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Abstract

By estimating 3D shape and instances from a single view,
we can capture information about an environment quickly,
without the need for comprehensive scanning and multi-
view fusion. Solving this task for composite scenes (such
as object stacks) is challenging: occluded areas are not
only ambiguous in shape but also in instance segmenta-
tion; multiple decompositions could be valid. We observe
that physics constrains decomposition as well as shape
in occluded regions and hypothesise that a latent space
learned from scenes built under physics simulation can
serve as a prior to better predict shape and instances in oc-
cluded regions. To this end we propose SIMstack, a depth-
conditioned Variational Auto-Encoder (VAE), trained on a
dataset of objects stacked under physics simulation. We for-
mulate instance segmentation as a centre voting task which
allows for class-agnostic detection and doesn’t require set-
ting the maximum number of objects in the scene. At test
time, our model can generate 3D shape and instance seg-
mentation from a single depth view, probabilistically sam-
pling proposals for the occluded region from the learned
latent space. Our method has practical applications in
providing robots some of the ability humans have to make
rapid intuitive inferences of partially observed scenes. We
demonstrate an application for precise (non-disruptive) ob-
ject grasping of unknown objects from a single depth view.

1. Introduction
While humans are intuitively able to interpret partially

observed scenes using geometric reasoning and prior expe-
rience, estimating 3D shape from RGB or depth images is
challenging in computer vision due to ambiguity — many
3D shapes can explain a 2D observation. The classical ap-
proach to generate 3D shapes from depth images involves
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Figure 1: Top to bottom: SIMstack outputs object shapes and
instances from a single depth view on two YCB sequences and two
real data examples, one with a fully occluded object supporting a
leaning box (3rd row), for which our model predicts a plausible
proposition. Right: Grasping demo setup (green: target object).

taking images from all sides of an object and fusing the re-
projected points into a common 3D representation such as
a truncated signed distance function (TSDF) [29]. How-
ever, apart from the exhaustive nature of the task, it is often
impossible to reach all required viewpoints to generate a
watertight surface reconstruction [12].

This drawback has led researchers to explore learning
based approaches to reconstruct 3D shapes, such as learn-
ing to complete partial reconstructions [12, 11, 40] and pre-
dicting scenes [39] or objects [52, 51] from a single depth
image. In parallel, researchers explore 3D shape prediction
for scenes [30, 15, 38] and objects [9, 49, 53] from single
or multi-view RGB data. While most of these approaches
work with pointclouds, voxel occupancy grids or TSDF rep-
resentations, some have explored alternative representations
such as parametric surface elements [16], 2D sketches [45],
graph neural networks [13], and the increasingly popular
implicit neural surface representations [31, 26, 5].

To our knowledge, no existing work has explored 3D
shape prediction with instance segmentation for multiple
objects from a single depth image. Single view shape pre-
diction allows to quickly estimate 3D occupancy, while in-
stance segmentation is crucial for interactive tasks such as
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object manipulation. We aim to solve this task for a tabletop
scene with a variable number of stacked household objects
and propose a VAE whose latent space is learned from sta-
ble (under physics simulation) scenes, with the aim to better
reason about shape and instance decomposition in occluded
regions. Conditioned on depth, the VAE learns to predict
3D shape and instances given a depth view, completing oc-
cluded regions using its latents, which can be thought of as
an ‘intuitive physics’ prior. Our refinement method further
optimises the reconstruction for collision-free decomposi-
tion. We aim to reconstruct scenes composed of unknown
objects and train our model on randomly assembled piles
of 3D parametric shapes (superquadrics). At test time, our
conditional VAE (C-VAE) generates 3D shape and instance
segmentation, as well as realistic reconstruction proposals
for occluded regions in one forward pass. Our method can
also integrate multiple views for improved reconstruction:
the VAE can be conditioned on multiple views and our la-
tent space can be further optimised against novel views us-
ing differentiable rendering. We show an application of our
method for non-disruptive grasping using a robot arm.

In summary, our contributions are:

• A depth-conditioned VAE for scenes of stacked ob-
jects which can generate 3D shape, instance segmenta-
tion and probabilistic reconstruction proposals for oc-
cluded regions.

• A center voting scheme based on 3D Hough Voting
allowing for class-agnostic 3D instance segmentation
for scenes with an arbitrary number of objects.

• A shape refinement procedure to generate a compact
scene representation of parametric shapes for down-
stream applications.

2. Related Work
Latent Representations for 3D Objects The shape of the
occluded region of a 3D object is ambiguous and requires
prior knowledge to estimate. Some methods use geometri-
cal assumptions such as symmetry [56], but most tackle the
problem using generative models and learn 3D shape pri-
ors using a latent representation [46, 7]. Zhang et al. [54]
showed that such priors can generalize to unseen classes
and Sucar et al. [41] used class conditioned latent models
to generate 3D object shapes by optimising the latent code
against depth views.

Instance Segmentation of 3D Objects 2D instance seg-
mentation has progressed significantly with state-of-the-art
methods such as Mask R-CNN [18] and DETR [4], but
segmenting objects in 3D remains challenging. Hou et al.
[20] extend the idea of region proposals to 3D, combining
backprojected 2D features with 3D partial scans. Another
method for segmenting 3D pointclouds into objects is center

voting [35, 34, 17]. We implement instance segmentation
similarly, applying Hough Voting to 3D voxelgrids. The in-
stance segmentation approach of Xie et al. [48] is closely
related to ours — their context is a cluttered table top and
they use Hough Voting. However, their final output is a 2D
instance segmentation whereas we aim at 3D output.

Object Decomposition Previous work on decomposing
compound objects into parts has focused on rigid objects
such as furniture with significant structure and symmetry.
Decomposing such objects into parts can help to leverage
symmetry for shape completion [42] or discover structure
in unseen data [43]. Most approaches decompose into ge-
ometric primitives [14, 43] using a library of shapes. Oth-
ers use hierarchical representations and graph neural net-
works [27]. Paschalidou et al. [32] showed that using su-
perquadrics over shape primitives improves reconstruction
quality. We model stacked objects as a compound object
and leverage superquadrics to approximate a large variety
of composing shapes. Unlike manufactured objects such
as chairs, object stacks have no symmetry or class-specific
structure. However, we show that their decomposition can
be learned using a lower-dimensional representation.

3. Method
Task definition Given a single depth image of objects
stacked on a tabletop, our task is to estimate the complete
3D shape of the group and segment the objects into in-
stances. We learn a latent space that describes realistic
pile configurations using a VAE, to improve segmentation
and reconstruction in occluded regions. To allow the la-
tents to focus on learning the occluded regions, we condi-
tion our VAE on features from one or multiple depth im-
ages. Our goal is to train a generative model in the form
of p(x, γ, z) = p(z)p(x|z, γ) where p(z) is a zero-mean
multi-variate Gaussian prior describing realistic pile con-
figurations. p(x|z, γ) is the likelihood of pile configuration
x given latents z and depth encoding γ which we model
with our depth conditioned, generative decoder. We repre-
sent 3D geometry as a truncated signed distance function
(TSDF) at a resolution of 643, and instances using a center-
voting vector field 3.2.1 at the same resolution. Pipeline At
test time our method takes as input one or more depth im-
ages and generates the complete TSDF of the object stack
and a center-voting vector field, which, processed by our
3D Hough Voting algorithm, provides instance segmenta-
tion. We refine our output by fitting a superquadric to each
predicted mesh (overview in Figure 2).

3.1. A C-VAE for 3D Shape Instance Prediction

3.1.1 Network Architecture and training

Our network architecture consists of a 3D VAE which learns
a latent space for realistic pile configurations and a condi-
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tioning network whose encoding layers feed their learned
feature maps to the VAE, conditioning it on partial obser-
vations. Both encoder and decoder of the VAE split into
task specific branches in the first and last layers, to allow for
seperate encoding and decoding for instance and TSDF pre-
diction. To learn descriptive depth features, the condition-
ing network is trained by auto-encoding a partial TSDF and
is trained jointly with the VAE. We choose Residual blocks
[19] with Squeeze and Excitation (SE) [21] over conven-
tional convolutional layers in the joint encoder and decoder
of the VAE to avoid gradient underflow and favour context
integration. Since we compress both TSDF and instance
segmentation into one latent code of size 96, it learns a
consistent joint representation of the geometry and instance
segmentation of a scene. Our architecture can be seen in
Figure 2. Training To be effective, reconstruction has to be
possible from any viewpoint. We therefore train our model
on random viewpoints uniformly sampled during training in
the range (−1m, 1m) for lateral positions and (10cm, 1m)
for camera height. We generate a partial TSDF for every
novel viewpoint as described in Section 3.1.2).

3.1.2 Conditioning on a Depth Image

Conditioning a 3D decoder on 2D depth image features
would require the network to implicitly learn a reprojec-
tion task. To let it focus on the main task, we convert the
input depth image(s) into a partial TSDF by reprojecting
depth into the scene. We use inverse ray tracing for this and
sample along each ray to fill the voxels in the camera view
frustrum with the closest distance to a surface. Parallelized,
our algorithm generates a partial TSDF in under 0.8 seconds
and can be used in online training.

3.1.3 Loss Definition

When predicting a TSDF, areas close to the surface with
lower values will incur a smaller penalty than more distant
positions. Other work [50] has proposed masking the loss
by applying a different weight near the surface. We observe
that this approach adds a discontinuity to the loss as well as
an additional hyperparameter δ for the mask area. Instead
we propose a loss which adds the inverse of the TSDF itself
as a weighting factor:

LTSDF =

X∑
x=0

Y∑
y=0

Z∑
z=0

1

|vx,y,z|+ ϵ
||vx,y,z − v̂x,y,z||2, (1)

where vx,y,z and v̂x,y,z are the ground truth and predicted
TSDF values at voxelgrid index (x, y, z), ϵ prevents division
by 0 (set to 1e−9) and ||.||2 is the L2-norm. We use the
same loss for the partial TSDF prediction and refer to it as
Lp TSDF . For the instance vector voting task, we use the
L2-norm between predicted and ground truth center vectors

ˆ̄c and c̄:

Lcenter votes =

X∑
x=0

Y∑
y=0

Z∑
z=0

||c̄x,y,z − ˆ̄cx,y,z||2. (2)

We found that this led to better convergence for the instance
segmentation task than using cosine similarity. To approx-
imate our prior, we empirically found that training using
the Maximum-Mean Discrepancy DMMD [55] led to better
convergence than using the standard KL-divergence [24].
Our final loss is composed of 4 components:

Ltotal = αLTSDF + βLp TSDF+

γLcenter votes + δDMMD.
(3)

We set α = β = γ = 1 and δ to 1e5.

3.1.4 A dataset of SuperQuadric Piles

Instead of training on specific shapes from datasets such as
ShapeNet [6] or ModelNet [47], we use generic shapes to
favour generalisation. Superquadrics offer a general shape
description, extending quadrics to multiple exponents, and
are defined as the solution to the implicit equation:

f(x, y, z) =

∣∣∣∣ xa1
∣∣∣∣r + ∣∣∣∣ ya2

∣∣∣∣s + ∣∣∣∣ za3
∣∣∣∣t = 1. (4)

For exponents r, s, t >= 1 the shapes are convex and
varying the scale parameters a1, a2, a3 generates very flat,
small, or bulky shapes, ideal for approximating everyday
household objects. We leverage this continuous parametri-
sation to sample a large variety of shapes (3500 individual
shapes with exponents ranging between 2 to 100 and scales
between 5 cm and 30 cm) and generate 10, 000 realistic ob-
ject piles using PyBullet [10]. For each scene we randomly
place between 3 and 4 superquadrics (see Figure 3) .

3.2. Postprocessing

3.2.1 Class-agnostic Instance Segmentation

To make our instance segmentation class-agnostic and inde-
pendent of the number of objects present, we implement in-
stance segmentation using 3D Hough voting. The instance
branch of our network predicts a vector field in which each
voxel ‘votes’ for the object it belongs to by predicting a
3D unit vector ĉ from its own centroid to the object’s cen-
troid. (see Figure 4). At a 10-fold higher resolution than our
voxel grid (640 × 640) , we count the number of rays that
traverse each voxel by marching each ray through the grid.
We use the object bounds obtained from the TSDF predic-
tion to limit raycasting to the inside of objects. A higher res-
olution allows for more detailed prediction of centers which
don’t coincide with voxel centers at the original resolution.
Those voxels with a number of traversals larger than µ are
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Figure 2: Overview of our method (excluding shape fitting). Networks are trained jointly. Pre-processing steps (grey) are not optimised.

Figure 3: Left: 2 object stacks from our Superquadric (SQ) train-
ing set. Right: 3 stacks from our YCB-object test set. All stacks
are generated by random placement under physics simulation.

selected as object center votes and passed to MeanShift to
obtain the final center locations. To allocate voxels to their
corresponding centers, we compute:

min
c1,...cN

| arccos(ĉ · ĉn)|+ γ ∗ ∥ĉn∥ (5)

whereby ĉn is the normalised distance from the voxels’ cen-
ter to cluster center n. Setting hyperparameters µ = 10 and
γ = 0.1 gave the best performance. While we observe lim-
ited sensitivity to γ, very large (≥ 25) and small (≤ 4)
values of µ increase under- and over-segmentation respec-
tively. Paralellized on the GPU our method takes on average
19ms for a scene resolution of 643.

Figure 4: Our Hough Voting method illustrated for a single object
center. Left: The network output — unit vectors pointing towards
the center of the object. Center: Raycasting and extracting those
voxels with a high number of traversal at a 10-fold voxelgrid reso-
lution. Right: Voxels with a high ray-traversal rate are likely close
to the object center and selected as ’votes’. To obtain final centers,
selected votes are further processed using Mean shift clustering.

3.2.2 Shape Refinement using Superquadric Fitting

Our system outputs a TSDF and voxelised instance seg-
mentation of the compound object; if needed, additional
post-processing can be applied (e.g. primitive shape fitting,
CAD-model fitting). To generate a compact representation,
we propose following refinement procedure, which extracts
a set of superquadrics and their poses from the raw output:

First, we run marching cubes on the TSDF and sample
from the resulting mesh to get a point cloud. We segment
this point cloud according to the voxelised instance pre-
dictions. We then independently fit a superquadric to the
Ni points belonging to the ith segment by minimising the
“mean distortion” [8], Ldist,i, given by:

Ldist,i =
1

Ni

Ni∑
k=1

√
ai1 ai2 ai3 · di(xi,k, yi,k, zi,k)

2, (6)

where

di(xi,k, yi,k, zi,k) = ∥
−−−→
OiPk∥

fi(xi,k, yi,k, zi,k)− 1

fi(xi,k, yi,k, zi,k)
, (7)

ai1, ai2, ai3 are the scale parameters and fi(xi,k, yi,k, zi,k)
is the implicit equation from Eq. 4, di(xi,k, yi,k, zi,k) is the
approximate Euclidean distance to the surface [1], ∥

−−−→
OiPk∥

is the distance from the point to the superquadric center.
We then optimise for the parameters of all Q su-

perquadrics together, with additional cost terms to penalise
collisions between superquadrics and intersection with the
floor plane:

L =

Q∑
i

λdistLdist,i + λcoll

Q∑
j=1
i̸=j

Lcoll,ij + λfloorLfloor,i

 .

(8)
The cost of sample points from superquadric j colliding
with superquadric i, Lcoll,ij , is given by:

Lcoll,ij =
1

Nj

Nj∑
k=1

1di(xj,k,yj,k,zj,k)<0 · di(xj,k, yj,k, zj,k)
2,

(9)
where 1 is the indicator function, and the cost of sample
points from superquadric i colliding with the floor plane,
Lfloor,i, is given by:

Lfloor,i = 1zi,k<0 · z2i,k. (10)

Experimentally, we found λdist = 100, λcoll = 10, and
λfloor = 1 to work well. For both stages, we minimised
the cost function using the dogleg algorithm with rectangu-
lar trust regions, bounding the superquadric parameters to
enforce convex shapes.
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3.3. Multi-View Estimation

Our method supports multi-view reconstruction in two
ways: the generative decoder can be conditioned on a partial
TSDF generated from fusing multiple depth images (multi-
view conditioning); or the latent code can be optimised from
one or multiple depth views using differentiable depth ren-
dering (multi-view optimisation). To implement multi-view
conditioning, we backproject multiple depth views into the
scene using inverse raytracing as in Section 3.1.2. To
demonstrate how our latent code can be optimised against
multiple depth views, we implement a differentiable depth
renderer for raytracing TSDFs and an optimization method
described in the supplementary material.

4. Experiments
We evaluate our method quantitatively on our own test

dataset (1419 scenes) and a test dataset of YCB [3] objects
(256 scenes) to demonstrate generalisation. For the latter
we select YCB objects with IDs: 2, 3, 4, 5, 7, 8, 9, 10, 36,
61 which can be approximated by a single superquadric and
generate object stacks using the same procedure we used for
our own synthetic scenes (Section 3.1.4). We show dataset
examples in Figure 3. We demonstrate qualitative result on
our synthetic datasets in Figure 9 as well as on real data ex-
amples and sequences of the YCB-Video dataset (Figures
1, 10 and 5) and evaluate our method for multi-view recon-
struction. We show how our method generalises to scenes
with more objects and demonstrate an application of our
method for non-disruptive grasping on unknown objects.

Figure 5: Sampling from the latent space for a real data exam-
ple. We see multiple pile samples which all look similar from the
point of view of the input depth observation (top) but significantly
different though all plausible from the back (bottom).

4.1. Single-view Reconstruction

We are not aware of directly comparable work on 3D in-
stance segmentation for object groups and therefore select
the following two baselines to compare our method against.
SSCNet Baseline The closest existing method is SSCNet
[39], which predicts a 3D occupancy grid with semantic la-
bels for multi-object rooms from a single depth image. As
this method does not predict instances, we use it as a base-

line only for geometric reconstruction and adapt it as fol-
lows: (1) we change the last layer to predict a TSDF; (2) we
remove downsampling (required only in large-scale scenes)
from layers by adding padding as well as one upsampling
layer. We refer to this modified version as SSCNet∗∗.
Fully Convolutional (FC) Baseline Secondly, we use an
ablated version of our model: a fully convolutional network
predicting a TSDF and instance vector field from a single
depth image. This serves both as a baseline for instance
segmentation and an ablation study, showing the advantage
of a learned prior over direct prediction. Our ablated model
uses the same SE and Residual units as our main model but
no feature space compression, as we found it reduced con-
vergence. A detailed description of baseline architectures
can be found in the supplementary material.

Figure 6: Left: Ground truth with the visible part of the mesh
highlighted in red. Right: 3 random latent code samples generated
by our network. Note how every sample has different reconstruc-
tions in the occluded areas, which are plausible but would yield
high reconstruction error with respect to the ground truth TSDF.

4.1.1 Reconstruction Accuracy

Comparing the full reconstruction to the ground truth scene
unfairly penalises the network in occluded regions for
reconstructions which are plausible, but differ from the
ground truth (see Figure 6). We therefore evaluate our
method on the visible surface area and the full reconstruc-
tion separately. To show how performance differs depend-
ing on how much of the object stack is visible from a given
viewpoint, we report results by surface visibility. Note that
given a single view, the maximum surface visibility of a
pile is around 50%, since the back will always be occluded.
Since our method is viewpoint agnostic, we evaluate ev-
ery test scene from 3 random viewpoints uniformly sam-
pled from the same ranges used during training (Section
3.1.1). We ensure the distance between camera and scene
centers is at least 50cm. For every viewpoint, we generate a
3D scene and compute the average reconstruction accuracy
for 3 latent code samples to account for variability. Visible
surface evaluation To evaluate surface reconstruction ac-
curacy, we extract a mesh from the generated and ground
truth TSDFs using marching cubes. We obtain the visible
surface by extracting all visible faces using ray-triangle in-
tersection with the generated mesh. We produce 1000 uni-
form samples from the extracted surface and evaluate the
bidirectional Chamfer Distance between ground truth and
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predicted point sets, Pm and Pk:

CD =
1

Nm

Nm∑
xi=0

min
xjϵPk

(xi − xj) +
1

Nk

Nk∑
xi=0

min
xiϵPm

(xj − xi) ,

(11)
where xi and xj are the 3D coordinates of sampled points
from Pm and Pk respectively. Full reconstruction evalua-
tion We evaluate the full reconstruction in terms of surface
reconstruction accuracy and predicted voxel occupancy. For
the former we compute the Chamfer Distance between 1000
samples from the full predicted and ground truth mesh sur-
faces. For the latter we compute the Binary Cross Entropy
(BCE):

− 1

N

∑
Ω

yi log(
1

S

j=S∑
j=0

ŷj) + (1− yi) log(1−
1

S

j=S∑
j=0

ŷj) ,

(12)
where N is the voxelgrid resolution 643, S is the number of
latent code samples taken per viewpoint, which we set to 3
and ŷ and y are the predicted and ground truth occupancy
value respectively, computed as follows:

Occupancyx,y,z =

{
0 if TSDFx,y,z > 0

1 if TSDFx,y,z <= 0
(13)

We also report the Intersection over Union, whereby we use
a threshold of 0.5 to distinguish between (label) occupied
and unoccupied space. We evaluate our baselines using the
same procedure and display our results in Figure 7 and Ta-
ble 1. Note that we set S to 1 in (12) for our baselines
and just use the prediction ŷ. Our method outperforms both
baselines for full reconstruction (Chamfer Distance evalu-
ated for the full mesh surface, and expected occupancy) and
visible surface reconstruction, showing its overall advan-
tage for reconstructing and decomposing a 3D scene. Note
that the gap between visible and full surface reconstruction
is largest for SSCNet∗∗, but more comparable between the
FC baseline and our method. As expected for all meth-
ods, with lower visibility full surface reconstruction accu-
racy drops faster than visible surface accuracy. The drop
is however most pronounced for SSCNet∗∗. These obser-
vations suggest that while using a prior improves overall
performance, a large improvement in predicting occluded
space is achieved by jointly predicting shape and instances.

4.1.2 Scene decomposition (instance segmentation)

Similarly to the reconstruction accuracy, it is impossible to
make an exact quantitative evaluation of our method’s in-
stance segmentation since decomposition estimates in oc-
cluded regions can be plausible even when very different
from the ground truth. In Figure 5, for example, our method
hypothesises plausible hidden objects, although the ground

Figure 7: Chamfer Distance for 1000 samples on our test datasets
of SuperQuadric shapes (left) and object stacks composed of YCB
objects (right). We plot results for different surface mesh visibility
ratios. VS: Visible surface. FS: Full surface

truth does not contain one. We therefore decided to eval-
uate instance segmentation as a valid scene decomposition
which generates stable piles in physics simulation. Stabil-
ity evaluation under physics simulation We evaluate sta-
bility by loading our generated 3D meshes into the PyBul-
let physics engine and simulating 10000 steps with a grav-
ity setting of of 10m

s2 along −z, a friction coefficient of 1
and assuming uniform density. We compare our method
against our FC baseline (which provides instance segmen-
tation) in terms of object center displacement after simula-
tion and report results in Table 1. Our method outperforms
the fully convolutional baseline by over 50cm on both our
test datasets indicating that the collections generated by our
method are generally more stable and hence plausible. Note
that in the case of rolling objects as well as intersecting
objects (causing objects to be pushed apart due to contact
force), average object displacement can become large.

Figure 8: Example of multi-view reconstruction comparing
multi-view conditioning (MV cond), multi-view optimisation
(MV opt) to TSDF-Fusion. We show raw results (no SQ fitting)

4.1.3 Evaluating on Real Data

We qualitatively evaluate the proposed method on real data.
We collect RGB-D images of structures (leveraging ORB-
SLAM [28] poses) and post-process them by (1) segment-
ing the floor plane using RANSAC [37] and (2) rectifying
the roll and pitch of the camera pose by aligning the floor
plane normal with the vertical axis. Our results (Figure 10,
1 and 5) show that our method generates correct 3D re-
construction, realistic occlusion proposals and instance seg-
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Figure 9: Comparing our method against our baselines on ex-
amples from our SQ test dataset and our YCB test dataset. More
qualitative examples are shown in the supplementary material.

mentation for a number of real world examples. Our exam-
ple in Figure 5 shows that our method realistically fills in the
occluded area below the box by extending its shape to the
floor. When sampling from the latents, it is able to hypothe-
sise different occluded objects. In particular, our example in
Figure 1 (3rd row) shows that our network is capable to hy-
pothetise a supporting object which is completely occluded
but required to support a leaning box. We also evaluate our
method on YCB-Video sequences (Figure 1).

Figure 10: Qualitative results on real data examples. Our method
generates 3D shape and instances from single depth views.

4.2. Multi-View Reconstruction

We evaluate the performance of our method using multi-
view conditioning and multi-view optimisation. We use
simple TSDF Fusion as a baseline which we implement us-
ing the method described in 3.1.2. For a fixed sequence of 6
viewpoints (see Figure 13) we compare the reconstruction
quality for our SQ test dataset. For multi-view condition-
ing, we average reconstruction accuracy over 2 latent code
samples. Note that the first view covers on average 30% of
the test scenes. For multi-view optimization, we condition

ours FC SSCNet**
Avg. Chamfer Distance (m)

(µ) (σ) (µ) (σ) (µ) (σ)
visible surface (SQ dataset) 0.016 0.0002 0.044 0.002 0.036 0.002

full surface (SQ dataset) 0.028 0.0003 0.062 0.107 0.003 0.002
visible surface (YCB dataset) 0.036 0.002 0.076 0.006 0.065 0.008

full surface (YCB dataset) 0.062 0.007 0.098 0.011 0.116 0.009
Expected occupancy

Binary Cross Entropy
SQ dataset 0.089 0.003 0.175 0.005 0.247 0.008

YCB dataset 0.112 0.006 0.236 0.029 0.242 0.015
Intersection over Union

SQ dataset 0.829 0.004 0.635 0.005 0.424 0.004
YCB dataset 0.784 0.003 0.542 0.012 0.460 0.006

Avg. object centre displacement (m)
SQ dataset 0.593 1.28 1.112 5.441 – –

YCB dataset 1.216 4.734 1.756 6.494 – –

Table 1: Comparison in terms of Chamfer Distance, expected
occupancy and stability under physics simulation. We report the
average results for 3 viewpoints per scene.

on the first view and optimise the latent code against the ad-
ditional views (see supplementary material for details). Our
experiments show that multi-view conditioning generates
the best reconstruction and that both our multi-view meth-
ods outperform TSDF Fusion, even at very high visibility.
We attribute this to the fact that our generative method also
reconstructs the bottom of objects, which will always be
occluded and therefore cannot be reconstructed by TSDF
Fusion. Our example in Figure 8 shows how a scene recon-
struction is updated with additional views. Please refer to
our supplementary material and video for additional quali-
tative examples and runtime analysis.

4.2.1 Additional qualitative experiments

More objects and non-convex objects Although only
trained on 3-4 objects, SIMstack generalises well to scenes
with up to 7 objects (see Figure 12). We attribute this to
the fact that our formulation of instance segmentation is in-
dependent of the number of objects in the scene and that
our model learns from scenes with varying number of ob-
jects. Our method also shows some ability to generalise
to non-convex objects (see our supplementary material for
examples). Latent code analysis Our multi-view optimiza-
tion experiments show that our latent code can be optimised
against novel views, generating consistent shape and in-
stance predictions (Figure 8). This suggests that our shape
encoding is smooth as well as consistent between shape and
instance representation. We provide further qualitative ex-
amples demonstrating this in the supplementary material.

4.3. Precise Robot Manipulation

Robotic grasping is a well studied problem [2] and an ac-
tive area of research [33, 25, 23]. However, many state-of-
the-art grasping systems perform indiscriminate grasping,
with no regard of how the grasp might effect surrounding
objects. However, multi-object reasoning is essential when
grasping in cluttered scenes; grasping in an imprecise man-
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Figure 11: Two examples from our grasping system. Target objects are highlighted in green. The first example shows the robot sliding
the target object sideways, leaving the other objects undisturbed. The second example grasps the object from the side and pulls it out such
that the top resting object slides onto a lower supporting object, causing minimum disruption to the stack.

Figure 12: Qualitative results on scenes with 7 objects, demon-
strating the ability of our method to generalise to more objects.

Figure 13: Multi-view estimation. Left: The 6 viewpoints for
which we evaluate. Right: Chamfer Distance (1000 points) for
increasing views of TSDF Fusion, multi-view conditioning (MV
Conditioning) and multi-view optimisation (MV Optimisation).

ner may topple a stack and cause damage to fragile objects.
In this section, we show how SIMstack can be used to per-
form precise 6D grasping of a target object while minimis-
ing disruption to surrounding objects.

Our grasping demo consists of a real stack of (unknown)
objects, a Franka Panda robot arm, and a suction gripper
(Figure 1). An image of the scene is fed to SIMstack which
outputs meshes and poses. These, along with a target ob-
ject, are loaded into CoppeliaSim/PyRep [36, 22] where 5
virtual cameras are used to create a pointcloud of the vis-
ible surface of the stack. The target object’s pointcloud is
extracted, and grasping locations are sampled based on sur-

face normals. We exhaustively simulate each valid grasp
and measure the mean displacement of all objects (exclud-
ing the target object) after the grasp has been made. The
grasp which produces the lowest mean displacement is cho-
sen to run on the real platform. Note that due to COVID
restrictions, we were unable to show the grasps running on
the real robot. Two examples of successful grasps in sim-
ulations based on SIMstack reconstructions of real object
piles are shown in Figure 11, and a demo of the system can
be seen in the supplementary video.

5. Discussion and Conclusion

We propose a novel method (SIMstack) to generate 3D
shape and class-agnostic instance segmentation for multiple
stacked objects from a single depth image. We learn a joint
shape and instance encoding, trained on a dataset of para-
metric shapes, randomly assembled under physics simula-
tion. This encoding acts as an intutive physics prior for real-
istic object stacks, improving reconstruction and segmenta-
tion in occluded regions. SIMstack can generate a 3D shape
and instance decomposition of a collection of (convex) ob-
jects from a single depth view. This output allows for a
quick estimate of shape and instance decomposition, which
could be used for downstream applications (e.g to initialise
a multi-view scanning system to capture more detail [44])
and allows for fast multi-object reasoning, useful for inter-
active tasks such as the precise (non-disruptive) grasping we
demonstrate. Our method can leverage multi-view informa-
tion for improved reconstruction which makes it by design
a candidate for incremental reconstruction systems.

We believe our approach can play an important role
in rapid scene understanding to help embodied AI sys-
tems make physically intuitive interpretations of ambigu-
ous scenes. Promising future research directions include in-
tegrating RGB information and extending our approach to
non-convex objects.
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proach to learning 3D surface generation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 1

[17] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. OccuSeg:
Occupancy-aware 3D instance segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proceedings of the International
Conference on Computer Vision (ICCV), 2017. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 3

[20] Ji Hou, Angela Dai, and Matthias Nießner. 3D-SIS: 3D se-
mantic instance segmentation of RGB-D scans. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[21] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 3

[22] Stephen James, Marc Freese, and Andrew J Davison. Pyrep:
Bringing v-rep to deep robot learning. arXiv preprint
arXiv:1906.11176, 2019. 8

[23] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry
Kalashnikov, Alex Irpan, Julian Ibarz, Sergey Levine, Raia
Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 7

[24] Diederik P. Kingma and Max Welling. Auto-encoding varia-
tional bayes. In Proceedings of the International Conference
on Learning Representations (ICLR), 2014. 3

[25] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken
Goldberg. Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics. Pro-
ceedings of Robotics: Science and Systems (RSS), 2017. 7

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 1

[27] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy J. Mitra, and Leonidas J. Guibas. StructureNet: Hi-
erarchical graph networks for 3D shape generation. In SIG-
GRAPH Asia, 2019. 2

13020



[28] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-
D Cameras. IEEE Transactions on Robotics (T-RO),
33(5):1255–1262, 2017. 6

[29] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. KinectFusion: Real-time dense surface mapping
and tracking. In Proceedings of the International Symposium
on Mixed and Augmented Reality (ISMAR), 2011. 1

[30] Andrea Nicastro, Ronald Clark, and Stefan Leutenegger. X-
Section: Cross-section prediction for enhanced RGB-D fu-
sion. In Proceedings of the International Conference on
Computer Vision (ICCV), 2019. 1

[31] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[32] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas
Geiger. Superquadrics revisited: Learning 3D shape pars-
ing beyond cuboids. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.
2

[33] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50K tries and 700 robot
hours. Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2016. 7

[34] Charles R. Qi, Xinlei Chen, Or Litany, and Leonidas J.
Guibas. ImVoteNet: Boosting 3D object detection in point
clouds with image votes. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 2

[35] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep Hough voting for 3D object detection in point
clouds. In Proceedings of the International Conference on
Computer Vision (ICCV), 2019. 2

[36] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A
versatile and scalable robot simulation framework. In Pro-
ceedings of the IEEE/RSJ Conference on Intelligent Robots
and Systems (IROS). IEEE, 2013. 8

[37] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point
Cloud Library (PCL). In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2011. 6

[38] Daeyun Shin, Zhile Ren, Erik B. Sudderth, and Charless C.
Fowlkes. 3D scene reconstruction with multi-layer depth and
epipolar transformers. In Proceedings of the International
Conference on Computer Vision (ICCV), 2019. 1

[39] Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang,
Manolis Savva, and Thomas Funkhouser. Semantic scene
completion from a single depth image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017. 1, 5

[40] David Stutz and Andreas Geiger. Learning 3D shape com-
pletion from laser scan data with weak supervision. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 1

[41] Edgar Sucar, Kentaro Wada, and Andrew J. Davison.
NodeSLAM: Neural object descriptors for multi-view shape
reconstruction. In Proceedings of the International Confer-
ence on 3D Vision (3DV), 2016. 2

[42] Minhyuk Sung, Vladimir G. Kim, Roland Angst, and
Leonidas Guibas. Data-driven structural priors for shape
completion. ACM Transactions on Graphics (TOG), 34(6),
2015. 2

[43] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.
Efros, and Jitendra Malik. Learning shape abstractions by
assembling volumetric primitives. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017. 2

[44] Kentaro Wada, Edgar Sucar, Stephen James, Daniel Lenton,
and Andrew J. Davison. MoreFusion: Multi-object reason-
ing for 6D pose estimation from volumetric fusion. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 8

[45] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun,
William T. Freeman, and Joshua B. Tenenbaum. MarrNet:
3D shape reconstruction via 2.5D sketches. In Neural Infor-
mation Processing Systems (NeurIPS), 2017. 1

[46] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong
Zhang, William T. Freeman, and Joshua B. Tenenbaum.
Learning shape priors for single-view 3D completion and re-
construction. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018. 2

[47] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 3

[48] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter
Fox. Unseen object instance segmentation for robotic envi-
ronments. arXiv preprint arXiv:2007.08073, 2020. 2

[49] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen
Zhou, and Shengping Zhang. Pix2Vox: Context-aware 3D
reconstruction from single and multi-view images. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), 2019. 1

[50] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. DISN: Deep implicit surface
network for high-quality single-view 3D reconstruction. In
Neural Information Processing Systems (NeurIPS), 2019. 3

[51] Bo Yang, Stefano Rosa, Andrew Markham, Niki Trigoni, and
Hongkai Wen. Dense 3D object reconstruction from a sin-
gle depth view. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 41(12):2820–2834, 2019. 1

[52] Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew
Markham, and Niki Trigoni. 3D object reconstruction from a
single depth view with adversarial learning. In Proceedings
of the International Conference on Computer Vision Work-
shops (ICCVW), 2017. 1

[53] Yuan Yao, Nico Schertler, Enrique Rosales, Helge Rhodin,
Leonid Sigal, and Alla Sheffer. Front2Back: Single view 3D
shape reconstruction via front to back prediction. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 1

13021



[54] Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh
Tenenbaum, Bill Freeman, and Jiajun Wu. Learning to re-
construct shapes from unseen classes. In Neural Information
Processing Systems (NeurIPS), 2018. 2

[55] Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE:
Information maximizing variational autoencoders. arXiv
preprint arXiv:1706.02262, 2017. 3

[56] Yichao Zhou, Shichen Liu, and Yi Ma. Learning to detect 3D
reflection symmetry for single-view reconstruction. arXiv
preprint arXiv:2006.10042, 2020. 2

13022


