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Figure 1: Video Autoencoder: raw input video is automatically disentangled into 3D scene structure and camera trajectory. To reconstruct
the original video, the camera transformation is applied to the 3D structure feature and then decoded back to pixels. Without any fine-tuning,
the model generalizes to unseen videos and enables tasks such as novel view synthesis, pose estimation, and “video following”.

Abstract

A video autoencoder is proposed for learning disentan-
gled representations of 3D structure and camera pose from
videos in a self-supervised manner. Relying on temporal
continuity in videos, our work assumes that the 3D scene
structure in nearby video frames remains static. Given a
sequence of video frames as input, the video autoencoder
extracts a disentangled representation of the scene includ-
ing: (i) a temporally-consistent deep voxel feature to rep-
resent the 3D structure and (ii) a 3D trajectory of camera
pose for each frame. These two representations will then
be re-entangled for rendering the input video frames. This
video autoencoder can be trained directly using a pixel re-
construction loss, without any ground truth 3D or camera
pose annotations. The disentangled representation can be
applied to a range of tasks, including novel view synthe-
sis, camera pose estimation, and video generation by mo-
tion following. We evaluate our method on several large-
scale natural video datasets, and show generalization re-
sults on out-of-domain images. Project page with code:
https://zlai0.github.io/VideoAutoencoder.

1. Introduction
The visual world arrives at a human eye as a streaming,

entangled mess of colors and patterns. The art of seeing, to

a large extent, is in our ability to disentangle this mess into
physically and geometrically coherent factors: persistent
solid structures, illumination, texture, movement, change of
viewpoint, etc. From its very beginnings, computer vision
has been concerned with acquiring this impressive human
ability, including such classics as Barrow and Tenebaum’s
Intrinsic Image decomposition [5] in the 1970s, or Tomasi-
Kanade factorization [63] in the 1990s. In the modern deep
era, learning a disentangled visual representation has been a
hot topic of research, often taking the form of an autoencoder
[39, 23, 36, 19, 41, 48, 22, 3, 50]. However, almost all prior
work has focused on disentanglement within the 2D image
plane using datasets of still images.

In this work, we propose a method that learns a disentan-
gled 3D scene representation, separating the static 3D scene
structure from the camera motion. Importantly, we employ
videos as training data (as opposed to dataset of stills), using
the temporal continuity within a video as a source of training
signal for self-supervised disentanglement. We make the
assumption that a local snippet of video is capturing a static
scene, so the changes in appearance must be due to camera
motion. This leads to our Video Autoencoder formulation,
shown on Figure 1: an input video is encoded into two codes,
one for 3D scene structure (which is forced to remain fixed
cross frames) and the other for the camera trajectory (up-
dated for every frame). The 3D structure is represented by
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3D deep voxels (similar to [46, 57]) and the camera pose
with a 6-dimension rotation and translation vector. To re-
construct the original video, we simply apply the camera
transformation to the 3D structure features and then decode
back to pixels.

A key advantage of our framework is that it provides 3D
representations readily integrated modern neural rendering
methods, which typically requires 3D and/or camera pose
ground truth annotation at training time [13, 47, 4, 71, 62].
This usually implies a 2-stage process with running Structure-
from-Motion (SfM) as precursor to training. In our work,
we are working towards a way of training on completely
unstructured datasets, removing the need for running SfM as
preprocessing.

At test time, the features obtained using our Video Au-
toencoder can be used for several downstream tasks, includ-
ing novel view synthesis (Section 4.3), pose estimation in
video (Section 4.2), and video following (Section 4.4). For
novel view synthesis, given a single input image, we first
encode it as a 3D scene feature, and then render to a novel
view by providing a new camera pose. We show results
on large-scale video datasets including RealEstate10K [78],
Matterport3D [6], and Replica [60]. Our method not only
achieves better view synthesis results than state-of-the-art
view synthesis approach [71] that requires stronger camera
supervision on RealEstate10K, but also generalize better
when applied to out-of-domain data. As another application,
we show that our method could be used to implicitly fac-
torize structure from motion in novel videos, by evaluating
the estimate camera pose against SfM baseline. Finally, we
show that by swapping the 3D structure and camera trajec-
tory codes between a pair of videos, we can achieve Video
Following, where a scene from one video is “following” the
motion from the other video.

2. Related Work
Learning disentangled representations. Disentangled

representations learned from unlabeled data not only provide
a better understanding of the data, but also produce more
generalizable features for different downstream applications.
Popular ways to learn such representations include genera-
tive models (e.g. GANs) [7, 69, 80, 27, 35, 46, 56, 49, 40]
and autoencoders [39, 23, 36, 19, 41, 48, 22, 3, 50]. For
example, Kulkarni et al. [39] proposed to learn disentan-
gled representations of pose, light, and shape for human
faces using a Variational Autoencoder (VAE) [38]. How-
ever, almost all these works are modeling still 2D images,
inherently limiting the data available for disentanglement.
In order to learn disentangled representations related to mo-
tion and dynamics, researchers have been looking at video
data [8, 74, 29, 72, 66, 25, 43, 73]. For example, Denton
et al. [8] proposed to learn the disentangled representation
which factorizes each video frame into a stationary compo-

nent and a temporally varying component. Beyond learning
latent features, Tomas et al. [29] designed a video frame re-
construction method for disentangling human pose skeleton
from frame appearance. While these results are encourag-
ing, they are not able to capture the 3D structure of generic
scenes from video.

Learning 3D representations. 3D representation learn-
ing from video or 2D image sets is a long-standing prob-
lem in computer vision. Traditional approaches typically
rely on multi-view geometry [20] to understand real world
3D structures. Based on geometric principles, 3D structure
and camera motion can be jointly optimized in Structure-
from-Motion (SfM) pipelines and has yielded great success
in a wide range of domains [1, 55, 59]. To better gener-
alize to diverse environments, learning based approaches
are proposed to learn 3D representations using 2D super-
vision [32, 77, 65, 34, 71, 26, 52]. For instance, Wiles et
al. [71] proposed to utilize the point cloud as an interme-
diate representation for novel view synthesis. However, it
requires camera pose computed from SfM for training, and
point cloud estimation can be inaccurate when the test image
is out of distribution. Instead of using point clouds, neural
3D representations, including implicit function [42, 58] and
the deep voxels [12, 18, 57, 46, 45] have shown impressive
reconstruction and synthesis results. Our work is closely
related to approach proposed by Tung et al. [12], which
leverages view prediction for learning latent 3D voxel struc-
ture of the scene. However, camera pose is still required
to provide supervision. Our work is also highly inspired
by Nguyen-Phuoc et al. [46], who proposed inserting the
voxel representation into Generative Adversarial Networks,
enabling the disentanglement of 3D structure, style and pose.
Finally, our work is related to plenty of downstream tasks
that leverages a learned 3D deep voxels, such as 3D object
detection [12], 3D object tracking [17], 3D motion estima-
tion [18] and few-shot concept learning [51].

Self-supervised learning on video. Our work is related
to self-supervised learning of visual representations from
video [2, 68, 28, 30, 31, 44, 77, 72, 70, 12, 16]. For example,
Wei et al. [70] proposed to learn from the arrow of time and
obtain a representation that is sensitive to temporal changes;
it can then be used for action recognition. Instead of fine-
tuning the learned representation for recognition, our work is
more focused on the 3D structure of the representation itself,
and we can directly adopt our representation for multiple
applications without fine-tuning. In this regard, our work
is more related to Zhou et al. [77], who perform joint esti-
mation of image depth and camera pose in a self-supervised
manner. However, their approach is restricted to specific
domains, such as scenes from self-driving cars, while our
model allows generalization to a winder range of real-world
videos. Instead of predicting depth, our method uses a voxel
representation, which can be applied to downstream tasks,
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such as novel view synthesis.

3. Approach
The proposed Video Autoencoder is a conceptually sim-

ple method for encoding a video into a 3D representation
and a trajectory in a completely self-supervised manner (no
3D labels are required). Figure 2 shows a schematic layout
of our Video Autoencoder. Like other auto-encoders, we
encode data into a deep representation and decode the rep-
resentation back to reconstruct the original input, relying
on the consistency between the input and the reconstruc-
tion to learn sub-modules of multiple neural networks. In
our case, the goal is encoding a video into two disentan-
gled components: a static 3D representation and a dynamic
camera trajectory. By assuming that the input video clip
shows a static scene which remains unchanged in the video
clip, we can construct a single 3D structure (represented
by deep voxels) and apply camera transformations on the
structure to reconstruct corresponding video frames. Unlike
other existing methods [71, 64, 42, 79], our model does not
need ground truth camera poses. Instead, we use another
network to predict the camera motion, which is then jointly
optimized with the 3D structure. By doing so, we find that
the 3D motion and structure can automatically emerge from
the auto-encoding process.

Training. At training time, the first frame of an N -frame
video clip (we use N = 6) passes through the 3D Encoder
(blue box in Fig. 2), which computes a voxel grid of deep
features representing the 3D scene. At the same time, the
trajectory encoder (red box in Fig. 2) uses the same video
clip to produce a short trajectory of three points. This tra-
jectory estimates the camera pose of each frame w.r.t. the
first frame. Next, we re-entangle the camera trajectory and
the 3D structure and reconstruct the input video clip. First,
we use the estimated camera pose to transform the encoded
3D deep voxel. Because we assume that the scene is static,
the transformed 3D deep voxel should align with the cor-
responding frame if both the voxel representation and the
camera pose are accurately estimated. We then use a decoder
network to render N 2D images from the set of N camera
pose transformed 3D voxels. The reconstruction loss encour-
ages the disentanglement between the static 3D scene and
the camera pose. We also adopt a consistency loss to enforce
the 3D deep voxels extracted from different frames to be the
same, which facilitates training.

Inference for View Synthesis. The procedure during
test time is similar. First, the 3D Encoder estimates the 3D
voxel representation from a single input image. The trajec-
tory can be of arbitrary length and pre-computed. Next, we
compute the transformed 3D deep voxels according to the
given camera trajectory. These trajectory-guided deep voxels
are then fed into the decoder which renders each frame of
the video as outputs. While this approach works well for

nearby frames where the motion is not too large, we found
that voxels can fail to render clear images if the applied trans-
formation is too large. Therefore, when we need to generate
long videos at test time, we employ a simple heuristic which
reinitializes the deep voxels to the current frame every K
frames (K = 12 in our implementation). Here, the reinitial-
ize operation re-encodes the previous prediction into a new
3D voxel to replace the existing 3D voxel.

We describe each individual component of our architec-
ture in the following sections. In section 3.1, we give details
of how we obtain the 3D latent voxel representation from
a single image. In section 3.2, we describe the method for
predicting trajectories for a particular video. In section 3.3,
the decoder which re-entangles camera motion and 3D struc-
ture back into image space is presented. In section 3.4, we
discuss the loss function used for training the auto-encoder.

3.1. 3D Encoder

The 3D encoder F3D encodes an image input into a 3D
deep voxels that represents the same scene as the output,

z = F3D(I)

Figure 3 (a) illustrates the structure of 3D Encoder in detail.
Taking an image as input, we first use a 2D encoder (a pre-
trained ResNet-50 [21] in our implementation) to compute a
set of 2D feature maps (Resnet-50 in Figure 3 (a)). Next, to
obtain a 3D representation of the image, we reshape these
2D feature maps into to a 3D feature grids, which is also
referred to as deep voxels. Here, the reshape operation is
performed on the feature dimension: if the 2D feature maps
have dimension H ×W × C, the reshaped tensor is four-
dimensional and has size H × W × D × (C/D), where
D refers to depth dimension. This ensures that the spatial
arrangement is not perturbed, e.g. the top right corner of the
deep voxels corresponds to the top right corner of the input
image. Because the 2D feature extractor repeatedly down-
samples the input image, the spatial resolution of the deep
voxels is actually small (only 1/16 of the original image).
In order to reconstruct images of high fidelity, we upsample
and refine this 3D structure as a final step. This is done by a
set of strided 3D deconvolutions (3D Conv in Figure 3 (a)).

Note while there are other possible 3D representations
such as point cloud and polygon mesh, none of these meth-
ods are as easy to work with as voxels, which allows re-
shaping and could be applied with convolutions easily. We
use voxel representation to keep things simple, but other
representation could potentially work as well.

3.2. Trajectory Encoder

The trajectory encoder Ftraj estimates trajectory from
input videos. Specifically, the encoder computes the camera
pose (6-D, rotation and translation) w.r.t. the first frame for
each image in a sequence. We call this output sequence of
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Figure 2: Training and testing procedure of Video Autoencoder: During training, we use short clips extracted from videos. The first
frame of the clip is used to predict the 3D structure of the scene. Then, the subsequent frames are used to compute poses relative to the first
frame. We apply these predicted poses as affine transformations to the 3D voxel and use a decoder to reconstruct the input video clip. Once
the autoencoder is trained, we can get the 3D representation for downstream tasks using only one image as input.
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Figure 3: Structure of 3D Encoder and Decoder: The 3D en-
coder takes an image as input and estimates a 3D deep voxel corre-
sponding to the same scene. Conversely, the decoder takes the 3D
voxel and a camera pose as input and renders a 2D image as output.

camera poses the trajectory. Because we compute camera
pose for every video frame, the length of the trajectory is the
same as the number of frames. To compute the relative pose
between a particular target image and the reference image
(i.e., the first frame), we make use of a simple ConvNetH.
The network takes as input both the target and reference
image, stacked along the channel dimension (i.e., the input
channel is 6), and computes a 6-dim vector through a series
of seven 2D convolutions. We use this vector as the 3D
rotation and translation between the reference image and the
target image, and it is used for transforming the deep voxels
(Sec. 3.3). The camera poses are computed for all images
with the exception that the first pose will be set to 0. Overall,
we obtain the trajectory as

E = Ftraj(V ) = {H(I1, Ii)}Ni=1

3.3. Decoder

The decoder G is very similar to an inverse process of the
3D encoder: it renders a 3D deep voxel representation back
into image space with a given camera transformation.

Î = G(Z, e), e ∈ E

Fig. 3 (b) illustrates the architecture of the decoder. Tak-
ing camera pose and 3D deep voxels as input, the decoder
first applies the 3D transformation (3D Transform in Figure 3
(b)) of the camera pose on the deep voxels. If the camera
pose and the 3D representation are both correct, the trans-
formed 3D voxels should match the frame corresponds to
the camera pose. Specifically, we warp the grid such that the
voxel at location p = (i, j, k)T will be warped to p̂, which is
computed as

p̂ = Rp+ t

where R, t is the 3× 3 rotation matrix and translation vector
corresponding to the camera pose. In our implementation,
the warp is performed inversely and the value at fractional
grid location is trilinearly sampled. Due to the coarseness
of the voxel representation, there could be misaligned vox-
els during the sampling procedure. We thus apply two 3D
convolutions to refine and correct these mismatches (3D
Transform in Figure 3 (b)). The refined voxels are then re-
shaped back into the 2D feature maps. To align with the
similar reshape process in 3D Encoder, we concatenate the
feature dimension and the depth dimension. That is, if the
input 3D deep voxel has dimension H ×W ×D × C, the
reshaped tensor will be of size H ×W × (D ∗C). This is a
set of 2D feature maps which we then use several layers of
2D convolutions to map them back to an image. The output
image has the original resolution. In our implementation,
H = 64,W = 64, D = 32, C = 32.

3.4. Training Loss

We apply a reconstruction loss between reconstructed
video clips and the original video clips. The loss is defined
as,

Lrecon(Ît, It) = λL1||Ît − It||1 + λpercLperc(Ît, It)

where It is the original video frame at time t and Ît is the
reconstructed frame at time t; Lperc denotes the VGG-16
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perceptual loss [33, 9]. In our experiments, λL1 = 10,
λperc = 0.1. To enhance the image quality of reconstructed
images, we also apply a WGAN-GP [15] adversarial loss on
each output frame in addition to the reconstruction loss. This
adversarial loss comes from a separate critic function FD

which learns to decide if the image looks realistic. Formally,
the WGAN-GP minimizes the value function,

min
G

max
FD∈D

E
I∈Pr

[FD(I)]− E
Î∈Pg

[FD(Î)]

and thereby minimizes the Wasserstein distance between the
data distribution defined by the training set and the model
distribution induced by Video Autoencoder. Here G is our
model, D is the set of 1-Lipschitz functions, Pr is data
distribution and Pg is the model distribution. The loss LGAN
is thus defined as the negated critic score for each image:

LGAN(Î) = −FD(Î)

Finally, in order to ensure that a single 3D structure is
used to represent different frames of the same scene, we
apply a consistency loss between the 3D voxels extracted
from different frames. Specifically, we want to ensure that
any pairs of images from the same video, It1, It2, should be
encoded into the same 3D representation, after rotating by
the relative camera motion. Formally, we apply consistency
loss

Lcons(It1, It2) = ||R(F3D(It1),H(It1, It2))−F3D(It2)||1

where we enforce that the 3D deep voxel encoded from frame
It1, after transformed by the relative pose between It1 and
It2, should be consistent with the 3D deep voxel encoded
from frame It2. F3D andH are described in Sec. 3.1 and 3.2,
respectively. R is the 3D transformation function described
in Sec. 3.3.

Overall, our final loss is:

L =
∑
t

Lrecon(It, Ît) + λGANLGAN(Ît) + λconsLcons(I0, It)

In our experiments, we use λcons = 1, λGAN = 0.01.

4. Experiments
In this section, we empirically evaluate our method and

compare it to existing approaches on three different tasks:
camera pose estimation, single image novel view synthesis,
and video following. We show that, although our method
is quite simple, it performs surprisingly well against more
complex existing methods.

4.1. Implementation Details

As preprocessing, we resize all images into a resolution of
256×256. During training, the training video clip consists of

6 frames. When we train on the RealEstate10K dataset [78],
these 6 frames are sampled at a frame-rate of 4 fps so that the
motion is sufficiently large. For training on Matterport3D [6],
we do not sample with intervals because the motion between
frames is already large. The depth dimension of the 3D deep
voxels is set to D = 32 in our implementation. We train our
model end-to-end using a batch size of 4 for 200K iterations
with an Adam optimizer [37]. The initial learning rate is
set to 2e−4 and is halved at 80K, 120K and 160K iterations.
The training time is about 2 days on 2 Tesla V100 GPUs.

4.2. Camera Pose Estimation

We evaluate our pose estimation results (i.e., the predicted
trajectory) qualitative and quantitatively. Specifically, we
use 30-frame video clips from the RealEstate10K testing
set, which consists of videos unseen during training. For
each video clip, we estimate the relative pose of between
every two video frames and chain them together to get the
full trajectory. Because this estimated transformation is in
the coordinate space of deep voxels, we apply Umeyama
alignment [67] to align the predicted camera trajectory with
a SfM trajectory provided in the dataset.

We evaluate the Absolute Trajectory Error (ATE) on
the RealEstate10K dataset and compare our performance
with the state-of-the-art self-supervised viewpoint estima-
tion method SSV [45] and a structurally similar method
SfMLearner [77]. Additionally, we also compare with P2-
Net [75] (a.k.a Indoor SfMlearner), an improved version
of [77] that is optimized for indoor environment. We use
1000 30-frame (2.5-sec) video sequences and measure the
difference between the trajectory estimated by each method
and the trajectory obtained from SfM. Results are shown
in Table 1. Our result drastically reduces the error rate of
the learning-based baseline method [77] with about 69%
less in mean error and 72% less in maximum error, sug-
gesting that our approach learns much better viewpoint
representations. Comparing to the Structure from Motion
pipeline COLMAP [55], our method can obtain higher ac-
curacy under the 30-frame testing setup. We also looked
at the subset of clips on which COLMAP fails (12.0% of
all clips): for these, our method achieves even better results
(mean error = 0.004, max error = 0.009). Inspecting the
failed videos, most have either very small motion, or pure
rotations. These cases are hard/impossible for SfM but are
potentially easy to learn. Finally, note COLMAP takes much
longer to process a video compared to our method (71.53
secs versus our 0.004 secs).

A further application of our camera trajectory is camera
stabilization. We show that we can warp future frames back
into the viewpoint of the first frame by using the estimated
relative pose between these two frames. Please see our
website for details.
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Figure 4: Novel View Synthesis (our method vs. previous methods): Other methods show systematic errors either in rendering or
pose estimation. Similar to our work, SSV [45] make use of the least supervision signals. However, the view synthesis results are quite
unsatisfactory. Indoor SFMLearner [75] (SFMLearner optimized for indoor scenes) warps the image with predicted depth and pose. However,
this warping operation could also cause large blank areas where no corresponding original pixels could be found. GRNN [12] shares the
most similar representation with ours, but it fails to generate clear images for reasons including their model could only handle 2 dof of
camera transformation. Synsin [71] shows the most competitive performance as their model trained with much stronger supervision. See
Fig. 5 for a detailed comparison. (P) denotes model trained with camera pose.

Method Mean↓ RMSE↓ Max err.↓ Density↑
SSV [45] 0.142 0.175 0.365 100.0%
P2-Net [75] 0.059 0.068 0.1475 100.0%
SFMLearner [77] 0.048 0.055 0.1105 100.0%
COLMAP [55] 0.024 0.030 0.0765 88.0%
Ours 0.017 0.019 0.0410 100.0%

Table 1: Absolute Trajectory Error (ATE) on RealEstate10K [78]
dataset. We evaluate on 1000 30-frame video clips and take an
average across all clips.

4.3. Novel View Synthesis

Creating a 3D walk-though from a single still image has
been a classic computer graphics task [24, 54], more recently
known as single image Novel View Synthesis [61, 79, 77,
71, 64]. Given an image and a desired viewpoint, the aim
is to synthesize the same scene from that new viewpoint.
We should that our video autoencoder can be effectively
utilized for this task. We report results on two public datasets:
RealEstate10K [78] and Matterport3D [6]. Additionally, we
benchmark the generalization ability of our approach and the
baselines on an additional dataset: Replica dataset [60] . We
use the Replica datasets to test the out-of-domain accuracy
of our model because they are not used during training.

Metrics. We compare against other methods using PSNR
(Peak Signal-to-Noise Ratio), SSIM (Structural Similarity),
and LPIPS (Perceptual Similarity). PSNR measures pixel-
wise differences between two images, and SSIM measures
luminance, contrast, and structure changes and aims to bet-

Synsin (details) Ours (details) Synsin (details) Ours (details)
Figure 5: Extrapolating into unseen areas (details): Both Synsin
and our model exhibit artifacts when extrapolating into unseen
areas, but our model is able to produce more smoothed results (as
shown in three colorful rectangles).

ter reflect the human perceptual quality. A higher number
indicates better results. LPIPS measures the distance in
deep feature space, and is shown to be a good indicator of
perceptual similarity. Lower values are better.

4.3.1 Novel View Synthesis on RealEstate10K
The RealEstate10K dataset consists of footages of real es-
tates (both indoor and outdoor) and is mostly static. We use
10000 videos for training and 5000 videos for testing. In
Table 2, we compare our method with previous approaches
on the real dataset RealEstate10K. As seen in the table, we
compare favorably to most single-image view synthesis al-
gorithms, even though our method does not train on camera
pose ground-truths while other methods do. Our method is
able to achieve better results in both PSNR and SSIM than
Synsin [71], which is a recent approach using point clouds
as the intermediate representation and ground-truth cameras
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Method Camin Camex PSNR↑ SSIM↑ LPIPS↓
methods without any camera supervision:
SSV[45] × × 7.95 0.19 4.12
Ours × × 23.21 0.73 1.54
methods trained with camera intrinsics:
SfMLearner[77] X × 15.82 0.46 2.39
MonoDepth2[14] X × 17.15 0.55 2.08
P2-Net[75] X × 17.77 0.56 1.96
methods trained with camera intrinsics and extrinsics:
Dosovitsky et al [10] X X 11.35 0.33 3.95
GQN [11] X X 16.94 0.56 3.33
Appearance Flow [79] X X 17.05 0.56 2.19
GRNN [12] X X 19.13 0.63 2.83
3DPaper [71] X X 21.88 0.66 1.52
SynSin (w/ voxel) [71] X X 21.88 0.71 1.30
SynSin [71] X X 22.31 0.74 1.18
Single-view MPIs [64] X X 23.70 0.80 -
StereoMag† [78] X X 25.34 0.82 1.19

Table 2: Novel view synthesis task with RealEstate10K [78]. We
follow the standard metrics of PSNR, SSIM and LPIPS [76]. For
PSNR and SSIM, higher numbers are better. For LPIPS, lower
numbers are better. We use implementation of [71] to compute
LPIPS. † StereoMag makes use of 2 images as input.

Input image Our synthesisInput image Our synthesis
Figure 6: Our model can also be applied on Matterport3D [6], using
images rendered from 3D models in the dataset.

during training. This indicates learning the disentangled
deep voxel and camera pose jointly can lead to better 3D
representations. Our method also easily outperforms meth-
ods trained without using camera poses. SSV [45], which
similarly uses no camera information during training, fails
to generate meaningful contents. SfMLearner [77] and the
subsequent P2-Net [75] (a.k.a. Indoor SfMLearner) are struc-
turally similar to ours. We warp the image input with the
predicted depth and pose to test their view synthesis results.
However, these methods are not optimized for view synthesis
and fail to achieve the image quality as ours.

Figure 4 shows the qualitative comparisons. Given a
single image and a specified motion trajectory as inputs, our
method is able to generate photorealistic results with correct
motion. While Synsin [71] achieves competitive results, it
requires true camera poses for training. Our model also
shows reasonable extrapolation into unseen areas. Both row
2 and 3 involves extrapolating into unknown areas to the left.
Fig. 5 shows detailed comparison in unseen areas between
our model and [71]. Our model produces more smoothed
results and [71] shows stronger artifacts.

4.3.2 Novel View Synthesis on Matterport3D
We evaluate the Video Autoencoder on the Matterport3D
dataset [6]. The Matterport3D dataset is a collection of 3D

Method Pose PSNR↑ SSIM↑ LPIPS↓
methods without any camera supervision:
Ours × 20.58 0.64 2.44
methods trained with camera intrinsics and extrinsics:
Dosovitsky et al [10] X 14.79 0.57 3.73
Appearance Flow [79] X 15.87 0.53 2.99
Synsin (w/ voxel) [71] X 20.62 0.70 1.97
Synsin [71] X 20.91 0.72 1.68

Table 3: Novel view synthesis with Matterport3D [6]. We follow
the standard metrics of PSNR and SSIM. Higher values are better.

Method Pose PSNR↑ SSIM↑ LPIPS↓
methods without any camera supervision:
Ours × 21.72 0.77 2.21
methods trained with camera intrinsics and extrinsics:
Dosovitsky et al [10] X 14.36 0.68 3.36
Appearance Flow [79] X 17.42 0.66 2.29
Synsin (w/ voxel) [71] X 19.77 0.75 2.24
Synsin [71] X 21.94 0.81 1.55

Table 4: Novel view synthesis task with Replica dataset [60].

models of scanned and reconstructed properties. It consists
of 61 training scenes and 18 testing scenes. we use a naviga-
tion agent in the Habitat simulator [53] to render around 100
episodes per scene as videos. These videos show an agent
navigating from one point in the scene to another point. A
total of around 6000 videos is generated for training and
800 videos for testing. For experiments we rendered an ad-
ditional 60K image pairs related by a random rotation and
translation for fine-tuning the model. In this way, the training
data includes rotations rotations in all three axes.

Table 3 shows the numerical results for Video Autoen-
coder on the Matterport3D. Without training on any camera
information, our model is able to perform comparably to
methods supervised with pose across all three metrics. Fig-
ure 6 visualizes the view synthesis results of our method
using data from the Matterport3D dataset. Although the vi-
sual appearance rendered from 3D models is usually flawed
due to incomplete point clouds, occlusions, and other possi-
ble artifacts, our model still produces satisfactory results.

4.3.3 Generalization Ability of Novel View Synthesis

We benchmark Video Autoencoder on an out-of-domain
dataset, Replica [60], a set of 3D reconstructions of indoor
spaces, to evaluate the generalization ability of our model,
without any further finetuning. We rendered 200 image pairs
on each of the 5 episodes with Habitat simulator [53] as
the test set. Table 4 shows numerical results compared to
other methods. All methods use Matterport3D as the training
dataset and only test on Replica without any finetuning on
it. We observe the same trend as in other datasets, with
our method perform comparably to existing methods that
require camera supervision. This indicates that our method
is able to consistently outperform the baseline methods on
generalization to out-of-domain data.
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Resolution SSIM↑ PSNR↑ LPIPS↓
128×128 0.52 18.02 2.66
64×64 0.70 22.65 1.53
32×32 0.60 20.24 2.82

(a) 3D deep voxel spatial resolution: Our fi-
nal model with a resolution of 64× 64 offers
the best performance.

Depth SSIM↑ PSNR↑ LPIPS↓
D=64 0.68 22.05 1.71
D=32 0.70 22.65 1.53
D=16 0.69 21.92 1.70

(b) 3D deep voxel depth resolution: A
depth dimension of 32 shows superior re-
sults compared to other variants.

# Frame SSIM↑ PSNR↑ LPIPS↓
3 frames 0.69 22.33 1.62
6 frames 0.70 22.65 1.53
10 frames 0.66 21.61 1.88

(c) Video clip for training - number of
frame: Training with a clip of 3 frames can
offer better performance.

Table 5: Ablations on RealEstate10K view synthesis results. We show SSIM, PSNR and LPIPS performance on testing set.

Reference video (Camera moving forward and rotating left)

Generated path-following video

Figure 7: Following trajectories of other videos: by using trajectories of other videos, we can even animate oil paintings.

4.3.4 Ablation Studies
To quantitatively evaluate the impact of various components
of the Video Autoencoder, we conduct a set of ablation stud-
ies using variants of our model in Table 5. For all ablation
results, we train the model from scratch with a reduced train-
ing schedule (training iterations and LR steps are halved).
The best model with 6 input frames, 64× 64 spatial resolu-
tion and 32 depth resolution in the 3D voxel corresponds to
our model reported in previous sections.

Resolution of 3D voxels: We compare our default voxel
resolution with variants that modify the encoder’s output spa-
tial resolution and depth. As shown in Table 5a, the errors
increase drastically when the spatial resolution is changed.
Comparing to models with depth changed (Table 5b), al-
though the other variants are capable of attaining reasonable
performance, our default model achieves the best perfor-
mance.

Video clip for training: We modify the training video
clip by changing the clip length. As seen in Table 5c, the
performance improved when the clip length is increase. We
conjecture that a clip too short could provide an appropriate
scale of motion, which is crucial for training. However, if we
further expand the clip length to 10 frames, the performance
drops by about 5%. We hypothesize that predicting the last
frame from the first frame becomes too difficult under such
a setting, which is undesirable for training. This suggests
that 6-frame clips are more effective training data.

4.4. Video Following

Finally, we evaluate Video Autoencoder on the task of
animating a single image with the motion trajectories from

different videos. Specifically, we obtain a 3D deep voxels
representation from our desired image and trajectory from a
different video. We then combine the trajectory and the 3D
structure for the decoder to render a new video.

Figure 7 visualizes a video predicted from an out-of-
domain image. Training only once on the RealEstate10K
dataset, our model can adapt to a diverse set of images. The
shown frames are generated from the painting Bedroom in
Arles. Although the painting has a texture which is quite
different from the training dataset, our method still models
it reasonably well. Adapting from the reference video, the
generated sequence shows a trajectory as if we are walking
into Vincent van Gogh’s bedroom in Arles.

5. Conclusion
We present Video Autoencoder that encodes videos into

disentangled representations of 3D structure and camera
pose. The model is trained with only raw videos without
using any explicit 3D supervision or camera pose. We show
that our representation enables tasks such as camera pose esti-
mation, novel view synthesis and video generation by motion
following. Our model demonstrates superior generalization
ability on all tasks and achieves state-of-the-art results on
self-supervised camera pose estimation. Our model also
achieves on par results on novel view synthesis comapred to
approaches using ground-truth camera in training.
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