin89029@gmail.com

Shao-Yi Chien Liang-Gee Chen
National Taiwan University

sychien@ntu.edu.tw lgchen@ntu.edu.tw

Abstract

Deep learning for image and video compression has
demonstrated promising results both as a standalone tech-
nology and a hybrid combination with existing codecs.
However, these systems still come with high computational
costs. Deep learning models are typically applied directly
in pixel space, making them expensive when resolutions be-
come large.

In this work, we propose an online-trained upsampler to
augment an existing codec. The upsampler is a small neural
network trained on an isolated group of frames. Its param-
eters are signalled to the decoder. This hybrid solution has
a small scope of only 10s or 100s of frames and allows for a
low complexity both on the encoding and the decoding side.

Our algorithm works in offline and in zero-latency set-
tings. Our evaluation employs the popular x265 codec on
several high-resolution datasets ranging from Full HD to
8K. We demonstrate rate savings between 8.6% and 27.5%
and provide ablation studies to show the impact of our de-
sign decisions. In comparison to similar works, our ap-
proach performs favourably.

1. Introduction
Since the introduction of deep learning to image and

video compression, steady improvements have led to
learning algorithms outperforming many commonly used
codecs. However, their principles are similar to those of
conventional codecs. The main algorithmic drivers are
modelling the distribution within a receptive field, some-
times also its neighbours, and the motion between two suc-
cessive images. A large-scale video corpus enables learning
the necessary functions. On the other hand, conventional
codecs are hand-tuned and use block-wise transforms and
predictions together with motion estimation.

This work proposes a method to exploit an extended

Scope

Block or
Recep. Field

Single
Frame

Several
Frames

10s of
Frames

100s of
Frames

Sequence
Datasets

Conventional
Codecs

Learned
Codecs

Hand-tuning

Motion Vectors

Frame-Level
Filters

Blockwise
Transform

Machine Learning

(Optical) Flow

Learned Transf.
& Dist.

Online-
trained

Upsampler
(this work)

Figure 1. Exploitation of different Scopes. Qualitative degree
and key methods that exploit redundancies in various scopes for
conventional and learned codecs.

scope of 10s or 100s of frames using an online-trained
upsampler. The online-trained design has the advantage
that computational expenses can be kept low, especially on
the decoding side, compared to deep learning compression
models or deep denoisers. The latter two may require 100K
operations for a single pixel, while we add less than 600 op-
erations to the conventional codec, which in turn requires
only several dozens of operations.

Compared to how machine learning is most often ap-
plied, the scope of data we consider is small. However, it is
large compared to what conventional codecs typically deal
with (see Fig. 1 for a qualitative overview). Note that there
are exceptions for some data, for example, a sequence of

7929

images with little change where the first image is as good a
predictor for the last image as any other. In such a case, a
codec would implicitly cover a more extensive scope. How-
ever, this does not hold for significant motion or evolving
textures like particle systems (water, smoke, fire).

We use a conventional codec to provide compression for
a lower resolution signal to deal with these more difficult
redundancies. At the same time, our proposed upsampler
is trained on a group of frames to reconstruct the high-
resolution signal efficiently. The encode then signals the
upsampler’s parameters to the decoder. They typically make
up a small fraction of the bitstream and therefore have little
effect on the coding gain.

Our experiments cover the offline setting used for con-
ventional non-interactive video transmission and the zero-
latency setting, which is suitable for interactive environ-
ments.

In summary, we

• propose a new architecture for an online-trained up-
sampler incorporating internal features and position
encoding,

• demonstrate significant improvement over the com-
monly used x265 codec,

• and conduct extensive ablation studies to show how
our proposed approach compares under different en-
coding settings.

2. Related Work
2.1. Learning-based Compression

Learning-based compression replaces each stage of con-
ventional codecs (except entropy coding) with a differen-
tiable equivalent from the deep learning domain. Their
advantage is that they are conceptually more straightfor-
ward as their adaptation to signal statistics is learned and
not designed manually. They pay for this with higher
complexity in terms of operations per pixel. Early ap-
proaches [39, 40, 3] were simply image-based and grew
more sophisticated by adding latent prediction strategies to
allow modelling dependencies across larger receptive fields
[27, 21, 4, 14, 32, 18, 2]. Given these approaches, adding
differentiable optical flow-like motion estimation models
can make for a simple video codec.

More complex video coding models abstract from ex-
plicit motion compensation and let the model decide what
should be contained in the state that is forwarded from one
frame to the next [37, 6, 23, 1, 44, 22, 33, 24, 11, 31]. These
codecs typically operate only on two successive frames, giv-
ing them a low latency advantage.

This approach can also be transferred to conventional
compression where a CNN is used to predict the codec’s

internal image representation directly, thereby tapping into
the availability of accelerators while still using a standard
codec, which allows efficient decoding [36, 35, 12]. The
learned codec approaches are used to solve the same prob-
lem as we are. Nevertheless, there is no direct overlap.
Our approach could easily be combined with learning-based
compression techniques.

2.2. Learning-based Augmentation of Conventional
Compression

Conventional compression can be augmented with ma-
chine learning by using an offline-trained model that re-
duces noise in the decoded signal. As mentioned in the in-
troduction, such a model has to deal with both the codec’s
non-stationary noise distribution and natural image statis-
tics at the same time, leading to huge models such as
[25, 13, 47, 43] with over 200K Op/pixel. This complex-
ity is two to three orders of magnitude above our approach.
As argued in the introduction, this becomes difficult to im-
plement in practice for high-resolution video.

Another promising approach is to adapt filters at encod-
ing time instead. Lam et al. [19, 20] have proposed ap-
proaches that adapt network weights to the content and sig-
nal those weights. Their approach is similar to ours. How-
ever, the networks employed have many layers and take up
a similarly large number of computations to offline-trained
networks. [16] is conceptually even closer to us in that they
focus on very low complexity and signal weights to the de-
coder. Unlike our method, they use the reconstructed sig-
nal with a feed-forward network structure, achieving lower
coding gains than the proposed algorithm. Also, they do not
handle the zero-latency case.

Finally, different from these approaches, [34, 7, 38, 17]
have proposed different pre-filtering techniques that are ap-
plied prior to encoding to reduce coding cost without alter-
ing the decoder.

3. Online-trained Upsampler
Our approach augments an existing codec with an up-

sampling neural network trained on a group of successive
frames. This strategy has the distinct advantage that the
deep neural network responsible for the upsampling process
requires a much lower complexity than one that has to deal
with all possible content. With the already low complexity
inherent to the conventional video codecs, this combined
system requires less computation than an end-to-end dif-
ferentiable convolutional neural network pipeline or a pre-
trained denoiser.

In our design, the neural network takes on the task of
super-resolving a decoded image instead of simply denois-
ing it. There are two primary motivations behind this ap-
proach. For one, (conventional) codecs have difficulties
capturing redundancies at an increasingly higher resolution

7930

Corrected Output

↓2 Encoder Decoder

TransmissionEncoding

Decoder

Upsampler
Inference

Decoding

Code

Original Input

NN Param

Upsampler
Training

Figure 2. Algorithm overview. Simplified operation of our compression algorithm. The conventional codec (blue boxes) is applied to the
downsampled signal, while the neural network (green boxes) is responsible for restoring the original resolution. It is trained at encoding
time, and its parameters are signalled along with the conventional codec’s code. At decoding time, the conventional decoder is invoked
first. The upsampler takes the decoded signal and computes the final output in the original resolution.

(see Ohm et al. [29] for some experimental results on this
issue). Secondly, because the conventional codec operates
only on 1/4th of the pixels, there is a potential for reducing
the encoding time, whereas a denoiser would necessarily
increase it.

The main obstacle for denoising is the resolution of
ambiguities. Therefore, our design uses the conventional
codec’s internal image representation and position encod-
ing to enable better ambiguity resolution without increasing
computational or signalling overhead too much.

The goal of the online-trained upsampler is to minimise
the rate-distortion criterion

LRD = R+ �D (1)

In our case, the rate R is mostly fixed as the (subsampled)
source sequence’s code length makes up most of the bitrate.
Even for smaller resolutions like full HD, our approach’s
signalling overhead amounts to less than 0.0005 bit/px for
a short segment of 32 frames (about 0.5s at 60Hz). For
most sequences at higher qualities, this is a small overhead.
For low bitrate sequences, we will show that we can also
take more extended groups of pictures, e.g., 128 frames, and
still achieve coding gains. In addition, experimental results
will show that for most sequences and quality settings, the
additional overhead is mostly below 5%. Hence, beyond
quantising parameters, we do not add any further network
parameter compression in this work.

The basic steps of our algorithm are displayed in Fig-
ure 2. For implementation details, please consider Algo-
rithm 1 in the supplementary.

3.1. Network Architecture
Our network architecture needs to integrate different

sources of information and have a low number of param-
eters and a low number of operations per pixel. To reach
this goal, we chose to use three small networks that follow
the idea of MobileNets to factorise into 1 ⇥ 1 convolutions
and 3 ⇥ 3 channel-wise convolutions. Each network has

Table 1. Total computational complexity (in MAC) for a single
pixel during inference or a single pixel in a batch during training.
F/W refers to forward, BN to BatchNorm (estimation of µ and �),
B/W to backward, and ”Grad.” to the gradient computation.

Mode Inference Training

Network F/W F/W (Trn) BN B/W Grad.

Feature 29.25 31.125 3.75 26.25 29.25
Position 173.50 188.500 30.00 187.00 171.75
Denoiser 329.00 359.250 60.50 340.25 325.50

⌃ Op/Pix 531.75 578.875 94.25 553.50 526.50

⌃ Op/Pix Training 1753.125

its own set of parameters. The data flow is shown in Fig-
ure 3. The feature network fFeat processes the internal fea-
tures zint (see Sec. 3.3). The position network fPos takes
those processed features zEnc together with encoded posi-
tions pEnc (see Sec. 3.2) to compute a weighting zAtt for the
attention mechanism in the denoiser. The denoiser fDenoise
takes the reconstructed YUV420 input (we upsample U, V
to the size of Y) to compute the upsampling-residual, which
is added to the bilinearly upscaled reconstruction. The com-
putational complexities for inference and for training for all
networks are listed in Table 1. The detailled architectures
and complexities are listed in Tables 12, 13, and 14 of the
supplementary material.

3.2. Position Encoding

We propose to provide position information as an addi-
tional input to the upsampler to reduce ambiguity. The ab-
solute position of a pixel in a group of pictures has a tempo-
ral (frame number) dimension t and two spatial dimensions
x and y. The position tensor pAbs has hence the dimensions
[T, 3, H,W] for T frames of size H ⇥ W . The positions
are stored in the second axis, like channels of a CNN ten-
sor. Each entry is equal to its normalised index (t, x, y):
pAbs [t, :, x, y] =

⇥
t

T
,
x

H
,

y

W

⇤
.

7931

Corrected Output

𝜔𝑖, 𝜙𝑖

Position Encoding

Concatenate

Internal
Features 𝑧int

Absolute pixel positions
(generated)

Decoder

Y
U
V ↑2

↑2

Sigmoid

Hadamard

+
YUV

[…]

Feature Network 𝑓Feat

Position Network 𝑓Pos

Denoiser 𝑓Denoise

CNN Layer

↑2

𝑝Abs 𝑝Enc

ො𝑥 ൗ1 2

𝑧Enc

𝑧Att
Unshuffle

Figure 3. Neural Network Architecture. Three networks process the reconstructed low resolution sequence x̂1/2, the internal features
zint, and the encoded positisons pEnc. The latter two are used to compute the attention signal zAtt that is used in the denoiser. The denoiser
operates on low resolution and only provides the upsampled residual signal at the last layer. Each layer is a combination of BatchNorm,
Convolution and ReLU (except output layers which are simply linear).

One could use these positions directly. However, posi-
tion encoding has previously been shown to be beneficial
to natural language processing models (see [45, 41, 10], for
example). In particular, Vaswani et al. [41] used a simple
trigonometric encoding, creating phasors of

pEnc,i =

✓
sin(2⇡!ipAbs + �i)
cos(2⇡!ipAbs + �i)

◆
(2)

for different pairs of frequencies !i and phases �i. This
performed similarly well on a machine translation task
as the learned encodings of Gehring et al. [10]. There-
fore, we adopt trigonometric encoding, with different fre-
quencies !i for temporal and spatial coordinates. In the
context of images, low frequencies correspond to distin-
guishing between positions far away (e.g., pixels in dif-
ferent quadrants of an image). In contrast, high frequen-
cies change the encoding from one pixel to the next. We
observed that low frequencies improved the predictive ca-
pability while high frequencies lead to opposite results, in
some instances, dramatically reducing performance. As
combining both frequencies didn’t yield any benefit, we
chose ⌦t = [0.5, 0.25] for the temporal coordinate (frame
no.) and ⌦s = [0.5, 0.25, 0.125] for horizontal and vertical
axes; the phase � is initialised to 0. Each phasor has two
channels, resulting in a total of 4 + 6 + 6 = 16 channels
for pEnc (see Algorithm 5 in the supplementary for details).
Note that each of these channels only varies along one di-
mension. After computing that dimension, the remainder of
the tensor can be filled with copies. Therefore the complex-
ity per pixel is negligible.

These encoded positions are concatenated with the fea-
tures zEnc that are described in the next section and serve as
input for the position network fPos that computes the atten-
tion weights zAtt.

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1/3 1/3 1 -1 -1/3 1/3 1

-1 -1 -1 -1 -1 -1 -1 -1

-5/7 -5/7 -5/7 -5/7 -1/3 -1/3 -1/3 -1/3

-3/7 -3/7 -3/7 -3/7 1/3 1/3 1/3 1/3

-1/7 -1/7 -1/7 -1/7 1 1 1 1

1/7 1/7 1/7 1/7 -1 -1 -1 -1

3/7 3/7 3/7 3/7 -1/3 -1/3 -1/3 -1/3

5/7 5/7 5/7 5/7 1/3 1/3 1/3 1/3

1 1 1 1 1 1 1 1

Figure 4. Block position encoding. Example with three blocks
(red boxes), vertical coordinate on the left, horizontal on the right.
The 2D coordinates are the relative position within a block.

3.3. Feature Generation
As described in the previous section, additional signals

like positions can benefit error prediction performance as
they provide information to distinguish ambiguities. There-
fore, we add relative positions and prediction information
based on the codec’s internal structure besides encoded ab-
solute position signals. Conventional codecs represent an
image in terms of a hierarchy of blocks, controlling param-
eters like transform size or motion compensation. They are
readily available at the decoder as they are needed to recon-
struct the image. In our setting, we use information from
the prediction blocks only: relative positions within each
prediction block and motion vectors. Each block has up to
two 2D motion vectors, giving the first four channels of zint.
We copy the motion vectors of a block to all points belong-
ing to that block.

The relative position within a block is generated by

bk,l =

✓
�1.0 + 2k

K�2

�1.0 + 2l
L�2

◆
(3)

where k = {0, 1, . . . ,K � 1} and l = {0, 1, . . . , L� 1}
are the horizontal and vertical coordinates within a block of
size K ⇥ L. This encoding provides information about the

7932

current block size (difference between two adjacent entries)
and the position within a block. Figure 4 gives an example
of a simple block setup. bk,l adds two more channels to
zint, which we sample at 1/2 the reconstruction resolution
of the decoder (i.e. 1/4 of the original video). zint is then
processed by the 4-layer feature network fFeat (Tab. 12 of
the supplementary).

3.4. Initialisation Pre-training
Meta-Learning techniques like MAML [9] and REP-

TILE [28] have been developed to improve transfer learning
where a neural network learned on one task is to be adapted
to similar tasks. To transfer these techniques to our set-
ting, we interpret the optimisation for a single frame group
as an adaptation, although our initial model is not trained
but randomly initialised. We adopt REPTILE [28] as it’s
easier to implement and achieves results similar to MAML
[9]. To obtain a better initialisation, we randomly choose
G groups of pictures from different sequences (excluding
the sequence we are applying our algorithm to) and apply
our training algorithm for a few iterations, each time start-
ing from the same initial parameters ✓

0
Init. The combined

changes of these parameters are then averaged and the ini-
tial parameters are updated:

✓
t

Init = ✓
t�1
Init + "

1

G

GX

g

(✓g � ✓
t�1
Init) (4)

where ✓g is the final parameter vector after updating for a
few iterations and " is the meta learning rate. This process
is repeated for several iterations, using different data in each
(see Alg. 4 in the supplementary for the implementation).

Using this procedure has several advantages. Not only
can we achieve higher gains and faster convergence, but,
more importantly, the algorithm becomes more stable. This
is important as the optimisation process always uses the
same hyperparameters, and there is no manual tuning. Au-
tomatic tuning is possible yet very time-consuming. In
practice, our implementation of REPTILE requires only
about 50 updates, each being the average of updates to spe-
cific groups of pictures as denoted by Eq. 4. We use a meta-
learning rate of " = 0.1 in all our experiments. The abla-
tion results in Fig. 5 show that almost all datasets evaluated
profit off this simple initialisation scheme.

4. Experimental Results
4.1. Setup

Each frame group is optimised independently so that the
proposed system can be applied to different scenes in paral-
lel. Independent of the dataset, each group is optimised for
1250 iterations with a batch size of 48 over random sam-
ples of 80⇥160 pixels (h ⇥ w) from the target sequence.

Each group comprises 32 frames by default, larger groups
are evaluated in Section 4.4. The parameters are optimised
using Adam [15] with a learning rate of 0.01 and a weight
decay of 0.0002. The exact quantisation procedure is de-
scribed in Algorithm 3 of the supplementary material. All
experiments are implemented in PyTorch [30] and use the
same hyperparameters (unless indicated otherwise). We use
x265 as a base codec because it is widely used in practice
and a baseline in the learning-based coding literature. Un-
less specified, the codec is run in the veryslow setting,
together with tune set to psnr or ssim (closest to MS-
SSIM as possible) depending on the evaluation metric used.
This ensures that we benchmark against the best performing
setting.

4.2. Datasets
We apply our method to eight high-resolution datasets,

spanning resolutions from full HD to 8K and frame rates
from 30 to 120Hz. Four of those datasets were selected by
video compression standardisation committees to act as in-
dicators for performance progress. The remaining four were
provided by researchers or video production professionals.

4.3. Measurements
PSNR and MS-SSIM [42] are used as measures. If

not indicated otherwise, all sequences are processed and
measured in the YUV 4:2:0. The measurement happens
channel-wise. To account for human sensitivity to the
luma component, the channels are weighted [6/8, 1/8, 1/8]
as is commonly done in video coding. Before aggregat-
ing results from different channels or frames, the MS-SSIM
score is converted to decibel scale using MSSSIMdB =
�10 log10 (1� MSSSIM). To have an objective measure of
comparison over different qualities, we compute the Bjon-
tegaard Deltas [5] for the rate (i.e., how much rate is saved
at the same quality, in %) as well as for the quality mea-
sure (i.e. how much quality is gained at the same rate, in
dB). Following video coding standards, we perform mea-
surements at four rate-distortion trade-offs, where the quan-
tisation parameter (QP) is set to 22, 27, 32, and 37. A fixed
QP offset of -5 is used to encode the low-resolution video
signal in our algorithm.

4.4. Offline and High-Latency Encoding
The offline encoding setting is used by video-on-demand

and similar services where sequences are encoded in var-
ious resolutions, optimised over various configurations to
find the best possible format for each device. This setting
is hence essential as it is widely used to provide video over
the internet.

Table 2 lists rate savings and quality gains for both met-
rics. The two highest resolutions have slightly lower gains
than the other datasets. One reason may be that they differ

7933

Figure 5. Ablation on different techniques used in our model for the eight datasets. The ablation successively removes first the pre-training
(Sec. 3.4), then the internal features (Sec. 3.3), and finally the position encoding (Sec. 3.2) so that only the denoiser is left.

Table 2. Bjontegaard Deltas for Rate and Distortion as measured
by PSNR and MS-SSIM over x265 with tunes psnr and ssim,
respectively. Negative rate savings indicate that our method re-
quires less bits of code to deliver the same quality. Both quality
measures are taken in dB.

PSNR MSSSIM

�Rate �PSNR �Rate �MSSSIM

CTC A -13.6% +0.2954 -9.0% +0.1399
JVET A -18.4% +0.4813 -17.1% +0.4966
JVET 360 6K -9.0% +0.2451 -12.3% +0.4034
JVET 360 8K -8.6% +0.1864 -10.4% +0.3484
UVG UHD [26] -25.5% +0.6247 -17.1% +0.3979
UVG FHD [26] -16.3% +0.5156 -13.0% +0.4277
Xiph UHD [8] -23.6% +0.4374 -21.2% +0.4421
Netflix -27.5% +0.6632 -21.3% +0.4399

in content as they depict 360� videos where large parts of
the frame are occupied with relatively flat sky and ground
textures that are easier to encode, leaving less room for im-
provement. For all other datasets, our proposed method de-
livers between 13.6% and 27.5% rate gains on PSNR, i.e.,
up to a quarter of data size can be saved. For MS-SSIM,
the gains are slightly lower for most datasets, except for the
two 360� sequence collections. Still, we can achieve up
to 21.3% rate savings, i.e., one fifth bandwidth reduction.
Next, we evaluate how the different measures introduced in
the previous section have contributed to the overall results.
Figure 5 shows rate savings and PSNR gains for the com-
plete model, and with pre-training, internal features, and
position encoding removed one after another. Over almost
all datasets, the performance degrades significantly, both in
terms of rate reduction and quality improvement. Again,
the 360� videos do show slightly different results, which
is probably specific to their content. Interestingly, for the
CTC A dataset, where gains are comparably low at 13.6%,
i.e., an improvement over the base codec is challenging, the
proposed measures have the most impact.

Lastly, we compare to the online-trained denoiser of
[16]. Their approach has a simpler network architecture

Table 3. Comparison between our method and [16]. Numbers in
parentheses denote the number of frames in a group.

Our’s Klopp et al. [16]

Complexity 531.75 Op/Pix 488.75 Op/Pix

�Rate �PSNR �Rate �PSNR

CTC A (32) -13.6% +0.2954 -9.1% +0.2541
JVET A (32) -18.4% +0.4813 -5.7% +0.1561
Netflix (32) -27.5% +0.6632 -5.0% +0.1667
CTC A (128) -13.4% +0.2992 -9.1% +0.2655
JVET A (128) -19.6% +0.4983 -6.3% +0.1735
Netflix (128) -20.6% +0.6331 -6.4% +0.1891

than ours, using only the codec’s reconstruction as input.
We use a 7-layer-20-filter architecture that requires 488.75
op/pixel for their approach (see Tables 15 and 16 in the sup-
plementary). Note that this is the complexity for both the
luma and the chroma network ([16] has two separate net-
works). Table 3 shows the results for three datasets and
two different frame-group lengths. Our algorithm achieves
higher gains for short and long frame groups, especially on
the UHD and 4K-DCI datasets. For the CTC A dataset, tak-
ing into account the ablation study results shown in Fig. 5,
we only outperform because of the additional input and the
attention mechanism.

Figure 6. BDRate savings over the number of frames available for
training in each group of pictures. Frames are taken from the be-
ginning of the group. The group size is 32 frames.

7934

4.4.1 Generalisation

We slightly change the training setup to evaluate generali-
sation: instead of training on all data in a frame-group, we
only provide the first N frames. The evaluation still con-
siders all frames. Fig. 6 shows the results for 32 frames per
group, results for 128 frames are found in Fig. 11 of the
supplementary. The performance drops sharply once less
than the first half is available, indicating that in this setting,
generalisation is possible if sufficient training data (relative
to the amount of testing data) is available. We will exploit
this property in the zero-latency scenario described below.

4.4.2 Encoding Time

Table 4 compares the encoding time per frame of our
method to the original x265 on the JVET A UHD dataset.
The run time for our method contains the time to run x265
on the low-resolution stream. We use a dual Intel Xeon
5680@3.33GHz with 24 cores total and an NVidia 1080
GPU with 8G memory. Our x265 is the most recent ver-
sion and includes assembler speed-ups. For a group of 32
frames, our method takes longer than the baseline. How-
ever, as shown above, we can easily expand to 128 frames
without much loss. In that setting our method reduces en-
coding time by up to one third, where coding gain is typi-
cally paid for with longer encoding times.

Table 4. Encoding duration in seconds/frame for x265 and our
method (including low resolution x265) for the JVET A UHD
dataset. Positive savings indicate our algorithm requires more
time, negative that we save time compared to x265. The numbers
in parentheses are the frame group lengths.

QP x265 Ours (32) Savings Ours (128) Savings

22 1.68s 2.40s 42.36% 1.11s -34.15%
27 1.24s 2.23s 79.79% 0.94s -24.33%
32 1.00s 2.10s 110.48% 0.81s -18.60%
37 0.82s 2.01s 144.92% 0.72s -12.02%

4.5. Zero-Latency
With the previous sections’ results, it is straightforward

to extend our algorithm to the zero-latency case. Exploiting
generalisation, we change our algorithm to train on frames
while they are zero-latency encoded and sent out by the con-
ventional codec. As shown in Fig. 7 (top), we split training
and test data: the encoder trains while data arrives, the de-
coder uses previously signalled parameters. To simulate a
realistic scenario, we make frames only successively avail-
able to the training algorithm (see Fig. 7, bottom): we sam-
ple patches from the first iN

I
frames during the i-th itera-

tion, where N and I are the total number of frames and the
total iterations, respectively, for a frame-group. While the

Incoming
Frames

Decoder

…

Group " − 1

…

Group "

Train %&'(

Apply %&') Apply %&'(
%&'(

Train %&
%&

Frame
Groups

Training
Data

** − 1* − 2* − 3 * + 1

Encoder

Figure 7. Top: zero-latency encoding realised by separating train-
ing and test data. Bottom: Training data is successively extended
once a new frame becomes availble until the end of the frame
group is reached.

Table 5. Rate savings for different signalling frequencies under
zero-latency conditions.

Signalling Frequency 8 16 32

CTC A -7.9% -11.5% -8.5%
JVET A -12.0% -11.6% -10.8%
Netflix -17.2% -14.3% -8.6%

encoder trains parameters ✓g on group g, the decoder uses
✓g�1 on group g.

For our experiments, the base codec is switched to zero-
latency mode using bframes=0 as is common in other
works. Because this zero-latency scenario is more time-
critical, we reduce the number of iterations per frame-group
to 200, the batch size to 40, and the patch size to 72⇥ 144.
Table 5 shows the results for N = {8, 16, 32}. Although
our algorithm is only applied to unseen data, it can still
achieve significant rate gains. This indicates that jointly
optimising over a large group of frames is not necessarily
limited to offline processing.

To charter the territory for different coding approaches,
Fig. 8 shows our algorithm (N = 16 frames), the x265
baseline, and two state-of-the-art learned video codecs. As
demonstrated above, our codec outperforms x265, it even
lifts the medium to the veryslow setting for low bi-
trates. Note that our algorithm is responsible for providing
3/4 of the output data, making this improvement non-trivial.
Learned codecs still require higher bit rates. However, it
may very well be possible to use our method to advance
them as well.

Regarding the encoding cost, because our network con-
verges very quickly, our encoding complexity is at most

7935

Figure 8. Rate-Distortion characteristics over the UVG FHD
dataset, comparing the zero-latency version of our algorithm to
x265 (in medium and veryslow settings) and to [31, 11, 1, 24], all
using end-to-end deep-learned video codecs. Encoding happens
without chroma subsampling (i.e. in YUV 4:4:4) and PSNR is
measured in the RGB colour space for fair comparison. Note that
we added a fifth data point with QP=15.

Table 6. Encoding complexity in Op/Pix. Computed as training
pixels divided by total pixels in frame group times the pixel-wise
training complexity from Tab. 1. In the high resolution/32 frames
case our model’s encode and decode complexity almost match.

Method Signalling Freq. 8 16 32

Ours

UVG FHD 8766 4383 2192
CTC A (WQXGA) 4438 2219 1110
JVET A (UHD) 2192 1096 548
Netflix (4K) 2045 1023 512

Agustsson et al. [1] > 140000
Lu et al. [24] > 100000

only an order above our decoding complexity as shown in
Tab. 6. In addition, the underlying x265 codec is only re-
sponsible for 1/4 of the pixels, allowing for faster encoding.

5. Discussion
Coding gain aside, our method faces two critical issues:

encoding complexity and signalling overhead. In Sec. 4.5
we showed that the resulting encoding complexity does
not need to be infeasibly high. The timing results from
Sec. 4.4.2 support this. Besides, Sec. 7.1 of the supplemen-
tary demonstrates that our method converges quickly, i.e.,
encoding may be sped with little effect on the coding gain.

The signalling overhead is implicitly included in the
measurements reported above. However, it is a crucial as-
pect of our design and should be investigated. Tab. 7 lists
the network parameters’ share in the code size for the UVG
FHD dataset in the zero-latency and the offline setting. The
share becomes significant when the quality is low, or the
sequence has little dynamic (e.g. ”HoneyBee”). However,
lower qualities have more room for improvement, meaning

Table 7. Our method’s network parameter size relative to the en-
coded size (incl. parameters) for the UVG FHD dataset.

Zero-Latency Offline
Sequence 17 22 27 32 17 22 27 32

Beauty 3% 8% 15% 25% 3% 5% 9% 14%
Bosphorus 3% 6% 13% 26% 2% 4% 8% 14%
HoneyBee 10% 24% 36% 45% 3% 5% 8% 11%
Jockey 3% 6% 11% 17% 2% 4% 6% 10%
ReadySetGo 1% 2% 4% 8% 1% 2% 3% 4%
ShakeNDry 1% 4% 11% 24% 1% 2% 5% 8%
YachtRide 1% 2% 4% 10% 1% 1% 3% 7%

Average 3% 8% 13% 22% 2% 3% 6% 10%

that our algorithm typically leads to more distortion reduc-
tion. In the future, shorter bit-depth and entropy coding can
help to lower the share even further.

Finally, Fig. 9 shows that our coding improvements
are largely independent of rate and quality, i.e., the gains
achieved here are not due to a skewed test data distribution
and are likely to be realised in practice as well.

Figure 9. Distribution of rate savings over rate and distortion at QP
22. Savings are indicated by the radius of each blob.

6. Conclusion
In this work, we have introduced a super-resolution

based online-trained augmentation method for conven-
tional codecs with low computational overhead compared
to pretrained or deep-learned approaches. Our evaluations
demonstrate rate savings across various datasets compared
to x265 and that a shorter encoding time is possible.

In the future, a straightforward improvement is to add pa-
rameter compression methods to lower the signalling over-
head of our method. Besides, even better network archi-
tectures or optimisation techniques may further increase the
coding gains of the proposed method, establishing a path
for hybrid conventional-deep-learned codecs. On the other
hand, it would also be interesting how our algorithm com-
bines with learned codecs to provide better performance at
a lower cost for high resolutions.

7936

References
[1] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes

Ballé, Sung Jin Hwang, and George Toderici. Scale-space
flow for end-to-end optimized video compression. Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 8500–8509, 2020.

[2] Johannes Ballé, Nick Johnston, and David Minnen. Integer
Networks for Data Compression with Latent-Variable Mod-
els. In International Conference On Learning Representa-
tions, 2019.

[3] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.
End-to-end Optimized Image Compression. ICLR, 2017.

[4] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. International Conference On Learn-
ing Representations, 2018.

[5] G Bjøntegaard. Calculation of Average PSNR Differences
between RD curves. ITU-T SG16/Q6. Technical report, ITU-
T SG16/Q6, Austin, Texas, USA, 2001.

[6] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learning image and video compression through
spatial-temporal energy compaction. arXiv, pages 10071–
10080, 2019.

[7] Jinyoung Choi and Bohyung Han. Task-Aware Quantization
Network for JPEG Image Compression. In European Con-
ference on Computer Vision, 2020.

[8] Derf. Xiph.org :: Derf’s Test Media Collection, 2020.
[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.
34th International Conference on Machine Learning, ICML
2017, 3:1856–1868, 2017.

[10] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin. Convolutional Sequence to Sequence
Learning. In Proceedings of the 34th International Confer-
ence on Machine Learning, 2017.

[11] Zhihao Hu, Guo Lu, and Dong Xu. FVC: A New Framework
towards Deep Video Compression in Feature Space. pages
1502–1511, 2021.

[12] Yan Huang, Li Song, and Ebroul Izquierdo. CNN Acceler-
ated Intra Video Coding, Where Is the Upper Bound? In
2019 Picture Coding Symposium, PCS 2019, pages 1–5.
IEEE, 2019.

[13] Chuanmin Jia, Shiqi Wang, Xinfeng Zhang, Shanshe Wang,
Jiaying Liu, Shiliang Pu, and Siwei Ma. Content-Aware Con-
volutional Neural Network for In-loop Filtering in High Effi-
ciency Video Coding. IEEE Transactions on Image Process-
ing, pages 1–1, jan 2019.

[14] Nick Johnston, Damien Vincent, David Minnen, Michele
Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel
Shor, and George Toderici. Improved Lossy Image Com-
pression with Priming and Spatially Adaptive Bit Rates for
Recurrent Networks. Computer Vision and Pattern Recogni-
tion, 2017.

[15] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method
for Stochastic Optimization. International Conference on
Learning Representations 2015, pages 1–15, 2015.

[16] Jan P. Klopp, Liang-Gee Chen, and Shao-Yi Chien. Utilis-
ing Low Complexity CNNs to Lift Non-Local Redundancies
in Video Coding. IEEE Transactions on Image Processing,
pages 1–1, 2020.

[17] Jan P. Klopp, Keng-Chi Liu, Liang-Gee Chen, and Shao-Yi
Chien. How To Exploit the Transferability of Learned Im-
age Compression to Conventional Codecs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 16165–16174, 2021.

[18] Jan P Klopp, Yu-chiang Frank Wang, and Liang-gee Chen.
Learning a Code-Space Predictor by Exploiting Intra-Image-
Dependencies Review of Learned Image Compression. In
British Machine Vision Conference, pages 1–12, 2018.

[19] Yat Hong Lam, Alireza Zare, Caglar Aytekin, Francesco
Cricri, Jani Lainema, Emre Aksu, and Miska Hannuksela.
Compressing Weight-updates for Image Artifacts Removal
Neural Networks. In Computer Vision and Pattern Recogni-
tion Workshop, 2019.

[20] Yat-Hong Lam, Alireza Zare, Francesco Cricri, Jani
Lainema, and Miska Hannuksela. Efficient Adaptation of
Neural Network Filter for Video Compression. In ACM Mul-
timedia, 2020.

[21] Haojie Liu, Tong Chen, Peiyao Guo, Qiu Shen, and Zhan
Ma. Gated Context Model with Embedded Priors for Deep
Image Compression. feb 2019.

[22] Jerry Liu, Shenlong Wang, Wei-Chiu Ma, Meet Shah, Rui
Hu, Pranaab Dhawan, and Raquel Urtasun. Conditional En-
tropy Coding for Efficient Video Compression. 2020.

[23] Guo Lu, Chunlei Cai, Xiaoyun Zhang, Li Chen, Wanli
Ouyang, Dong Xu, and Zhiyong Gao. Content Adaptive and
Error Propagation Aware Deep Video Compression. Lec-
ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 12347 LNCS:456–472, 2020.

[24] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei
Cai, and Zhiyong Gao. DVC: An End-to-end Deep Video
Compression Framework. In Computer Vision and Patter
Recognition, nov 2019.

[25] Di Ma, Fan Zhang, and David R. Bull. Video compression
with low complexity CNN-based spatial resolution adapta-
tion. 2020.

[26] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. UVG
dataset: 50/120fps 4K sequences for video codec analysis
and development. In MMSys 2020 - Proceedings of the 2020
Multimedia Systems Conference, 2020.

[27] David Minnen, Johannes Ballé, and George Toderici. Joint
Autoregressive and Hierarchical Priors for Learned Image
Compression. In Neural Information Processing Systems,
pages 10771–10780, 2018.

[28] Alex Nichol, Joshua Achiam, and John Schulman. On First-
Order Meta-Learning Algorithms. pages 1–15, 2018.

[29] Jens Rainer Ohm, Gary J. Sullivan, Heiko Schwarz,
Thiow Keng Tan, and Thomas Wiegand. Comparison of the
coding efficiency of video coding standards-including high
efficiency video coding (HEVC). IEEE Transactions on Cir-
cuits and Systems for Video Technology, 2012.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

7937

Desmaison, Luca Antiga, and Adam Lerer. Automatic Dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[31] Oren Rippel, Alexander G. Anderson, Kedar Tatwawadi,
Sanjay Nair, Craig Lytle, and Lubomir Bourdev. ELF-VC:
Efficient Learned Flexible-Rate Video Coding. 2021.

[32] Oren Rippel and Lubomir Bourdev. Real-Time Adaptive Im-
age Compression. ICML, 2017.

[33] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G. Anderson, and Lubomir Bourdev. Learned
Video Compression. nov 2018.

[34] Yannick Strümpler, Ren Yang, and Radu Timofte. Learning
to improve image compression without changing the stan-
dard decoder. In Proceedings of the 16th European Confer-
ence on Computer Vision Workshops, 2020.

[35] Hui Su, Mingliang Chen, Alexander Bokov, Debargha
Mukherjee, Yunqing Wang, and Yue Chen. Machine Learn-
ing Accelerated Transform Search for AV1. In 2019 Picture
Coding Symposium, PCS 2019, pages 1–5. IEEE, 2019.

[36] Hui Su, Chi Yo Tsai, Yunqing Wang, and Yaowu Xu. Ma-
chine Learning Accelerated Partition Search for Video En-
coding. In Proceedings - International Conference on Image
Processing, ICIP, volume 2019-Septe, pages 2661–2665.
IEEE, 2019.

[37] Wenyu Sun, Chen Tang, Weigui Li, Zhuqing Yuan,
Huazhong Yang, and Yongpan Liu. High-Quality Single-
Model Deep Video Compression with Frame-Conv3D and
Multi-frame Differential Modulation. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 12375
LNCS:239–254, 2020.

[38] Hossein Talebi, Damien Kelly, Xiyang Luo, Ignacio Garcia
Dorado, Feng Yang, Peyman Milanfar, and Michael Elad.
Better compression with deep pre-editing. arXiv, 2020.

[39] George Toderici, Sean M. O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable Rate Image Com-
pression with Recurrent Neural Networks. International
Conference On Learning Representations, pages 1–9, 2015.

[40] George Toderici, Damien Vincent, Nick Johnston, Sung Jin
Hwang, David Minnen, Joel Shor, and Michele Covell. Full
Resolution Image Compression with Recurrent Neural Net-
works. Computer Vision and Pattern Recognition, 2016.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5999–6009, 2017.

[42] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-
scale structural similarity for image quality assessment.
IEEE Asilomar Conference on Signals, Systems and Com-
puters, 2:9–13, 2003.

[43] Ren Yang, Mai Xu, Tie Liu, Zulin Wang, and Zhenyu Guan.
Enhancing Quality for HEVC Compressed Videos. IEEE
Transactions on Circuits and Systems for Video Technology,
pages 1–1, 2018.

[44] Ruihan Yang, Yibo Yang, Joseph Marino, and Stephan
Mandt. Hierarchical Autoregressive Modeling for Neural
Video Compression. pages 1–15, 2020.

[45] Yunlun Yang, Yunhai Tong, Shulei Ma, and Zhi Hong Deng.
A position encoding convolutional neural network based on
dependency tree for relation classification. EMNLP 2016 -
Conference on Empirical Methods in Natural Language Pro-
cessing, Proceedings, pages 65–74, 2016.

[46] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The Unreasonable Effectiveness of
Deep Features as a Perceptual Metric. Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, (1):586–595, 2018.

[47] Yongbing Zhang, Tao Shen, Xiangyang Ji, Yun Zhang,
Ruiqin Xiong, and Qionghai Dai. Residual Highway Con-
volutional Neural Networks for in-loop Filtering in HEVC.
IEEE Transactions on Image Processing, 27(8), 2018.

7938

