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Figure 1: We explore open-set recognition, which requires the ability to discriminate open-set test examples outside K classes of interest.

(a) Past work has suggested that GAN discriminators can serve as open-set likelihood functions, but this does not work well due to instable

training of GANs [47, 44, 39, 56, 30]. (b) Outlier Exposure [25] exploits some outlier data to learn a binary discriminator D for open-

set discrimination. Because outliers observed during training will not exhaustively span the open-world, the discriminator D tends to

generalize poorly to diverse open data [48]. (c) We introduce OpenGAN, which augments training outliers with fake open data synthesized

by a generator G trained to fool the discriminator D. Importantly, we find that a small number of outliers stabilizes training by enabling

effective model selection of the discriminator D. (d) Because we are concerned with accurate discrimination rather than realistic pixel

generation, we find it more efficient to generate (and discriminate) features from the off-the-shelf K-way classification network. This

allows OpenGAN to be implemented via a lightweight discriminator head built on top of an existing K-way network, enabling closed-

world systems to be readily modified for open-set recognition.

Abstract

Real-world machine learning systems need to analyze
novel testing data that differs from the training data. In
K-way classification, this is crisply formulated as open-
set recognition, core to which is the ability to discrimi-
nate open-set data outside the K closed-set classes. Two
conceptually elegant ideas for open-set discrimination are:
1) discriminatively learning an open-vs-closed binary dis-
criminator by exploiting some outlier data as the open-set,
and 2) unsupervised learning the closed-set data distribu-
tion with a GAN and using its discriminator as the open-
set likelihood function. However, the former generalizes
poorly to diverse open test data due to overfitting to the
training outliers, which unlikely exhaustively span the open-
world. The latter does not work well, presumably due to
the instable training of GANs. Motivated by the above,
we propose OpenGAN, which addresses the limitation of
each approach by combining them with several technical
insights. First, we show that a carefully selected GAN-
discriminator on some real outlier data already achieves
the state-of-the-art. Second, we augment the available set of
real open training examples with adversarially synthesized
“fake” data. Third and most importantly, we build the dis-
criminator over the features computed by the closed-world
K-way networks. Extensive experiments show that Open-
GAN significantly outperforms prior open-set methods.

1. Introduction

Machine learning systems that operate in the real open-

world invariably encounter test-time data that is unlike

training examples, such as anomalies or rare objects that

were insufficiently or even never observed during train-

ing. Fig. 2 illustrates two cases in which a state-of-the-art

semantic segmentation network misclassifies a “stroller”/

“street-market” — a rare occurrence in either training or

testing — as a “motorcycle”/“building”. This failure could

be catastrophic for an autonomous vehicle.

Addressing the open-world has been explored through

anomaly detection [59, 25] and out-of-distribution detec-

tion [29]. In K-way classification, it can be crisply formu-

lated as open-set recognition, which requires discriminating

open-set data that belongs to a (K+1)th “other” class, out-

side the K closed-set classes [45]. Typically, open-set dis-

crimination assumes no training examples from the “other”

class (i.e., open-training data) [5, 54, 35]. In this setup, an

elegant idea is to learn the closed-set data distribution with

a GAN and use a GAN-discriminator as the open-set like-

lihood function (Fig. 1a) [47, 44, 39, 56, 30]. However, it

does not work well due to instable training of GANs. Re-

cent work has shown that outlier exposure (Fig. 1b), or the

ability to train on some outlier data as open-training exam-

ples, can work surprisingly well via the training of a sim-

ple open-vs-closed binary discriminator [15, 25]. However,
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Figure 2: We motivate open-set recognition with safety concerns

in autonomous vehicles (AVs). Contemporary benchmarks such

as Cityscapes [11] ignore a sizeable “other” pixels for evaluation,

which are outside K classes of interest. As a result, most state-

of-the-art segmentation approaches [52] also ignore them during

training, which then become open-set examples. Perhaps surpris-

ingly, the ignored “other” pixels include vulnerable objects like

wheelchairs and strollers (upper row). Here, a semantic segmen-

tation network [52] does not model strollers (upper row) or street-

market (lower row), which are outside the K closed-set classes

in Cityscapes. The network misclassifies the stroller as a “motor-

cycle”, and the street-market as “building”. Such misclassifica-

tions can be a critical mistake when fed into AVs because these

objects require different plans for obstacle avoidance (e.g., “yield”

or “slow-down”). Fig. 4 shows qualitative results by our approach.

such discriminators generalize poorly to diverse open-set

data [48] due to overfitting to the available set of training

outliers, which are often biased and fail to exhaustively span

the open-world. Motivated by above, we introduce Open-
GAN, a simple approach that dramatically improves open-

set classification accuracy by incorporating several key in-

sights. First, we show that using outlier data as a valset to

select the “right” GAN-discriminator does achieve the state-

of-the-art on open-set discrimination. Second, with outlier

exposure, we augment the available set of open-training

data by adversarially generating fake open examples that

fool the binary discriminator (Fig. 1c). Third and most im-

portantly, rather than defining discriminators on pixels, we

define them on off-the-shelf (OTS) features computed by

the closed-world K-way classification network (Fig. 1d).

We find such discriminators generalize much better.

Our formulation differs in three ways from other open-

set approaches that employ GANs. (1) Our goal is not
to generate realistic pixel images, but rather to learn a ro-

bust open-vs-closed discriminator that naturally serves as

an open-set likelihood function. Because of this, our ap-

proach might be better characterized as a discriminative

adversarial network! (2) We train the discriminator with

both fake data (synthesized from the generator) and real
open-training examples (cf. outlier exposure [25]). (3) We

train GANs on OTS features rather than RGB pixels. We

show that OpenGAN significantly outperforms prior work

for open-set recognition across a variety of tasks including

image classification and pixel segmentation. Moreover, we

demonstrate that our technical insights improve the accu-

racy of other GAN-based open-set methods: training them

on OTS features and selecting their discriminators via vali-

dation as the open-set likelihood function.

2. Related Work
Open-Set Recognition. There are multiple lines of work

addressing open-set discrimination, such as anomaly detec-

tion [9, 29, 59], outlier detection [44, 39], and open-set

recognition [45, 19]. The typical setup for these problems

assumes that one does not have access to training examples

of open-set data. As a result, many approaches propose to

first train a closed-world K-way classification network on

the closed-set [24, 5] and then exploit the trained network

for open-set discrimination [45, 28, 35]. Some others train

“ground-up” models for both closed-world K-way classi-

fication and open-set discrimination by synthesizing fake

open data during training, oftentimes sacrificing the clas-

sification accuracy on the closed-set [18, 33, 54, 50]. To

recognize open-set examples, they resort to post-hoc func-

tions like density estimation [59, 57], uncertainty model-

ing [17, 29], and input image reconstruction [39, 20, 14, 50].

We also explore open-set recognition through K-way clas-

sification networks, but we show OpenGAN, a simple and

direct method of training an open-vs-closed classifier on ad-

verserial data, performs significantly better than prior work.

Open-Set Recognition with GANs. As GANs can learn

data distributions [21], conceptually, a GAN-discriminator

trained on the closed-set naturally serves as an open-set

likelihood function. However, this does not work well [47,

44, 39, 56, 30], presumably due to instable training of

GANs. As a result, previous GAN-based methods focus

on 1) generating fake open-set data to augment the training

set, and 2) relying on the reconstruction error for open-set

recognition [53, 47, 44, 1, 13]. With OpenGAN, we show

that GAN-discriminator can achieve the state-of-the-art for

open-set discrimination once we perform model selection

on a valset of outlier examples. Therefore, unlike prior ap-

proaches, OpenGAN directly uses the discriminator as the

open-set likelihood function. Moreover, our final version of

OpenGAN generates features rather than pixel images.

Open-Set Recognition with Outlier Exposure. [15, 25,

43] reformulate the problem with the concept of “outlier ex-

posure” which allows methods to access some outlier data

as open-training examples. In this setting, simply train-

ing a binary open-vs-closed classifier works surprisingly

well. However, such classifiers easily overfit to the avail-

able set of open-training data and generalize poorly, e.g.,

in a “cross-dataset” setting where open-set testing data dif-

fers from open-training data [48]. It appears fundamentally

challenging to collect outlier data to curate an exhaustive

training set of open-set examples. Our approach, Open-

GAN, attempts to address this issue by augmenting the

training set with adversarial fake open-training examples.
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3. OpenGAN for Open-Set Recognition
Generally, solutions to open-set recognition contain two

steps: (1) open-set discrimination that classifies testing ex-

amples into closed and open sets based on the open-set like-

lihoods, and (2) K-way classification on closed-set from

step (1) [45, 4, 35]. The core problem to open-set recogni-

tion is the first step, i.e., open-set discrimination. Typically,

open-set discrimination assumes no availability of open-set

training data [33, 35]. [15, 25] convincingly demonstrate

that outlier exposure, or the ability to train on some out-

lier examples as open-training data, can greatly improve

open-set discrimination via the training of a simple open-

vs-closed binary classifier (Fig. 1b). Because it is chal-

lenging to construct a training set that exhaustively spans

the open-world, such a classifier may overfit to the out-

lier data and not sufficiently generalize [48]. We demon-

strate that OpenGAN alleviates this challenge by generat-

ing fake open-set training examples using a generator that

is adversarially trained to fool the classifier. Importantly,

with model selection on a valset, OpenGAN is also effec-

tive under the classic setup which assumes no availability

of open-training data.

3.1. Methodology

Let x be a data example, which can be an RGB image

or its feature representation. We will show that using the

latter performs better. Let Dclosed(x) be the closed-world

distribution over x — that is, closed-set data from the K
closed-set classes. Let Dopen(x) be the open-set data distri-

bution of examples which do not belong to the closed-set.

Binary Classifier. We train a binary classifier D from

both closed- and open-set data:

max
D

Ex∼Dclosed
[ logD(x)]+λo ·Ex∼Dopen [ log (1−D(x))]

where D(x) = p(y=“closed-set”|x). Intuitively, we tune

λo to balance the closed- and open-set training examples.

This simple method is effective when the open-training ex-

amples are sufficiently representative of testing-time open-

set data [25], but underperforms when they fail to span the

open-world [48].

Synthetic Open Data. One solution to the above is

to exploit synthetic data, armed with which we might ex-

pect the classifier D to perform better. Assume we have

a generator network G(z) that produces synthetic images

given (Gaussian normal) random noise inputs z ∼ N . We

can naively add them to the pool of negative or open-set

examples that D should not fire on. But these synthetic

images might be too easy for D to categorize as open-set

data [32, 10]. A natural solution is to adversarially train

the generator G to produce difficult examples that fool the

classifier D using a GAN loss:

min
G

Ez∼N
[
log (1−D(G(z)))

]
(1)

Because a perfectly trained generator G would generate re-

alistic closed-set images, eventually making the discrimina-

tor D inapplicable for open-set discrimination. We find that

the following two techniques easily resolve this issue.

OpenGAN trains with both the real open&closed-set

data and the fake open-data into a single (GAN-like) mini-

max optimization over D and G:

max
D

min
G

Ex∼Dclosed [ logD(x)]

+ λo · Ex̄∼Dopen [ log (1−D(x̄))]

+ λG · Ez∼N [ log (1−D(G(z)))]

(2)

where λG controls the contribution of generated fake open-

data by G. When there are no open training examples (i.e.,

λo=0), the above minimax optimization can still train a dis-

criminator D for open-set classification. In this case, train-

ing an OpenGAN is equivalent to training a normal GAN

and using its discriminator as the open-set likelihood func-

tion. While the literature finds GAN-discriminator to not

work well, we show it does achieve the state-of-the-art once
it is selected using a valset (detailed below). To distinguish

our contribution on the crucial step of model selection via

validation, we call this method OpenGAN-0.

Open Validation. Model selection is challenging for

GANs. Typically, one resorts to visual inspection of gener-

ated images from different model checkpoints to select the

generator G [21]. In our case, we must carefully select the

discriminator D. We experimented with many approaches

such as using the last model checkpoint or selecting the one

with minimum training error, but neither works, because ad-

versarial training will eventually lead to a discriminator D
that is incapable of discriminating closed-set data and fake

open-set data generated by G (details in the supplemental).

We find it crucial to use a validation set of real outlier data to

select D, when D achieves the best open-vs-closed classi-

fication accuracy on the valset. We find the performance to

be quite robust to the val-set of outlier examples, even when

they are drawn from a different distribution from those en-

countered at test-time (Table 3 and 4).

3.2. Further Discussion on Prior GAN Methods

Numerous works have used GANs for open-set discrim-

ination. We compare OpenGAN to this literature.

Discriminator vs. Generator. GANs mostly aim at

generating realistic images [2, 7]. As a result, prior work

in open-set recognition has focused on using GANs to gen-

erate realistic open-training images [18, 27, 33]. These ad-

ditional images are used to augment the training set for

learning an open-set model, which oftentimes is designed

for both the closed-world K-way classification and open-set

discrimination [18, 27, 33]. In our case, we do not learn a

separate open-set model but directly use the already-trained

discriminator as the open-set likelihood function.
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Features vs. Pixels. GANs are typically used to gen-

erate realistic pixel images. As a result, many GAN-based

open-set methods focus on generating realistic images to

augment the closed-set training data [39, 56, 25]. However,

generating high-dimensional realistic images is challenging

per se [2, 7] and may not be necessary to open-set recogni-

tion [39]. As such, we build GANs over OTS feature em-

beddings learned by the closed-world K-way classification

networks, e.g., over pre-logit features from the penultimate

layer. This allows for exploiting an enormous amount of

engineering effort “for free” (e.g., network design).

Classification vs. Reconstruction. We note that most, if

not all, GAN-based methods largely rely on the reconstruc-

tion error for open-set discrimination [47, 44, 39, 56, 35].

The underlying assumption is that closed-set data produces

lower reconstruction error than the open-set. While this

seems reasonable, it is challenging to reconstruct complex,

high-resolution images [2, 7], like Cityscapes images shown

in Fig. 2. On the contrary, for open-set discrimination,

we directly use the discriminator as the open-set likelihood

function. While this has been used as a baseline which does

not work well in the literature [47, 44, 39, 56, 30], to the best

of our knowledge, it is the first time that GAN-discriminator

outperforms prior art on various benchmarks, thanks to the

model selection via open validation (Section 3.1).

4. Experiment
We conduct extensive experiments to validate OpenGAN

under various setups, and justify the advantage of exploit-

ing OTS features and using the GAN-discriminator as the

open-set likelihood function. We first briefly introduce three

experimental setups below (details in later sections).
• Setup-I open-set discrimination splits a single dataset

into open and closed sets w.r.t class labels, e.g., de-

fine MNIST digits 0-5 as the closed-set for training, and

digits 6-9 as the open-set in testing. Although small-

scale, this is a common experimental protocol for open-

set discrimination that classifies open-vs-closed test ex-

amples [33, 35, 38, 57].

• Setup-II open-set recognition requires both K-way clas-

sification on the closed-set and open-set discrimination.

We follow a “less biased” protocol [48] that constructs

the open train&test-sets with cross-dataset images [51].

• Setup-III examines the open-set discrimination at pixel

level in semantic segmentation, which evaluates pixel-

level open-vs-closed classification accuracy [6, 23].

Implementation. We describe how to train the closed-

world K-way classification networks which compute OTS

features used for training OpenGANfea (Fig. 1d) and other

methods (e.g., OpenMax [5] and C2AE [35]). For training

K-way networks under Setup-I and II, we train a ResNet18

model [22] exclusively on the closed-train-set (with K-way

cross-entropy loss). Under Setup-III, we use HRNet [52]

as an OTS network, which is a top ranked model for se-

mantic segmentation on Cityscapes [11]. We choose the

penultimate/pre-logit layer of each K-way network to ex-

tract OTS features. Other layers also apply but we do not

explore them in this work. Over the features, we train

OpenGANfea discriminator (2MB), as well as the gen-

erator (2MB), with a multi-layer perceptron architecture.

For comparison, we also train a ground-up OpenGANpix

over pixels with a CNN architecture (∼14MB) [58]. We

train our OpenGAN models using GAN techniques [40].

Compared to the segmentation network HRNet (250MB),

OpenGANfea is quite lightweight that induces minimal

compute overhead. We conduct experiments with Py-

Torch [36] on a single Titan X GPU. Code is available at

https://github.com/aimerykong/OpenGAN
Evaluation Metric. To evaluate open-set discrimination

that measures the open-vs-closed binary classification per-

formance, we follow the literature [28, 35] and use the area

under ROC curve (AUROC) [12]. AUROC is a calibration-

free and threshold-less metric, simplifying comparisons be-

tween methods and reliable in large open-closed imbalance

situation. For open-set recognition that measures (K+1)-

way classification accuracy (K closed-set classes plus the

(K+1)th open-set class), we report the macro average F1-

score over all the (K+1) classes on the valsets [45, 5].

4.1. Compared Methods

We compare the following representative baselines and

state-of-the-art methods for open-set recognition.

Baselines. First, We explore classic generative mod-

els learned on closed-train-set, including Nearest Neighbors

(NNs) [41] and Gaussian Mixture Models (GMMs) which

were found to perform quite well over L2-normalized OTS

features [26]. We refer the reader to the supplemental for

details of GMMs as they are strong yet underexplored base-

line in the literature. Both models can be used for open-set

discrimination by thresholding NN distances or likelihoods.

We further examine the idea of outlier exposure [25] that

learns an open-vs-closed binary classifier (CLS). Lastly,

following classic work in semantic segmentation [16], we

evaluate a (K+1)-way classifier trained with outlier expo-

sure, in which we use the softmax score corresponding to

the (K+1)th “other” class as the open-set likelihood.

Likelihoods. Many methods compute open-set likeli-

hood on OTS features, including Max Softmax Probability

(MSP) [24] and Entropy [49] (derived from softmax prob-

abilities), and calibrated MSP (MSPc) [29]. OpenMax [5]

fits logits to Weibull distributions [46] that recalibrate soft-

max outputs for open-set recognition. C2AE [35] learns

an additional K-way classifier over the OTS features us-

ing reconstruction errors, which are then used as the open-

set likelihoods. GDM [28] learns a Gaussian Discriminant

Model on OTS features and computes open-set likelihood
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Table 1: Open-set discrimination (Setup-I) measured by area under ROC curve (AUROC)↑. We report methods marked by ∗ with their

best reported numbers in the compared papers. Recall that OpenGAN-0 does not train on outlier data (i.e., λ0=0 in Eq. 2) and only selects

discriminator checkpoints on the validation set. OpenGAN-0fea clearly performs the best. Defined on the off-the-shelf (OTS) features of

closed-world K-way networks, NNfea and OpenGAN-0fea work much better than their pixel version (NNpix and OpenGAN-0pix).

MSP MSPc MCdrop GDM OpenMax GOpenMax OSRCI C2AE CROSR RPL Hybrid GDFR NNpix NNfea OpenGAN OpenGAN

Dataset [24] [29] [17] [28] [5] [18]∗ [33]∗ [35]∗ [54]∗ [10]∗ [57]∗ [37]∗ [41] [41] -0pix -0fea

MNIST .977 .985 .984 .989 .981 .984 .988 .989 .991 .996 .995 — .931 .981 .987 .999
SVHN .886 .891 .884 .866 .894 .896 .910 .922 .899 .968 .947 .935 .534 .888 .881 .988
CIFAR .757 .808 .732 .752 .811 .675 .699 .895 .883 .901 .950 .807 .544 .801 .971 .973
TinyImgNet .577 .713 .675 .712 .576 .580 .586 .748 .589 .809 .793 .608 .528 .692 .795 .907

based on Mahalanobis distance.

Bayesian Networks. Bayesian neural networks estimate

uncertainties via Monte Carlo estimates (MCdrop) [17, 31].

The estimated uncertainties are used as open-set likeli-

hoods. We implement MCdrop via 500 samples.

GANs. GOpenMax [18] and OSRCI [33] train GANs to

generate fake images to augment closed-set data for open-

set recognition. Other types of GANs can also be used for

open-set recognition, such as BiGANs [56], on which we

show our technical insights (e.g., training on OTS features

and directly using the discriminator) also apply (Table 2).

When possible, we train the methods using their open-

source code. We implement NN, CLS and OpenGAN on

both RGB images (marked with pix) and OTS features

(marked with fea) for comparison. For fair comparison, we

tune all the models for all methods on the same val-sets.

4.2. Setup-I: Open-Set Discrimination

Datasets. MNIST/CIFAR/SVHN/TinyImageNet are

widely used in the open-set literature, and we follow the lit-

erature to experiment with these datasets [33, 35]. For each

of the first three datasets that have ten classes, we randomly

split 6 (4) classes of train/val-sets as the closed (open)

train/val-sets respectively. For TinyImageNet that has 200

classes, we randomly split 20 (180) classes of train/val-sets

as the closed (open) train/val-set. On each dataset and for

each method, we repeat five times with different random

splits and report the average AUROC on the val-set [33, 35].

As all methods have small standard deviations in their per-

formance (<0.02), we omit them for brevity.

Results. As this setup assumes no open training data, we

cannot train discriminative classifiers like CLS. But we can

still train OpenGAN-0 that uses GAN-discriminator (with

model selection) as the open likelihood function. We have

two salient conclusions from the results in Table 1. (1)

Methods (e.g., NN and OpenGAN) work better on OTS fea-

tures than pixels, suggesting that OTS features computed

by the underlying K-way network are already good rep-

resentations for open-set recognition. (2) OpenGAN-0fea

performs the best and OpenGAN-0pix is competitive with

prior methods such as GDM and GMM, suggesting that the

GAN-discriminator is a powerful open likelihood function.

Further Analysis. There are many other GAN-based

open-set methods, such as training BiGANs [47, 55, 56] or

Table 2: Our technical insights apply to other GAN-based open-

set discrimination methods: 1) using BiGAN-discriminator as the

open likelihood function works better than using reconstruction

errors (BiGAN
fea
d vs. BiGANfea

r ), and 2) learning BiGANs

on OTS features works much better than pixels (BiGAN
fea
d vs.

BiGAN
pix
d ). The results are comparable to Table 1.

dataset BiGAN
pix
r BiGAN

fea
r BiGAN

pix
d BiGAN

fea
d

MNIST .976 .998 .986 .999

SVHN .822 .976 .880 .993

CIFAR .924 .967 .968 .973

adversarial autoencoders [39, 44] on raw images, and us-

ing the reconstruction error as open-set likelihood [47, 44,

56, 1, 13]. We show our technical insights apply to differ-

ent GAN architectures for open-set recognition: (1) using

GAN-discriminator as the open-set likelihood function in-

stead of pixel reconstruction errors, and (2) training them

on OTS features rather than raw pixels. We hereby ana-

lyze a typical BiGAN-based method [56], which learns a

BiGAN with both the reconstruction error and the GAN-

discriminator. We compare BiGAN’s performance by ei-

ther using the reconstruction error (BiGANr) or its discrim-

inator (BiGANd) for open-set recognition. We also com-

pare building BiGANs on either pixels (BiGANpix) or fea-

tures (BiGANfea). Table 2 lists detailed comparisons under

Setup-I (all models are selected on the val-sets). Clearly, our

conclusions hold regardless of the base GAN architecture:

1) using OTS features rather than pixels (cf. BiGANfea vs

BiGANpix), and 2) more importantly, using discriminators

instead of reconstruction errors (cf. BiGANd vs. BiGANr).

4.3. Setup-II: Cross-Dataset Open-Set Recognition

Using cross-dataset examples as the open-set is another

established protocol [29, 28, 25, 15]. We follow the “less bi-

ased” protocol introduced in [48], which uses three datasets

for benchmarking that reduces dataset-level bias [51]. This

protocol tests the generalization of open-set methods to di-

verse open testing examples.

Datasets. We use TinyImageNet as the closed-set for

K-way classification (K=200). Images of each class are

split into 500/50/50 images as the train/val/test sets. Fol-

lowing [48], we construct open train/val and test sets us-

ing different datasets [51], including MNIST (MN), SVHN

(SV), CIFAR (CF) and Cityscapes (CS). For example, we

use MNIST train-set to tune/train a model, and test it on CI-
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Table 3: Open-set recognition (Setup-II) measured by AUROC↑, and macro-averaged F1-score↑ over all (K+1) classes. We use Tiny-

ImageNet (K=200) as the closed-set, and four different datasets as the open-sets. To report a method on a specific open-test-set out of

four (first column), we perform four runs in which we use one of the four datasets as a validation set for training/tuning, and then average

the performance measures over the four runs with a superscript marking the standard deviation. Methods such as Nearest Neighbor (NN)

do not need tuning and hence have zero deviations. We provide a summary number in the bottom macro row by averaging the results

over all open-test-sets. Detailed results in Table 4. Clearly, a binary classifier trained on features (CLSfea) already outperforms prior

methods. However, when trained on pixels, CLSpix works poorly in AUROC due to overfitting to high-dimensional raw images, but per-

forms decently in F1. To note, without handling the open-set, the K-way model (trained only on the closed-set TinyImageNet) achieves

0.553 F1-score over (K+1) classes, suggesting that, when K is large (K=200 here), F1-score can hardly reflect open-set discrimination

performance which is better measured by AUROC. While largely underexplored in the literature, training a (K+1)-way model works quite

well. Clearly, OpenGANfea works the best in both AUROC and F1-score. Please refer to Fig. 3(f-i) for ROC curves, and F1-scores vs.

thresholds on the open-set likelihood.

MSP OpenMax NNfea GMM C2AE MSPc MCdrop GDM CLSpix (K+1) CLSfea Open Open

open-test metric [24] [5] [41] [26] [35] [29] [17] [28] GANpix GANfea

CIFAR AUROC .769.000 .669.011 .927.000 .961.013 .767.020 .791.007 .809.005 .961.007 .754.367 .880.091 .928.113 .981.027 .980.011

F1 .548.002 .507.001 .525.000 .544.002 .564.002 .553.003 .564.001 .519.003 .545.032 .558.017 .555.027 .563.035 .585.003

SVHN AUROC .695.000 .691.014 .994.000 .990.016 .657.018 .863.013 .783.009 .999.006 .701.224 .948068 .955.052 .980.014 .991.013

F1 .567.002 .551.002 .545.000 .574.002 .565.001 .572.002 .572.001 .575.002 .572.027 .564.015 .578.014 .574.009 .583.008

MNIST AUROC .764.000 .690.019 .901.000 .964.021 .755.008 .832.017 .801.009 .957.007 .986.327 .944.015 .961.083 .983.068 .989.014

F1 .559.001 .536.013 .553.000 .547.008 .575.001 .564.001 .563.001 .552.002 .565.020 .586.021 .583.010 .569.016 .582.005

Citysc. AUROC .789.000 .693.021 .715.000 .867.016 .814.010 .851.003 .868.003 .513.005 .646.332 .971.050 .828.032 .933.026 .978.013

F1 .579.002 .514.002 .583.000 .572.003 .589.002 .583.001 .571.001 .546.003 .589.007 .561.029 .587.006 .588.007 .587.000

average AUROC .754 .686 .884 .945 .748 .834 .815 .857 .772 .936 .918 .969 .984
F1 .560 .527 .552 .559 .569 .568 .567 .548 .568 .565 .576 .573 .584

(b) 2D PCA (d) rendered by confidence

(e) landscape by smoothing(c) closed-vs-open (g) OpenGAN    : F1 & density
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Figure 3: (a) We use t-SNE to visualize the embedding space through the OTS features computed by the K-way network trained on

TinyImageNet train-set. Images from the other datasets are open-set examples. Clearly, closed and open examples are well separated in the

feature space. We further visualize the “landscape” of the OpenGANfea open-set discriminator, by (b) projecting the OTS features into 2D

using PCA; (c) coloring them with their closed/open labels; (d) rendering them with their open-set likelihoods computed by OpenGANfea;

(e) smoothing with Gaussian Filtering overlaid with the OpenGAN’s decision boundary. We further compare OpenGANfea (tuned on

SVHN) and MSP in (f-g) for open-set discrimination by ROC curves, and in (h-i) for open-set recognition by curves of the F1-score vs.

thresholds of open likelihold. We render the density of open and closed testing data using shadows in (g) and (i). In these plots, we use

each of the four cross-dataset open-test-sets (unseen in training) as an independent open-set to draw the curves. The curves clearly show

that OpenGAN significantly outperforms MSP on open-set discrimination (AUROC) and open-set recognition (F1).

FAR test-set as open-test set. This allows for analyzing how

open-set methods generalize to diverse open testing exam-

ples (cf. Table 4). We use bilinear interpolation to resize all

images to 64x64 to match TinyImageNet image resolution.

Results. Table 3 shows detailed results. First, methods

perform much better on features than pixels (e.g., CLSfea

vs. CLSpix); and our OpenGAN performs the best. Per-

haps surprisingly, OpenMax, a classic open-set, does not

work well in this setup. This is consistent with the results

in [15, 48]. We conjecture that OpenMax cannot effectively

recognize cross-dataset open-set examples represented by

logit features (computed by the K-way network) which are

too invariant to be adequate for open-set recognition. More-

over, the (K+1)-way classifier also works quite well, even

outperforming the open-vs-closed binary classifiers (CLS)

in AUROC. Next we analyze why the binary classifier CLS

(as widely done since [25]) are less effective.

Further Analysis. Table 4 lists detailed results of Open-

GAN, CLS (λG=0 in Eq. 2) and OpenGAN-0 (λo=0 in

Eq. 2), when trained/tuned and tested on different cross-

dataset open-set examples. All methods perform better

on OTS features than pixels (cf. CLSfea vs. CLSpix);

and work almost perfectly when trained and tested with

the same open-set dataset, e.g., column-cf under “CIFAR-

train (cf)” where we use CIFAR images as the open-set

data. However, when tested on a different dataset of

open-set examples, CLS performs quite poorly (especially

when built on pixels) because it overfits easily to high-
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Table 4: Diagnostic analysis for cross-dataset open-set discrimination measured by AUROC↑. In this setup, the TinyImageNet

train/val/test sets serve as the closed train/val/test sets, and open train/test sets are the other two different datasets. Following outlier

exposure [24], we train/tune CLS and OpenGAN on a cross-dataset as the open train-set. Recall that we do not train OpenGAN-0 on any
open examples, although we tune it on the respective cross-dataset open train-set. CLS and OpenGAN use their last-epoch checkpoints to

report performance. For better comparison, we report the average AUROC performance across all open-val-sets in the last column. We

color the entries that have AUROC <0.9 with red, implying these models overfit to the open-train-set and generalize poorly on the other

open-test-set. OpenGANfea clearly performs the best; while CLS (esp. CLSpix which operates on pixels) generalizes poorly. Perhaps

surprisingly, OpenGAN-0 performs equally well although it does not train on open taining data.

open-val-set CIFAR10 (CF) SVHN (SV) MNIST (MN) Cityscapes (CS) avg.
open-test-set CF SV MN CS CF SV MN CS CF SV MN CS CF SV MN CS

CLSpix .999 .999 .101 .895 .935 .999 .453 .972 .411 .340 .999 .113 .317 .512 .100 .999 .634

OpenGAN-0pix .999 .998 .550 .999 .999 .999 .993 .999 .999 .968 .999 .911 .999 .999 .915 .999 .958

OpenGANpix .999 .999 .989 .933 .974 .999 .997 .967 .976 .998 .999 .835 .967 .928 .950 .999 .969

CLSfea .999 .933 .916 .699 .940 .999 .979 .863 .893 .961 .999 .781 .881 .926 .949 .968 .918

OpenGAN-0fea .999 .998 .997 .999 .964 .996 .996 .946 .952 .992 .994 .934 .994 .995 .992 .997 .984
OpenGANfea .999 .999 .990 .973 .974 .999 .996 .971 .976 .998 .999 .967 .973 .968 .970 .999 .984

dimensional pixel images [48]. In contrast, with fake open-

data generated adversarially, OpenGAN and its special form

OpenGAN-0 perform and generalize much better. Never-

theless, this implies a failure mode of OpenGAN, because

the open-set data used in training could be quite different

from those in testing, potentially leading to an OpenGAN

that perform poorly in the real open world. Perhaps surpris-

ingly, OpenGAN-0fea performs as well as OpenGANfea,

although it does not train on open-set data. This further

shows the merit of generating fake open examples to aug-

ment heavily-biased open-set training data, and our tech-

nique insights (as previously analyzed under Setup-I): 1)

using GAN-discriminator as the likelihood function, and 2)

training GANs on OTS features rather than pixels.

Visualization. Fig. 1 shows some synthesized images

by GANpix, and we visualize more in the supplement. To

intuitively illustrate how the synthesized images help better

span the open-world, we analyze why a simple discrimina-

tor works so well when trained on the OTS features. We

visualize the features in Fig. 3 (a) and “decision landscape”

in Fig. 3 (b-e), demonstrating that the closed- and open-set

images are clearly separated in the feature space.

4.4. Setup-III: Open-Set Semantic Segmentation

Open-set semantic segmentation has been explored in

recent work [6, 23], which creates synthetic open-set pix-

els by pasting virtual objects (e.g., cropped from PAS-

CAL VOC masks [16]) on Cityscapes images. In this

work, we do not generate synthetic pixels but instead re-

purpose “other” pixels (outside the set of K classes) that

already exist in Cityscapes. Interestingly, classic seman-

tic segmentation benchmarks evaluate these “other” pix-

els as a separate background class [16], but Cityscapes ig-

nores them in its evaluation (as do many other contemporary

datasets [8, 3, 42, 34]). The historically-ignored pixels in-

clude vulnerable objects (e.g., strollers in Fig. 2), and can

be naturally evaluated as open-set examples.

Datasets. Cityscapes [11] contains 1024x2048 high-

resolution urban scene images with 19 class labels for se-

mantic segmentation. We construct our train- and val-sets

from its 2,975 training images, in which we use the last 10

images as val-set and the rest as train-set. We use its official

500 validation images as our test-set. The “other” pixels

(cf. Fig. 2) are the open-set examples in this setup. We re-

fer readers to the supplemental for details, such as model

architecture, batch construction, weight tuning, etc.

Pixel Generation. As Cityscapes has high-resolution

images (1024x2048), it is nontrivial to train OpenGANpix,

especially its special form OpenGAN-0pix, which must

learn to generate high-resolution images. We find the suc-

cessful training of OpenGAN-0pix depends on the resolu-

tion of images to be generated: we train OpenGAN-0pix by

generating patches (64x64), not full-resolution images.

Results. Table 5 lists quantitative results. As we train

OpenGAN and CLS with open pixels, we diagnose in Fig. 5

the open-set performance by varying the number of train-

ing images that provide the open-training pixels, along with

closed-training pixels from all training images. First, these

results show that OpenGANfea substantially outperforms

all other methods. Generally speaking, the methods that

process features outperform those that process pixels (e.g.,

OpenGAN and CLS in Fig. 5). This suggests that OTS

features (from the segmentation network) serve as a pow-

erful representation for open-set pixel recognition. The

curves in Fig. 5 imply that methods with enough data on

pixels should work (e.g., achieving similar performance as

on features). This is consistent with evidence from seman-

tic segmentation works. However, methods saturate more

quickly on OTS features than pixels, suggesting the bene-

fit of using OTS features for open-set recognition. More-

over, OpenGAN-0 performs better than CLS when trained

on fewer open-training images (e.g., 10). But with modest

number of open training images (e.g., 50), CLS outperforms

OpenGAN-0 and other classic methods (e.g., OpenMax and
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Table 5: Comparison in open-set semantic segmentation on Cityscapes (AUROC ↑). All methods are implemented on top of the

segmentation network HRNet [52] except the ones operating on pixels (as marked by pix). Our approach OpenGANfea clearly performs

the best. Fig. 5 analyzes OpenGAN trained with varied number of open-set pixels, when built on either pixels or OTS features.

MSP [24] Entropy [49] OpenMax [5] C2AE [35] MSPc [29] MCdrop [17] GDM [28] GMM [26] HRNet-(K+1) OpenGAN-0fea CLSfea OpenGANfea

.721 .697 .751 .722 .755 .767 .743 .765 .755 .709 .861 .885

Figure 4: Qualitative results of two testing images, on which a state-of-the-art network (HRNet) misclassifies the unknown categories

stroller/street-shop as motorcycle/building. From left to right of each row: the input image, its per-pixel semantic labels (in which white
regions are open-set pixels), the semantic segmentation result by HRNet, open-set likelihoods by Entropy, our OpenGANfea, and its

thresholded open-pixel map (threshold=0.7). OpenGAN clearly captures most open-set pixels (the white ones). Note that the street-shop

is a real open-set example because Cityscapes train-set does not have another street-shop like this size and content (i.e., selling clothes).
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Figure 5: Diagnostic study w.r.t AUROC vs. number of open im-

ages which provide open-set training pixels. Our methods perform

better on OTS features than pixels. Recall OpenGAN-0 is equiva-

lent to training a normal GAN (without open training data) and us-

ing its discriminator as open-set likelihood. With some open train-

ing data (e.g., 100 open images), CLS outperforms OpenGAN-0;

but OpenGAN consistently performs the best.

C2AE in Table 5) which assume no open training data. This

confirms the effectiveness of Outlier Exposure, even with a

modest amount of outliers [25].

Bayesian networks (MCdrop and MSPc) outperform the

baseline MSP, showing that uncertainties can be reasonably

used for open-set recognition. Lastly, we train a “ground-

up” (K+1)-way HRNet model that treats “other” pixels

as the (K+1)th background class [16], shown by HRNet-

(K+1) in Table 5. It performs better than other typical open-

set methods but much lower than the simple open-vs-closed

binary classifier CLSfea, presumably because the (K+1)-

way model has to strike a balance over all the (K+1) classes

while the binary CLS benefits from training on more bal-

anced batches of closed/open pixels.

Visualization. Fig. 4 qualitatively compares OpenGAN

and the entropy method (more visual results are in the sup-

plemental). The visualization shows OpenGAN sufficiently

recognize open-set pixels. It also implies failure happens

when OpenGAN misclassifies open-vs-closed pixels. Fig. 6

compares some generated patches by OpenGAN-0fea and

OpenGAN-0fea, intuitively showing why using OTS fea-

tures leads to better performance for open-set recognition.

Real OpenGAN-0pix OpenGAN-0fea

Figure 6: Visuals of Cityscapes real image patches (left), syn-

thesized patches by OpenGAN-0pix (mid) and OpenGAN-0fea

(right). As OpenGAN-0fea generates features instead of pixel

patches, we “synthesize” the patches analytically – for a gener-

ated feature, from training pixels represented as OTS features,

we find the nearest-neighbor pixel feature (w.r.t L1 distance), and

use the RGB patch centered at that pixel as the “synthesized”

patch. We can see OpenGAN-0pix synthesizes realistic patches

w.r.t color and tone, but it (0.549 AUROC) notably underperforms

OpenGAN-0fea (0.709 AUROC) for open-set segmentation. The

“synthesized” patches by OpenGAN-0fea capture many open-set

objects, such as bridge, back-of-traffic-sign and unknown-static-

objects, none of which belong to any of the 19 closed-set classes

in the Cityscapes benchmark. This intuitively shows why methods

work better on OTS features than pixels.

5. Conclusion

We propose OpenGAN for open-set recognition by in-

corporating two technical insights, 1) training an open-vs-

closed classifier on OTS features rather than pixels, and

2) adversarialy synthesizing fake open data to augment the

set of open-training data. With OpenGAN, we show us-

ing GAN-discriminator does achieve the state-of-the-art on

open-set discrimination, once being selected using a val-set

of real outlier examples. This is effective even when the out-

lier validation examples are sparsely sampled or strongly bi-

ased. OpenGAN significantly outperforms prior art on both

open-set image recognition and semantic segmentation.
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