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Figure 1: State-of-the-art methods for 3D human pose and shape estimation from images (such as HMR trained with EFT [26]
data) struggle with imagery containing perspective effects. (b) In part, this is due to the use of the standard weak perspective
camera. (c) SPEC learns to estimate perspective camera parameters and uses these to regress more accurate 3D poses.

Abstract

Due to the lack of camera parameter information for in-
the-wild images, existing 3D human pose and shape (HPS)
estimation methods make several simplifying assumptions:
weak-perspective projection, large constant focal length,
and zero camera rotation. These assumptions often do not
hold and we show, quantitatively and qualitatively, that they
cause errors in the reconstructed 3D shape and pose. To
address this, we introduce SPEC, the first in-the-wild 3D
HPS method that estimates the perspective camera from
a single image and employs this to reconstruct 3D human
bodies more accurately. First, we train a neural network
to estimate the field of view, camera pitch, and roll given
an input image. We employ novel losses that improve the
calibration accuracy over previous work. We then train
a novel network that concatenates the camera calibration
to the image features and uses these together to regress
3D body shape and pose. SPEC is more accurate than
the prior art on the standard benchmark (3DPW) as well
as two new datasets with more challenging camera views
and varying focal lengths. Specifically, we create a new
photorealistic synthetic dataset (SPEC-SYN) with ground
truth 3D bodies and a novel in-the-wild dataset (SPEC-
MTP) with calibration and high-quality reference bodies.
Code and datasets are available for research purposes at
https://spec.is.tue.mpg.de/.

1. Introduction

Estimating 3D human pose and shape (HPS) from a sin-
gle RGB image is a core challenge in computer vision and
has many applications in robotics, computer graphics, and
AR/VR. Reconstructing a high dimensional 3D structure
from 2D observations is ill-posed by nature. To overcome
this, much attention has been given to structured prediction
[16, 20, 62] and incorporating shape and pose priors [47, 69]
to guide estimation. Weakly-supervised training of HPS re-
gressors leverages 2D-pose datasets [1, 25, 39] and requires
various forms of regularization [28, 35, 71]. Data for full 3D
supervision often relies on controlled lab settings [21, 58],
synthetic images [61], or, more recently, in-the-wild capture
of reference data [43, 63].

Despite rapid progress, we observe that most state-of-
the-art (SOTA) methods [5, 7, 15, 24, 26, 28, 29, 32, 35,
36, 47, 52, 59, 73, 74] make several simplifying assump-
tions about the image formation process itself. First, they
all apply a weak perspective or orthographic projection as-
sumption; resulting in a simplified camera model with only
three parameters which capture the camera translation rela-
tive to the body. Moreover, some [32, 35, 47] set the focal
length to a predefined large constant for every input image.
Finally, they all assume zero camera rotation, which entan-
gles body rotation and camera rotation, making it extremely
hard to correctly estimate the body orientation in 3D. These
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assumptions are valid for images where bodies are roughly
perpendicular to the principal axis and are located far away
from the camera. However, in most real world images of
people, perspective effects are clearly evident, e.g. fore-
shortening in selfies. Ignoring perspective projection leads
to errors in pose, shape, and global orientation (see Fig. 1).

To overcome these limitations in existing methods, we
present SPEC (Seeing People in the wild with Estimated
Cameras), the first 3D human pose and shape estimation
framework that leverages cues present in the image to ex-
tract perspective camera information and exploits this to
better reconstruct 3D human bodies from images in the
wild. SPEC consists of two parts: camera calibration and
body reconstruction. We make contributions to each.

One might hope that embedded EXIF information would
be sufficient to address this problem. However, many im-
ages lack EXIF information, some applications strip this
off, and even if present, converting the stored focal length
in millimeters to pixels requires knowing specifics of the
image sensor. Given the huge variety of cameras on the
market, exploiting this is a non-trivial task. Furthermore,
this does not give information about the camera rotation.

Instead, we estimate the camera directly from the RGB
image. Recent work [19, 30, 65, 77] casts this ill-posed re-
gression problem as a classification task. However, training
such methods with their losses, e.g. cross-entropy and KL-
divergence, ignores the natural notion of distance or order-
ing of the original target space. To address this, we propose
a new loss, Softargmax-L2, to preserve distance during loss
calculation. Moreover, we observe that HPS accuracy is
quite sensitive to underestimation of focal length and less
sensitive to overestimates as also noted by [31, 72]. There-
fore, we modify Softargmax-L2 to be asymmetric such that
less penalty is applied when the focal length is overesti-
mated. These novel losses help us to train a better regressor
for direct camera calibration, which we term CamCalib.

We integrate the regressed camera parameters into two
3D-body-reconstruction paradigms: (1) an optimization-
based approach, SMPLify-X [47], and (2) a regression-
based one similar to HMR or SPIN [28, 35]. Since
SMPLify-X estimates a 3D body my minimizing the differ-
ence between projected 3D joints and observed 2D joints,
improving the the projective geometry improves the esti-
mated body.

In the case of direct HPS regression from pixels, the esti-
mated camera is employed in two ways: (1) in the reprojec-
tion loss similar to the one in SMPLify-X and (2) as condi-
tioning for the network by appending the camera parameters
to the CNN image features. This second contribution is a
key novelty of SPEC, which enables us to disentangle cam-
era and body orientation. SOTA methods [32, 33, 35, 73],
cannot do this because the body is estimated in camera
space, entangling body orientation and camera rotation.

Training such a body regressor requires in-the-wild im-
ages annotated with both 3D human bodies and the cam-
era parameters. Since existing 3D human body datasets
[21, 42, 63] contain little variation in camera parameters, we
create two new datasets with rich camera variety. First, we
create a photorealistic synthetic dataset which has accurate
ground-truth human and camera annotations (SPEC-SYN)
using ideas from [46]. This dataset is used both for testing
and training. Second, we collect a crowdsourced dataset fol-
lowing the Mimic-The-Pose framework [45] (SPEC-MTP).
We ask web participants to calibrate their camera and take
videos from different angles while mimicking a predefined
pose. Then, we obtain pseudo ground-truth labels by fitting
the SMPL model to the provided videos while exploiting
the predefined pose as a prior. Through extensive experi-
ments and analysis using these new datasets, alongside an
existing in-the-wild dataset (3DPW [63]), we show that go-
ing beyond the weak-perspective/orthographic assumption
improves human pose and shape estimation results.

In summary, our contributions are: (1) We propose
a single-view, camera-aware, 3D human body estimation
framework that estimates perspective camera parameters
from in-the-wild images directly and reconstructs the 3D
body without relying on weak-perspective assumptions or
offline calibration. (2) We train a neural network to regress
the perspective camera parameters given one RGB image,
using two novel losses: Softargmax-L2 and the asymmet-
ric variant to improve the calibration accuracy. (3) Us-
ing the estimated camera parameters helps to reconstruct
a better 3D body with the optimization-based SMPLify-X
algorithm. (4) Conditioning on camera information helps
a direct regression approach based on HMR [28] learn to
regress better poses. (5) We present two different datasets
with ground-truth camera and human body parameters: (i)
a photorealistic synthetic dataset, SPEC-SYN, and (ii) a
crowdsourced dataset, SPEC-MTP.

2. Related Work
We review work that captures/reconstructs 3D humans

under calibrated-camera settings, then focus on our goal:
in-the-wild 3D human body reconstruction from monocu-
lar RGB. We discuss how prior art simplifies the camera
model to make the problem tractable and also discuss rele-
vant methods of camera calibration from one RGB image.
3D HPS Estimation with Calibrated Cameras. To cap-
ture human motions in 3D, early work exploits calibrated
and synchronized multi-camera settings. They can be
largely classified to “bottom up” approaches [4, 6, 9, 14,
57, 76] that assemble 3D body poses from multi-view im-
age evidence (keypoints, silhouettes), and “top down” ap-
proaches [3, 11, 12, 20, 27, 62] that deform a pre-defined
3D human template according to detected image features
in each view. Powered by CNNs, learning-based methods
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[18, 23, 49, 50, 60] gain robustness by training keypoint de-
tection and multi-view pose reconstruction end-to-end.

Some monocular approaches [42, 43, 48, 56] are trained
with direct supervision from multi-view data, while others
[16, 22, 34, 51] enforce multi-view consistency as weak, or
self, supervision. In either way, known intrinsic or extrinsic
parameters are always assumed. Yu et al. [72] propose per-
spective crop layers, which crop the image around a person
according to camera parameters and image location, effec-
tively removing some effect of camera geometry.

All these methods require offline calibration and have a
risk of overfitting to the cameras used in training and are
typically limited to controlled settings.
Single-view HPS Estimation with Unknown Cameras. In
early work, Liebowitz and Carlsson [38] use the repetitive
structure of a moving person as a cue for camera calibration.
Since then, numerous methods reconstruct 3D human bod-
ies given single-view images or videos in uncontrolled set-
tings. Closely related to structure-from-motion and bundle
adjustment, [2, 10, 37, 67] take videos as input and jointly
estimate cameras and reconstruct human bodies; [17, 40]
further ground the bodies in 3D scenes.

We focus on the more general scenario in which the
input is a single image. SOTA methods use parametric
body models [27, 41, 47, 70] and estimate the parameters
either by fitting to detected image features [5, 47, 66] or
by regressing directly from pixels with deep neural net-
works [7, 15, 24, 26, 28, 35, 52, 53, 59, 71, 73, 74].
All these approaches, including non-parametric approaches
[36, 54, 55, 75], assume weak perspective/orthographic pro-
jection or pre-define the focal length as a large constant for
all images. Additionally, they all assume zero camera ro-
tation, which entangles body rotation and camera rotation.
As a result, these camera models have only three parame-
ters, capturing the camera translation relative to the body.

Kissos et al. [31] identify this problem and show that re-
placing focal length with a constant closer to ground truth,
i.e. f = 5000 → 2200, improves results. Wang et al. [64]
demonstrate that jointly estimating camera viewpoints and
3D human poses improves cross-dataset generalization. To
show this, they train a 3D pose estimation model on avail-
able 3D human pose datasets in a supervised way. However,
these datasets are limited in terms of camera viewpoint and
focal length diversity, background, and number of subjects.

In contrast to the above methods, SPEC generalizes to in-
the-wild settings, varied camera intrinsics and viewpoints.
Single-image Camera Calibration. Recent work [19, 30,
65, 77] directly estimates camera parameters from a single
image. Zhu et al. [77] also recover the height of some scene
objects, e.g. people and cars, together with the camera ge-
ometry. They estimate 2D human poses but not 3D bodies.
To estimate camera rotations and fields of view, these meth-
ods train a neural network to leverage geometric cues in the
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Figure 2: Illustration of IWP-cam and SPEC. Rc and tc are
camera rotation and translation. Rb and tb are body orien-
tation and translation. All are defined in world coordinate.

image without calibration boards or body keypoints. They
discretize the continuous space of rotation into bins, cast-
ing the problem as a classification task and applying cross-
entropy [65] or KL-divergence [19, 77] losses. These losses
unfortunately ignore the ordering in target spaces. We de-
vise new losses to retain the concept of distance in the orig-
inal space, leading to better estimated cameras.

3. Method
3.1. Preliminaries

A pinhole camera maps a 3D point X ∈ R3 to an image
pixel x ∈ R2 through x = K(RcX+ tc), where K ∈ R3×3

is the intrinsic matrix storing focal length fx, fy and the
principal point (ox, oy). We follow previous work and omit
skew, radial and tangential distortion. Extrinsic parameters
are Rc ∈ SO(3) and tc = (tcx, t

c
y, t

c
z) ∈ R3, represent-

ing camera rotation and translation in the world coordinate
frame, respectively.

We estimate a parameteric human body model, SMPL
[41, 47], that deforms a predefined human surface M ac-
cording to body pose θ and shape β. When both body trans-
lation tb and body orientation Rb are zero, the mesh is lo-
cated near the origin of world coordinates, facing the z+

direction and y+ is the up-vector, as visualized in Fig. 2(a).
Existing approaches [5, 7, 15, 24, 28, 32, 47, 59, 73] as-

sume zero camera rotation, Rc = I, and estimate the camera
translation tc in two ways: (1) by fitting the body joint co-
ordinates to 2D keypoints [5, 47, 74] or (2) by predicting
weak perspective camera parameters (s, tcx, t

c
y) with a neu-

ral network, where the scale parameter s is converted to tcz
[28, 29, 32, 35]. See Sup. Mat. for details of this conver-
sion. The underlying assumption here is weak perspective
projection. It is assumed that the camera is placed very far
from the person, such that depth variations in the z coordi-
nate of the person are negligible compared to the distance
from the camera. This is violated regularly in natural im-
ages where it is common that the distance from the camera
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Figure 3: Softargmax-
biased-L2 penalizes un-
derestimates of vfov less
than over estimates.

to the body is no more than the height of the body itself.
For intrinsic parameters, [5, 32, 35, 47] set the focal

length as a large constant fx = fy = f ≡ 5000 to meet
the weak-perspective assumption and set the principal point
(ox, oy) at the center of the resized cropped image around
the person, while [28, 73, 74] directly apply weak perspec-
tive projection x = sX + tc. Despite the differences in
modeling projection and translation, one common feature
of these simplified cameras is that they only have three un-
knowns: (s, tcx, t

c
y) or equivalently (tcx, t

c
y, t

c
z). We refer to

them collectively as IWP-cam in this paper, standing for
Identity rotation and Weak Perspective.

Note that both camera variables (Rc, tc) and body vari-
ables (Rb, tb) are expressed in world coordinates, not in
camera space. Given just one single-view image, the net-
work/optimizer can change both (Rc, tc) and (Rb, tb) to
explain the image observations. IWP-cam addresses this
by assuming Rc = I and tb = 0 to solve only for camera
translation tc and body orientation Rb, or more precisely,
the body orientation in the camera space: Rb

c = RcRb. See
Fig. 2(a). This approach is a key reason why most meth-
ods evaluate accuracy after Procrustes alignment of the es-
timated body to the ground truth.

IWP-cam works well when the weak-perspective as-
sumption holds. However, images captured by cameras
with significant pitch and smaller focal lengths, such as
those in Fig. 1 and Fig. 5, have foreshortening distortion
that breaks this assumption because changes in the z coor-
dinate of the 3D body are no longer negligible compared to
the distance from the camera. IWP-cam expects HPS meth-
ods to absorb this camera pitch α into the relative body ori-
entation Rb

c, but in practice, due to the mismatch in focal
length, the optimization often unnecessarily changes body
pose; e.g. the wrong arm and leg poses in Fig. 1(b).

3.2. Camera Calibration from a Single Image

Inspired by single-view camera calibration and metrol-
ogy [19, 30, 65, 77], we estimate camera rotation Rc and
focal length f from a single RGB image. By lifting the
zero camera rotation constraint, i.e. Rc ̸= I, and directly
estimating Rc, we bypass the camera-relative body ori-
entation Rb

c, and thus disentangle camera rotations from
body orientations. Doing so allows us to handle perspec-
tive/foreshortening distortion while keeping a consistent
xz-plane aligned ground plane located at [0, y, 0]. Utilizing
better focal length also improves the pose estimation quality

by leveraging accurate perspective projection.
Specifically, camera rotation is parameterized by three

angles: pitch α, roll ϕ and yaw. Since focal length in pixels
has an unbounded range and it changes whenever one re-
sizes images, we estimate vertical field of view (vfov) υ in
radians and convert it to focal length fy via:

fy =
1
2h

tan( 12υ)
, (1)

where h is the image height in pixels. We follow [77] to as-
sume zero camera yaw and fx = fy = f . Our camera thus
has three more parameters – pitch, α, roll, ϕ, and vertical
field of view, υ, in addition to the original (s, tcx, t

c
y). Since

the three new parameters are all in radians, we choose to
learn them with one camera calibration model termed Cam-
Calib. We place the camera at the origin so tc = [0, 0, 0],
as depicted in Fig. 2(b), and leave the estimation of body
translation tb to the downstream body estimator.

Many human body reconstruction networks take only a
cropped image patch around the person as input. In contrast,
CamCalib takes the uncropped full-frame image to predict
pitch α, roll ϕ, and vfov υ, which are the same for all sub-
jects in the image. We argue that this is beneficial because
the full image contains rich cues that facilitate camera cal-
ibration. For example, there are abundant geometric cues,
e.g. vanishing points and lines, available to help determine
camera rotations and field of view in the original image.
Following [19, 30, 77], we use a CNN as the backbone for
CamCalib and discretize the spaces of pitch α, roll ϕ, and
vfov υ into B bins, converting the regression problem into
a B-way classification problem. However, instead of cross-
entropy [65] or KL-divergence [19, 77] losses, we aggregate
the predicted probability mass using a softargmax opera-
tion, i.e. computing the expectation value of the prediction,
and measure its difference to the ground truth with an L2

loss which we term Softargmax-L2. Thus, we avoid the
difficulty of regressing in a continuous target space while
retaining the notion of distance in the loss. The detailed
formulation of Softargmax-L2 is provided in the Sup. Mat.

Furthermore, as pointed out by [31, 72] and shown in the
Sup. Mat., predicting larger focal lengths than the ground
truth (or equivalently smaller fov) is less harmful to the re-
constructed 3D poses than predicting smaller focal lengths
(larger fov). We therefore apply an asymmetric loss for
vfov υ. As shown in Fig. 3, predictions υ̂ larger than the
ground truth υ yield higher penalty through a standard L2

loss, while the penalty for smaller predictions υ̂ saturates
via a Geman-McClure function [13]. We verify the benefits
of all these design choices in Sec. 4.

3.3. Optimization approach: SMPLify-X-cam

Next, we showcase how using the estimated camera pa-
rameters help human body estimation in an optimization-
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Figure 4: SPEC overview. CamCalib takes the whole input image as input and predicts camera pitch α, roll ϕ, and vertical
field of view υ. These parameters are then used to construct camera rotation Rc and intrinsics K. Horizon line (green)
is rendered following [77] to indicate camera rotations. SPEC takes a cropped bounding box as input and extracts image
features using a CNN backbone. Predicted camera parameters from CamCalib are concatenated with image features to
estimate SMPL body parameters θ, β along with the body translation tb. Camera parameters are also taken into account
when computing a loss between the projected 3D joints Ĵ2D and ground truth.

based approach. To this end, we modify the SMPLify-X
method [47]. Given an image, CamCalib predicts camera
pitch α, roll ϕ, and vfov υ. We convert them into camera
rotation Rc = R(α)R(ϕ) and intrinsics, K, storing f =
fx = fy and the principal point (ox, oy) = (w/2, h/2),
where fy is computed from Eq. 1 and w, h are the image
width and height in pixels. Then, we estimate the 2D key-
points J2D using an off-the-shelf 2D keypoint detector [8]
and define the the SMPLify-X-cam energy function as:

E(β, θ,Rc,K, tb) = EJ + Eθ + Eβ , (2)

where β, θ are SMPL shape and pose parameters, tb is
SMPL body translation, Eθ and Eβ are pose and shape
prior terms, and EJ is the data term. We modify the origi-
nal SMPLify-X method to take perspective camera param-
eters into account in the data-term EJ . We obtain SMPL
3D joint locations using a pretrained joint regressor W by
Ĵ3D = WM(θ, β). EJ measures the difference between
the detected J2D and the estimated Ĵ3D , projected on the
image by the estimated camera parameters:

EJ =
∣∣∣∣∣∣ΠĴ3D − J2D

∣∣∣∣∣∣2
2
, where Π = K[Rc| − tb]. (3)

3.4. Learning-based approach: SPEC

To evaluate the effect of estimated camera parameters on
a regression-based method, we take a simple and widely-
used method, HMR [28], as a backbone, which employs a
2D reprojection loss during training that uses the estimated
IWP-cam. We incorporate our estimated camera parameters
in two ways: (1) by using them as Rc and K during the pro-
jection of 3D joints like in Eq. 3 and (2) by conditioning the

fully connected layers, which estimate SMPL parameters,
with Rc and υ. Figure 4 gives an overview of SPEC.

Given an image, we first estimate the camera pitch α,
roll ϕ, and vfov υ using CamCalib and then convert them
into Rc and K as explained in Sec. 3.3. For human body
regression, we take a cropped bounding-box image as input
and extract image features using a backbone CNN. These
image features are concatenated with Rc and υ and fed
to an iterative regressor [28] to regress SMPL pose θ and
shape β along with body translation tb. By doing so, SPEC
learns to disentangle the SMPL body’s global orientation
Rb from the camera rotation Rc. See Sup. Mat. for the
details of tb. Then, we obtain SMPL 3D joint locations
Ĵ3D = WM(θ, β) and 2D projection Ĵ2D = ΠĴ3D as
in Eq. 3. Overall, our total loss for each training sample is:
L = λ3DL3D + λ2DL2D + λSMPLLSMPL where

L3D = ∥Ĵ3D − J3D∥2F , (4)
L2D = ∥Ĵ2D − J2D∥2F , (5)

LSMPL = ∥θ̂ − θ∥22 + ∥β̂ − β∥22, (6)

where ·̂ represents the prediction for the corresponding vari-
able. λ’s are scalar coefficients to balance the loss terms.

Note that we define both 3D and 2D losses on the body
joints. This is because the 3D ground truth we use for train-
ing is not always reliable and thus the 2D joints provide im-
portant additional image cues, which can be exploited par-
ticularly well when using the correct camera geometry.

4. Experiments
We focus the evaluation on CamCalib and SPEC; for

evaluation of SMPLify-X-cam, see Sup. Mat.
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4.1. Datasets

Pano360 dataset. Previous work [19, 77], uses the
SUN360 [68] dataset to train camera calibration networks,
which is unfortunately no longer available due to licens-
ing issues. Therefore, we have curated a new dataset of
equirectangular panorama images called Pano360. The
Pano360 dataset consists of 35K panoramic images of
which 34K are from Flickr and 1K rendered from photo-
realistic 3D scenes. Following previous work [19, 77], we
randomly sample the camera pitch, roll, yaw, and vertical
field of view to generate 400K training and 15K validation
images. We use these to train our CamCalib model.

SPEC-SYN. Existing datasets, used to train HPS regres-
sors, contain limited camera variation. Hence, they are
not ideal for training and evaluating the effects of cam-
era estimation on HPS. Therefore, we created a photore-
alistic synthetic dataset, inspired by AGORA [46], to train
and evaluate our model. It has high-quality textured hu-
man 3D scans and provides reference SMPL(-X) param-
eters for them. We place these scans in 5 different large
high-quality photorealistic 3D scenes, enabling the genera-
tion of many unique views. We randomly sample camera
viewpoints, α ∼ U(−30◦, 15◦) and ϕ ∼ N (0◦, 2.8◦), and
focal lengths, υ ∼ U(70◦, 130◦), to add diversity. In total,
we generate 22191 images with 71982 ground truth bodies
for training, and 3783 images with 12071 bodies for testing.

SPEC-MTP. To evaluate calibrated HPS (CHPS) meth-
ods on real data, we collect a new dataset with high-
quality pseudo ground truth using Amazon Mechanical
Turk (AMT). Following the idea of the MTP dataset [45],
we ask AMT workers to mimic 10 poses for which we have
3D ground truth. While the person maintains a pose, a sec-
ond person records a video from different viewpoints. In ad-
dition, the worker calibrates the camera and provides their
height and weight. We extend SMPLify-XC [45] and use
the calibrated camera to fit the SMPL-X model to multiple
video frames. See Sup. Mat. for details. In total, we collect
64 videos of 7 subjects (4 male, 3 female) and extract 3284
images at a frame rate of 1 fps.

Other datasets. To train 3D CHPS estimation, we use
the 3DPW [63], COCO [39], MPI-INF-3DHP [42], and Hu-
man3.6M [21] datasets. We evaluate SPEC using separate
test data: 3DPW-test, SPEC-SYN, and SPEC-MTP. Since
there are no ground truth 3D body and camera annotations
for COCO, we use CamCalib to estimate camera parame-
ters and SMPLify-X-cam to obtain pseudo 3D body ground
truth, using EFT [26] annotations as the initialization.

4.2. Evaluation metrics

The mean per joint position error (MPJPE), Procrustes-
aligned mean per joint position error (PA-MPJPE), and per
vertex error (PVE) are the most commonly-used evalua-
tion metrics in the literature. PA-MPJPE exists as a met-

Methods vfov υ◦ ↓ pitch α◦ ↓ roll ϕ◦ ↓
ScaleNet [77] 5.68 2.61 1.41

CamCalib (KL Loss) 3.53 2.32 1.15
CamCalib (Softargmax-L2) 3.34 2.06 1.11
CamCalib (Softargmax-biased-L2) 3.24 1.94 1.02

Table 1: Regressing camera parameters. CamCalib
methods are trained and tested on the Pano360 dataset.
ScaleNet [77] results use the authors’ implementation.

ric specifically because current HPS methods that use IWP-
cam reconstruct bodies in camera coordinates Ĵ cam

3D . Pro-
crustes alignment “hides many sins” in that it removes the
rotation of the body caused by an unknown camera pose.
See Sup. Mat. for details of how PA-MPJPE and MPJPE
are computed.

Instead, we propose variants of MPJPE and PVE that
compute the error in world coordinates without the need
of camera information and dub them W-MPJPE and W-
PVE. Since SPEC disentangles camera and body rotations,
the predictions reside in world coordinates Ĵ world

3D and W-
MPJPE is computed as ∥Ĵ world

3D − J3D∥. For existing
SOTA methods, we report two versions of W-MPJPE: (1)
∥Ĵ cam

3D − J3D∥ and, (2) ∥Rc−1Ĵ cam
3D − J3D∥, where Rc

is the estimated camera rotation by CamCalib. By report-
ing (2), we do not assume known camera rotations for
any method and compare them all in world coordinates.
This also illustrates the effect of using CamCalib with prior
work. We discuss these metrics in greater detail and report
MPJPE & PVE in the Sup. Mat.

4.3. Implementation details

CamCalib. We follow the implementation of [19, 77]
but use ResNet-50 as the backbone and predict pitch α, roll
ϕ, and vfov υ with separate fully-connected layers. Each
parameter has B = 256 bins and we apply Softargmax-
biased-L2 for υ, Softargmax-L2 for α and ϕ. The model
is trained with images of varied resolutions for 30 epochs.
The Pano360 dataset is used for training and evaluation.

SPEC. Similar to the original HMR [28], we use a
ResNet-50 backbone, followed by fully-connected layers
that iteratively regress SMPL parameters. We do not ap-
ply HMR’s adversarial discriminator since we use psuedo-
ground-truth 3D training data. The Adam optimizer with
a learning rate of 5e−5 is used. For the first 150 training
epochs we use the COCO and SPEC-SYN datasets, and
then incorporate MPI-INF-3DHP and Human3.6M. Total
training takes around 175 epochs, ∼4-5 days.

Note that CamCalib and SPEC are trained separately.
Training them jointly is not possible because we lack an
in-the-wild dataset that has both ground-truth bodies and
diverse camera focal lengths and views. SPEC-MTP meets
these requirements but is small so we us it for evaluation.
During inference, CamCalib and SPEC run jointly.
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4.4. Single-image camera calibration results

Table 1 reports the mean angular error in camera pitch
α, roll ϕ, and vfov υ for different camera calibration meth-
ods on the Pano360 test set. For reference, we inlcude the
open-source implementation of ScaleNet [77], which uses a
different backbone than CamCalib. We also train ScaleNet
with our backbone on Pano360 (CamCalib (KL loss) in
Table 1). We evaluate the effect of different loss func-
tions, i.e. KL-divergence, Softargmax-L2, and Softargmax-
biased-L2, and define the final CamCalib network to be the
best performing version (Softargmax-biased-L2).

4.5. SPEC evaluation

Tables 2, 3, and 4 show the results of recent SOTA meth-
ods on the SPEC-MTP, SPEC-SYN and 3DPW datasets.

The correct metric. We believe W-MPJPE is the metric
that best reflects performance in real-world applications, so
we report W-MPJPE, PA-MPJPE, and W-PVE. MPJPE is
also reported and discussed in Sup. Mat. For W-MPJPE and
W-PVE, we report both definitions from Sec. 4.2, i.e. (1)/(2)
in the tables. Note that SPEC has the same error under both
metrics. PA-MPJPE has only one entry because Procrustes
alignment removes the effect of camera rotation (and more);
this effectively hides the fact that SOTA methods do not
estimate global pose well.

Comparison to the state-of-the-art. To compute the
performance of SOTA methods, we use their open source
implementations. We use HMR∗ as our IWP-cam baseline,
which is HMR [28] trained with the same datasets as SPEC,
i.e. COCO, SPEC-SYN, MPI-INF-3DHP, and Human3.6M.
Again, we do not use HMR’s discriminator since we train
with ground-truth or pseudo ground-truth 3D labels. For
I2L-MeshNet [44], we use the SMPL output of this method
instead of non-parametric mesh to be able to report W-PVE
and denote this with †.

Since W-MPJPE and W-PVE measure the error w.r.t. the
body in world coordinates, these measures reveal the per-
formance improvement of SPEC over the SOTA when the
camera deviates from the IWP-cam assumption. Compared
a dataset like 3DPW, SPEC-MTP and SPEC-SYN have sig-
nificantly more variety in focal lengths and viewpoints as
shown in Fig. 5. As a result, SPEC yields a larger improve-
ment in W-MPJPE and W-PVE over the SOTA for these
datasets. Using explicit camera information is a key driver
of this improvement. The improvement in PA-MPJPE is
less significant, suggesting that the largest improvements
come from estimating the body in world coordinates rather
than better articulated pose. This is valuable in many ap-
plications, e.g. human-scene interaction, where bodies and
objects are often reconstructed from distinct methods but
should reside in a common space.

Figure 6 analyzes W-MPJPE on SPEC-SYN for differ-
ent camera viewpoints and focal lengths. SPEC results are

Methods W-MPJPE PA-MPJPE W-PVE

GraphCMR [36] 175.1 / 166.1 94.3 205.5 / 197.3
SPIN [35] 143.8 / 143.6 79.1 165.2 / 165.3
PartialHumans [52] 158.9 / 157.6 98.7 190.1 / 188.9
I2L-MeshNet† [44] 167.2 / 167.0 99.2 199.0 / 198.1

HMR∗ [28] 142.5 / 128.8 71.8 164.6 / 150.7
SPEC 124.3 / 124.3 71.8 147.1 / 147.1

Table 2: Results of SOTA methods on SPEC-MTP dataset.
We use the implementations provided by the authors to ob-
tain results. HMR∗ means that we train HMR using the
same data as SPEC for fair comparison. †means we use the
SMPL output of this method instead of the non-parametric
mesh to be able to report W-PVE. All numbers are in mm.

Methods W-MPJPE PA-MPJPE W-PVE

GraphCMR [36] 181.7 / 181.5 86.6 219.8 / 218.3
SPIN [35] 165.8 / 161.4 79.5 194.1 / 188.0
PartialHumans [52] 169.3 / 174.1 88.2 207.6 / 210.4
I2L-MeshNet† [44] 169.8 / 163.3 82.0 203.2 / 195.9

HMR∗ [28] 128.7 / 96.4 55.9 144.2 / 111.8
SPEC 74.9 / 74.9 54.5 90.5 / 90.5

Table 3: Results of SOTA methods on SPEC-SYN. See Ta-
ble 2 caption.

Methods W-MPJPE PA-MPJPE W-PVE

GraphCMR [36] 137.8 / 129.4 69.1 158.4 / 152.1
SPIN [35] 122.2 / 116.6 59.0 140.9 / 135.8
Partial Humans [52] 139.4 / 132.9 76.9 160.1 / 152.7
I2L-MeshNet† [44] 133.3 / 119.6 60.0 154.5 / 141.2

HMR∗ [28] 119.2 / 104.0 53.7 136.2 / 120.6
SPEC 106.4 / 106.4 53.2 127.4 / 127.4

Table 4: Results of SOTA methods on 3DPW test set. See
Table 2 caption.

Methods W-MPJPE PA-MPJPE W-PVE

HMR∗ 128.7 / 96.4 55.9 144.2 / 111.8
HMR∗ + c 120.4 / 84.2 54.0 135.3 / 98.8
HMR∗ + c + f 118.3 / 85.1 54.0 132.8 / 99.7

HMR∗ + c + f + Rc 77.2 / 77.2 55.3 93.8 / 93.8
SPEC 74.9 / 74.9 54.5 90.5 / 90.5

Table 5: Ablation studies with SPEC-SYN. c: using the
image center as camera center. f and Rc: using CamCalib
estimated focal length and camera rotation, respectively.

similar across different camera settings, while the HMR∗ is
less robust to values that deviate from its assumptions.

Ablation experiments. We ablate different camera pa-
rameters and components of SPEC to investigate their effect
on performance. We report results on the SPEC-SYN test
data (Table 5) because it has challenging cameras; for abla-
tion results on 3DPW please see Sup. Mat.

We use HMR∗ as our baseline and use the same datasets
and training configurations for all methods. To obtain the
predicted 2D joints, Ĵ2D , HMR∗ uses the bounding-box
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(a) Input Image (b) HMR* - front (c) HMR* - side (d) CamCalib (e) SPEC - front (e) SPEC - side

Focal length   = 698 px
Camera pitch = 20.1o

Camera roll    = -1.6o

Focal length   = 1342 px
Camera pitch = 16.2o

Camera roll    = -2.1o

Focal length   = 2227 px
Camera pitch = 2.2o

Camera roll    = 1.7o

Figure 5: Qualitative results. Top & middle: SPEC-MTP; bottom: SPEC-SYN. We also provide failure cases in Sup. Mat.
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Figure 6: Breakdown of W-MPJPE per camera focal length
and pitch range.

center as the principal point. We start by changing it to the
image center, i.e. ox = w/2, oy = h/2 denoted as “HMR∗

+ c”. This ensures a better projective geometry than using
the bounding-box center as the image center and already
improves results. Next, we replace the fixed focal length
of 5000 with the values estimated by CamCalib, denoted as
“HMR∗ + c + f”. “HMR∗ + c + f + Rc” uses Rc instead
of the identity matrix as the camera rotation during projec-
tion. Finally, SPEC uses c, f , and Rc both during projection
and as a conditioning input to the final stage of HMR∗ pre-
dictions. Overall, improving the camera model improves
W-MPJPE and W-PVE. Conditioning the network on the
camera parameters helps, but we suspect that better camera
conditioning schemes can be employed to make the network
more aware of the camera geometry.

Qualitative results. Figure 5 shows representative re-
sults. HMR∗ assumes IWP-cam and yields incorrect body
poses (legs in top row) and incoherent body orientations
(middle & bottom); SPEC predicts overall more globally

coherent bodies as can be seen in side-view images.

5. Conclusion

In this paper, we demonstrate that a) camera geometry
can be estimated from images and b) can effectively be
leveraged to improve 3D HPS accuracy. Existing meth-
ods make simplifying assumptions about the camera: weak-
perspective projection, large constant focal length, and zero
camera rotation. To go beyond these simple assumptions,
we introduce SPEC, the first 3D HPS method that regresses
a perspective camera from a single image and employs this
to reconstruct 3D human bodies more accurately. Using the
estimated camera parameters improves both SOTA camera
regression methods and HPS regression methods. We in-
troduce two new datasets, i.e. SPEC-MTP and SPEC-SYN,
with accurate camera and 3D body annotations to showcase
the effect of SPEC through ablation studies and comparison
with the SOTA and to foster future research in this area.
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