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Explaining in Style: Training a GAN to explain a classifier in StyleSpace
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Automatically detected classifier attributes, and their counterfactual explanations

Figure 1: Classifier-specific interpretable attributes emerge in the StylEx StyleSpace. Our system, StylEx, explains the decisions of a
classifier by discovering and visualizing multiple attributes that affect its prediction. (Left) StylEx achieves this by training a StyleGAN
specifically to explain the classifier (e.g., a “cat vs. dog” classifier), thus driving latent attributes in the GAN’s StyleSpace to capture
classifier-specific attributes. (Right) We automatically discover top visual attributes in the StyleSpace coordinates, which best explain
the classifier’s decision. For each discovered attribute, StylEx can then provide an explanation by generating a counterfactual example,
i.e., visualizing how manipulation of this attribute (style coordinate) affects the classifier output probability. The generated counterfactual
examples are marked in the figure as the images with colored borders. The degree to which manipulating each attribute affects the classifier
probability is shown in the top-left of each image. The top attributes found by our method indeed correspond to coherent semantic properties
that affect perception of cats vs. dogs (e.g. open or closed mouth, eye shape, and pointed or dropped ears).

Abstract

Image classification models can depend on multiple dif-
ferent semantic attributes of the image. An explanation of the
decision of the classifier needs to both discover and visualize
these properties. Here we present StylEx, a method for doing
this, by training a generative model to specifically explain
multiple attributes that underlie classifier decisions. A natu-
ral source for such attributes is the StyleSpace of StyleGAN,
which is known to generate semantically meaningful dimen-
sions in the image. However, because standard GAN training
is not dependent on the classifier, it may not represent those
attributes which are important for the classifier decision, and
the dimensions of StyleSpace may represent irrelevant at-
tributes. To overcome this, we propose a training procedure
for a StyleGAN, which incorporates the classifier model, in
order to learn a classifier-specific StyleSpace. Explanatory
attributes are then selected from this space. These can be
used to visualize the effect of changing multiple attributes per

* Equal contributors; Work performed by authors at Google.

image, thus providing image-specific explanations. We apply
StylEx to multiple domains, including animals, leaves, faces
and retinal images. For these, we show how an image can
be modified in different ways to change its classifier output.
Our results show that the method finds attributes that align
well with semantic ones, generate meaningful image-specific
explanations, and are human-interpretable as measured in
user-studies.'

1. Introduction

Deep net classifiers are often described as “black boxes”
whose decisions are opaque and hard for humans to under-
stand. This significantly holds back their usage, especially
in areas of high societal impact, such as medical imaging
and autonomous driving, where human oversight is critical.
Explaining the decision of classifiers can reveal model biases
[17], provide support to downstream human decision makers,
and even aid scientific discovery [20].

Among the different forms of explanations, counterfac-
tual explanations are gaining increasing attention [19, 11,

Project website: https://explaining-in-style.github.io/

6903



More

More
Cheetah

(b) Grad-CAM
Figure 2: Comparison to other visual explanation methods for a Lion vs. Cheetah classifier. (b) Grad-CAM [25] and other heat-map
based methods are limited in their ability to visualize attributes that are not spatially localized (e.g., eye size). (c) GANalyze [7] produces a
possible counterfactual explanation, but its visualization changes all relevant attributes at once. (d) Our StylEx method provides meaningful
interpertable multi-attribute explanation, by generating counterfactuals that change one attribute at a time.
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(c) GANalyze

33]. A counterfactual explanation is a statement of the form
“Had the input x been x then the classifier output would have
been  instead of y”, where the difference between x and x
is easy to explain. For instance, consider a classifier trained
to distinguish between cat and dog images. A counterfactual
explanation for an image classified as a cat could be “If the
pupils were made larger, then the output of the classifier
for the probability of cat would decrease by 10%.” A key
advantage of this approach is that it provides per-example
explanations, pinpointing which parts of the input are salient
towards the classification and also how they can be changed
in order to obtain an alternative outcome.

The effectiveness of counterfactual explanations strongly
depends on how intuitive the difference between x and x is
to human observers. For instance, if X is an arbitrary dog
image, it is not useful as a counterfactual explanation since
it usually changes all features of x, hence does not isolate
the critical features the classifier depends on. Adversarial
examples [9, 12], which are slight modifications to the input
x that change the classification to the wrong class, are also
not effective counterfactual explanations, as the changes are
usually not interpretable by humans.

Therefore to form a useful counterfactual explanation we
must discover interpretable features, or attributes; in the case
of the cats vs. dogs classifier, these might be “pupil size” or
“open mouth”. To visualize them we further need to enable
control of these attributes in the image, a task most suited
to generative models. This is an inherently different task
from visualizing a smooth transformation between one class
and the other, as done for instance in [7, 31]. Such transfor-
mations change all attributes at once, making it difficult to
isolate fine grained attributes. Both defining and visualizing
interpretable attributes are challenging tasks since in many
domains (e.g. medical imaging) we may not know the salient
visual attributes, or do not have labeled examples of them.

A natural candidate for finding visual attributes and visu-
alizing them is generative models, such as StyleGAN2 [16],
where it was shown that it is possible to find disentangled
latent variables that control semantic attributes of the im-
ages they generate. This approach has been used to create
powerful interfaces for image editing and data visualization
[3, 26, 7, 28, 27, 37]. Our method builds upon a recent
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observation by [35] that StyleGAN2 tends to contain a dis-
entangled latent space (i.e., the “StyleSpace”) which can be
used to extract individual attributes. However, as we show
here, this approach will not necessarily discover classifier-
related attributes since standard StyleGAN?2 training does
not involve the classifier. Instead, we propose our StylEx
framework to overcome this difficulty and promote classifier
explainability by: (i) incorporating the classifier into the
StyleGAN training procedure to obtain a classifier-specific
StyleSpace, and then (ii) mining this StyleSpace for a con-
cise set of attributes that affect the classifier prediction.

Adding the classifier into the training process of the GAN
turns out to be crucial in domains where the classification
depends on fine details (e.g., in retinal fundus images). A
generator unaware of the importance of these subtle details,
may fail to generate them.

It should be emphasized that our goal is not to explain
the true label, but rather what classifiers are learning. For
example, they could correspond to biases of the classifier that
result from biases in the training set. Indeed, one potential
use of StylEx is to discover and mitigate classifier biases.

We demonstrate StylEx on a variety of domains, and show
it extracts semantic attributes that are salient for classification
in each domain.

Our contributions are as follows:

* We propose the StylEx model for classifier-based train-
ing of a StyleGAN2, thus driving its StyleSpace to
capture classifier-specific attributes.

* A method to discover classifier-related attributes in
StyleSpace coordinates, and use these for counterfac-
tual explanations.

» StylEx is applicable for explaining a large variety of
classifiers and real-world complex domains. We show
it provides explanations understood by human users.

2. Related Work

The most widespread visual explanation methods are
based on heatmaps. Such maps highlight regions of the
image that are salient towards the decision, or towards the
activation of a hidden unit of the classifier (e.g., [25, 24, 36]).
Heatmaps are useful to understand things like which objects
in an image contributed to a classification. However, they
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cannot visualize/explain well attributes that are not spatially
localized, like size, color, etc. In addition, they can show
which areas of the image may be changed in order to affect
the classification, but not how they should be changed.
Counterfactual explanations address these limitations by
providing alternative inputs, where a small set of attributes
is changed and the different classification outcomes are ob-
served. Generative models are natural candidates to produce
visual counterfactual explanations, and indeed recent works
have shown progress towards this goal. In [31, 7, 32, 1] gen-
erative counterfactual explanations are produced, yet their
visualization changes all relevant attributes at once, as shown
in Fig. 2. Another related approach offered in [29] is to use
deep representations from a classifier to manipulate gener-
ated images at different granularities. Yet these may involve
properties that do not affect the classification outcome and
also combine several attributes. Hence these methods do
not allow the analysis of a classifier in terms of atomic at-
tributes and their effect on classifications. Other explanation
methods generate counterfactuals using attributes, where full
or partial supervision for the desired attributes is available
[10, 5]. [11] propose a counterfactual explanation method
that is not based on a generative model, and instead replaces a
small number of patches from one image into another. Their
method does decompose the counterfactual generation into
several patch replacements, though the counterfactuals are
often not realistic images and the method does not explicitly
define a set of controllable attributes. The closest method in
spirit to the explanations provided by our StylEx approach is
[21], though their method only works on small images, and
they do not demonstrate explanations that consist of more
than a single change of attributes (nor do they claim to find
multiple semantic attributes that affect the classification).
Explanations based on multiple attributes that are ex-
tracted in an unsupervised manner are given in [38, 6]. They
extract attributes based on superpixels, or activations in the
mid-layers of the classifier, and do not use a generative
model. Hence they do not create images that serve as coun-
terfactuals, and their attributes are demonstrated by showing
relevant image patches or superpixels. In terms of visualiza-
tion, representative patches are limited in their ability to visu-
alize attributes that are not spatially localized. Furthermore,
counterfactual images let us observe how the classification
changes under interventions on a combination of attributes.

3. Method

We next describe our approach for discovering classifier-
related attributes and modifying these attributes in real im-
ages. Our approach consists of two key steps. First, we train
a StyleGAN model in a way that incorporates the classifier,
thus encouraging the StyleSpace of the StyleGAN to accom-
modate classifier-specific attributes (Sec. 3.2). Then, we
search the StyleSpace of the trained GAN to automatically
discover coordinates that correspond to classifier-specific
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Figure 3: StylEx architecture. We jointly train the generator G,
discriminator D, and encoder E. During the training phase, an
input image is transformed via the encoder into a latent vector w.
w is then concatenated to the output C'(z) of the classifier C on
the image x. The result is transformed via affine transformations
to the style vectors So, ..., sn, which are then used to generate an
image close to the original image. A reconstruction loss is applied
between the generated image and the original image, as well as
between the corresponding encoder outputs. A GAN loss is applied
on the generated image, and a KL loss is applied between the output
of the classifier C' on the generated image and the input condition.

attributes (Sec. 3.3). Finally, we show how to use these at-
tributes in order to visually explain a classifier’s decision for
a given input image (Sec. 3.4).

3.1. StylEx Architecture

Recall that our goal is to explain the classification of a
given image by changing certain attributes in the image, and
to show they affect the classifier output. We achieve this
by combining the following components: a) A conditional
generative model that maps an embedding w into an output
image. b) An encoder that maps any input image into an
embedding w, so that the generator can modify attributes
in real images. ¢) A mechanism for “intervening” with the
generation process to change visual attributes in the image.

For the generative model we use StyleGAN2 [16]. This ar-
chitecture was shown to generate realistic images in multiple
domains. But more important to our goal is the observation
recently made by [35] that StyleGAN?2 tends to inherently
contain a disentangled StyleSpace space, which can be used
to extract individual attributes. Thus, we argue that modify-
ing coordinates of StyleSpace is a natural approach to our
problem of modifying classifier-related attributes. In [35]
the authors extracted coordinates of StyleSpace that corre-
sponded to known attributes in a pre-trained StyleGAN2.
In general, however, StyleGAN?2 is not trained to discover
classifier-related attributes of an arbitrary classifier, since
standard StyleGAN training does not involve that classifier
in any way (as shown in Sec. 4.2.3).

To overcome the above problem and allow for the
StyleSpace to contain classifier-related attributes, we train
our GAN to explicitly explain the classifier, by conditioning
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Figure 4: Top-4 automatically detected attributes for perceived-gender and perceived-age classifiers. The corresponding modifications
are visually coherent between different images, represent diverse semantic attributes, and affect the classifiers’ predictions (presented in the
top-left corner of each image) towards the wanted directions. The generated counterfactual examples are marked by a frame. Please refer to
the project website for more attributes and animated-GIFs to view these counterfactual changes (explanations) dynamically.

the model on classifier output and using a classifier loss (see
below). As we shall see this will result in Classifier-specific
disentangled attributes that emerge in our StyleSpace.

Finally, we add an encoder which is trained to predict
the latent vector w from the image (see Fig. 3). This is
necessary for two reasons. First, it allows us to explain the
classifier output on any given input image (and not only on
GAN-generated images). Second, it allows us to ensure that
the generative model captures classifier-related attributes by
using the Classifier-Loss (see below).

3.2. Training StylEx

Fig. 3 shows the components of StylEx and its training
procedure. The training method of our generative model is
based on the standard GAN training procedure, but adds to it
several modifications required for guiding the StyleSpace to
contain classifier-related attributes. The basic GAN training
recipe is to train the generator G and an adversarial discrimi-
nator D simultaneously [8]. Additionally, we jointly train an
encoder ' with the generator GG, using a reconstruction loss
(i.e., the Encoder and Generator function together as an au-
toencoder). Finally, we add two components that introduce
the classifier into the training procedure.

Conditional Training: We provide the generator with the
intended value of the classifier output on the generated im-
age. Adding this condition helps the StyleSpace to contain
more attributes that effect the classifier’s decision (as the

StyleSpace coordinates become an affine transformation of
the classifier output).

Classifier Loss: A GAN trained on a set of images will not
necessarily capture visual structures related to a particular
classifier. For example, a GAN trained on retinal images
will not necessarily visualize pathologies corresponding to a
particular disease. In this case, it will be impossible to visu-
ally explain a classifier for this pathology using this GAN.
To overcome this difficulty, we add a Classifier-Loss on the
images generated by the GAN, during the GAN training.
This loss is the KL-divergence between the classifier output
on the generated image, and the classifier output on the orig-
inal input image. This loss ensures that the generator does
not ignore important details which are meaningful for the
classification, or collapse into only one of the labels.

The overall StylEx training loss is the sum of the losses:

ey

where L4, is the logistic adversarial loss [8], and L,
is the path regularization described in [16]. The encoding
reconstruction 1oss, Lre., is given by LY, . + Lrprps +

L. . where the first two terms are calculated between the

input image x and the conditioned reconstructed image ' =
G[E(x),C(x)]. More specifically, L? . = ||a’ — z||; and
L1, prps is the LPIPS distance between x and x’ as described

in [39]. The third term, LY, ., is adapted from the style

rec?

reconstruction loss in [2]: L% . = ||E(2’)— E(x)||1. Finally,

Loss = Logy + Lreg + Lrec + Lets
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the Classifier-Loss is L. = Dgr, [C(2')||C(2)]. In Sec. 4
we provide ablation results on these losses.

3.3. Extracting Classifier-Specific Attributes

Thus far we trained a generative model that is constrained
to capture classifier-related information. We next turn to
finding coordinates in the StyleSpace of the model, which
encode classifier-specific attributes. Namely, we seek spe-
cific coordinates in the StyleSpace such that changing them
will change the generated image in a way that alters the
classifier output in a non-negligible way. This will enable
generating counterfactual explanations for a given image.

Algorithm 1 describes the AttFind procedure for discover-
ing classifier-specific attributes. Denote by K the dimension
of the style vector (across all layers), and by C'(x) the vector
of classifier logits (pre-softmax probabilities) for image x.
AttFind takes as input the trained model and a set of NV im-
ages whose predicted label by C is different from y. For
each class y (e.g., y="cat” or y="dog”), ArtFind then finds
a set Sy of M style coordinates (i.e., S, C [1,..., K] and
|Sy| = M), such that changing these coordinates increases
the average probability of the class y on these images.” Ad-
ditionally it finds a set of “directions” D, € {£1}* that
indicate in which direction these coordinates need to be
changed to increase the probability of y.

AttFind proceeds as follows: At each iteration it consid-
ers all K style coordinates and calculates their effect on the
probability of 3> # It then selects the coordinate with largest
effect, and removes all images where changing this coordi-
nate had a large effect on their probability to belong to class
y (i.e., this coordinate suffices to “explain” those images;
no need to proceed to other coordinates). This is repeated
until no images are left, or until M attributes are found. The
process is summarized in Algorithm 1. Examples of these
automatically detected attributes, for a variety of different
classifiers (binary and multi-class), are found in Figs. 4,5, 6.

3.4. Generating Image-Specific Explanations

StylEx provides a natural mechanism for explaining the
decision of a classifier on a specific image: simply find
StylEx attributes that affect the classifier’s decision on this
image, and visualize the effect of changing those.

There are various strategies for finding a set of image-
specific attributes. The simplest is to iterate over StylEx
attributes, calculate the effect of changing each on the classi-
fier output for this image, and return the top-k of these. We
can then visualize the resulting k£ modified images. We refer
to this strategy as Independent selection. Alternatively, it
could be that individual attributes do not have a large effect,
and thus we can search for a set of k StylEx attributes, whose
Jjoint modification maximizes classifier change. In order to

2This may be viewed as an estimate of the Average Causal Effect [22].

3More precisely, we use logits instead of probabilities, as often preferred
in classifier explanations, e.g. [30, 4].

“4If a coordinate has an inconsistent change direction it is discarded.

Algorithm 1: AttFind

Result: Set S, of top M style coordinates & set D,

of their directions.

Data: Classifier C. A set X of images whose
predicted label by C is not y. Generative
model G. Threshold ¢.

Initialization : S, D, = empty.

while |S,| < M or |X| > 0do

for z in X do

for style coordinate s ¢ S, do
Set  to be the image x after changing
coordinate s in directions d € {£1};
Set Az, s,d] = Cy(z) — Cy(z);
end

end

Set A[s,d] = Mean (Alx, s,d]) over all x € X;

for style coordinate s ¢ S, do

if* Als,1] >0 & A[s,—1] > 0 then
| setto Zero: Als,1] =0 & Als,—1] = 0;

end
Set Symax, dmaz to be arg max; 4 Afs, dJ;
Add 5,140 t0 Sy, and diyaq to Dy;
Let Xcyplained be all z € X s.t.
A[Jf, Smazx dmaw] > t;
Set X = X \ Xea:plained;

end

avoid checking all possible O(2F) subsets, we perform a
greedy search (i.e., at each step find the next most influential
attribute for this image, given the subset of attributes selected
so far; halt once the classifier has flipped its classification).
We can then visualize the effect of modifying this subset.
We refer to this as Subset selection.

Figures 7 and 8 show examples of image-specific expla-
nations (one per selection strategy; see Sec. 4). We ask what
has led the classifier to classify this person as “Perceived Old”
and not “Perceived Young”, or this leaf as “Sick” and not
“Healthy”. The figures show the top image-specific attributes
that drove the classifier to its prediction on this image.

Dataset \ Classifier
AFHQ [2] Cats / dogs

AFHQ Wild cats species
FFHQ [15] Perceived gender

FFHQ Perceived age

Plant-Village [14]
Retinal Fundus [ 18]
CUB-2011 [34]

Table 1: List of datasets used in this paper.

Healthy / sick leaves
DME / non-DME
Bird species

4. Evaluation and Results

We test our StylEx method on a variety of classifiers from
a diverse set of domains, as listed in Table 1. The classifiers
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Figure 5: Top-3 automatically detected attributes for (a) DME
classifier of retina images and (b) Classifier of Sick/Healthy
leaf images. The respective classifier scores are presented in their
top left corner. The generated counterfactual examples are marked
by a frame. The top discovered attributes for both classifiers turn
out to be well aligned with known disease indicators ( [23], [14]).
Please see animated-GIFs in the project website to view these
counterfactual changes (explanations) dynamically.

are based on the MobileNet [ | 3] architecture, and achieve a
high accuracy of at least 95% on their test sets. In the results
below, we show images corresponding to changing visual
attributes found by StylEx. It is important to emphasize
that we do not imply these modified images necessarily
correspond to a modified label probability in reality, but
rather that they result in modification of classifier output. In
other words, the modified classifier output may reflect biases
in classifier training, and not a true correlation between the
label and visual attributes.

4.1. Qualitative Evaluation

We first demonstrate that each StylEx attribute corre-
sponds to clear visual concepts, and then show that these can
be used to explain classifier outputs on specific images.

Less

More
Blackbird

Attribute #4 ’
("Black Beak”)

Attribute #3
("Black Upperparts”) ("Solid Wing Pattern”™)

Attribute #1 Attribute #2

("Black Belly”)

Figure 6: Explaining multi-class classifiers: top-4 automati-
cally detected attributes for the class brewer blackbird in a 200-
way classifier trained on CUB-2011 [34]. The classifier scores
for the brewer blackbird class are presented in the top left corner.
The top discovered attributes correspond to attributes in the CUB
taxonomy. Please see project website for additional results as well
as animated-GIFs.

Visualizing StylEx Attributes. We begin by showing that
the attributes discovered by StylEx indeed correspond to
coherent semantic notions (see Sec. 4.2.2 for user studies
that further demonstrate this). We emphasize that we do not
choose attributes by manual inspection but rather use the top
attributes found by the A#tFind procedure.

The semantic meaning of the attribute already becomes
clear even when inspecting its effect on a pair of images: one
where its effect is increased, and one where it’s decreased.
Figures 4 and 5 demonstrate this for four domains. For
each domain we consider the top StylEx attributes. For each
attribute, we find an image in each class where attribute
modification was significant, and display the original and
modified image. See results and animated-GIFs in project
website to view the these counter-factual explanations dy-
namically.

It can be seen that each of the top attributes extracted
by StylEx is visually-interpretable. Additionally, modifying
each attribute leads to a significant change in the classifier
output. The quality of the explanations that StylEx provides
can be demonstrated in the cases of the healthy/sick leaves
classifier and the retina DME classifier (Fig. 5) where the
top discovered attributes are aligned with disease indicators
that appear in the corresponding datasets ([ 14, 23]).

Explaining multi-class classifiers A#tFind is also applica-
ble to multi-class problems. Fig. 6 demonstrates this on a
classifier trained on CUB-2011 (200 classes) [34]. Indeed,
we observe that StylEx detects attributes that correspond to
attributes in CUB taxonomy.

Providing Image-Specific Explanations. Thus far we
showed that each StylEx attribute corresponds to an inter-
pretable visual concept. We can now use these to provide
counterfactual explanations for specific images. Namely, for
a given image we can provide statements such as: “had you
changed attribute #1 and #3, the classifier output would
have changed”. Since attribute #1 and #3 have clear se-
mantics (e.g., #1 is adding a moustache) the counterfacutal
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explanation is easy to understand and is informative. To find
a counterfactual explanation, we use the method in Sec. 3.4.
Fig. 7 illustrates this for the ‘“Perceived Age” classifier,
where we use the Independent selection method. It can be
seen that there are five attributes that individually affect that
classifier output considerably. Also, these are not the at-
tributes with largest average effect across many images (see
Fig. 4), but rather those that most affect this specific image.
Fig. 8 shows an example for the Plants domain, where we
use the Subset selection method. Here each of the selected
attributes has a smaller effect (though the change in logit is
significant), but the combined effect of changing the three
attributes results in flipping the classifier decision. These
examples nicely demonstrate that StylEx can be used to “de-
compose” classifier decisions into a set of visual attributes.

4.2. Quantitative Evaluation

It is not immediately clear how to evaluate multi-attribute
counterfactual explanations. However, the three following
criteria seem key to any such method:

Visual Coherence. Attributes should be identifiable by hu-
mans. For instance, the effect of a coordinate that controls
pupil dilation in cats can be easily understood by humans
after seeing a few examples. On the other hand, if the co-
ordinate changes different visual attributes for each image
(e.g. dilates pupils in some images, while shortening ears in
others) then understanding its effect is a more difficult task,
resulting in a less coherent visual attribute.

Distinctness. Extracted attributes should be distinct. Hav-
ing distinct attributes lets us compose several counterfactual
explanations that expose different elements underlying clas-
sifier decisions (e.g., as opposed to GANalyze [7]).

Effect of Attributes on Classifier Output. Changing the
value of attributes in an image should result in a change in
classifier output. Furthermore, different attributes should
have complementary effects so that modifying multiple at-
tributes will result in flipping the decision of the classifier
on most images.

4.2.1 Baselines and Model Variants

As discussed in Sec. 2, to-date, multi-attribute counterfactual
explanations of visual classifiers have not yet been achieved
for real images. Thus, there are no directly comparable
baselines in the literature. However, most closely related
to our method is the original StyleSpace defined in [35].
While [35] was not proposed as a method to explain a clas-
sifier, we can use it as a baseline to test two key compo-
nents our method adds to the StyleSpace framework: (i)
classifier-specific training (CST) of the StyleGAN and (ii)
the A#tFind method for finding classifier-related coordinates
in StyleSpace. To test the importance of these two contri-
butions, we compare against StylEx without CST and also
against using the StyleSpace selection method in [35]:

¢ StylEx w/o Classifier-Specific Training (CST): The
training procedure for StylEx incorporates the classi-

fier into the StyleGAN training procedure to obtain a
classifier-specific StyleSpace. Here we consider the
effect of using our A#tFind procedure with a standard
StyleGAN?2 that does not involve the classifier.

* Wuetal [35]: [35] proposed identifying StyleSpace
coordinates that relate to known visual labels. These co-
ordinates can be identified by measuring the normalized
difference between the coordinate values on each of the
labels. As a baseline we use their method to find the
top-M classifier-related coordinates in standard Style-
GAN2 StyleSpace and compare against our method,
which instead uses A#tFind and a StyleSpace trained
with CST.

4.2.2 A User Study for Coherence and Distinctness

To evaluate coherence and distinctness we conducted a two-
part user study. The first part uses a setup similar to [38].
Users are shown four animated GIFs, each corresponding
to modifying an attribute for a given image. The left two
GIFs are produced from an attribute ¢ and the right two GIFs
are from attributes 7 and j. The user is asked to identify the
right GIF corresponding to attribute ¢ (see supplementary for
more information). We use the top 6 style coordinates for
StylEx and for Wu et al., and perform the experiment using
each of these sets. A correct answer shows that attributes
are distinct, since users are able to distinguish between the
extracted attributes. It also establishes visual coherence
since users are able to classify animations as belonging to
the attribute based only on two examples. The results in
Table 2 show that StylEx achieves high accuracy in this
task, suggesting attributes are distinct and coherent. It also
outperforms Wu et al. on all domains but Plants. However,
on Plants we show in Sec. 4.2.3 that Wu et al. attributes have
little effect on the classifier.

|  Wuetal. | Ours
0.783(+0.186) | 0.96 (+0.047)

Perceived Gender

Perceived Age 0.85 (£0.095) | 0.983 (£0.037)
Plants 0.91(x0.081) | 0.916 (£0.068)
Cats/Dogs 0.65 (£0.18) 0.933 (£0.05)

Table 2: User study results. Fraction of correct answers on identi-
fication of the top-6 extracted attributes.

For the second part of the study (performed on a different
set of users) we show 4 GIFs demonstrating an intervention
on a single style coordinate. Users are then asked to de-
scribe in 1-4 words the single most prominent attribute they
see changing in the image. We perform these experiments
for Face classifiers and Cats/Dogs. These datasets are cho-
sen since they are more familiar to a layperson, making it
more likely that users write similar words when describing
an attribute. We provide the full answers of users in the
supplementary material, yet a qualitative assessment of the
responses leads to similar conclusions as in the first part
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Figure 7: Image-specific explanations: Top-5 automatically detected attributes for explaining a perceived-age classifier for a specific image
using the Independent selection strategy. Attributes are sorted by their effect on the classification of the specific image, resulting in different
attributes from those presented in Fig. 4 which have the largest average effect over the entire dataset. The classifier probabilities of young are

shown in the top-left corner.
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Figure 8: Combining several attributes. Attributes in (c) are selected by the Subset method to inflict the largest accumulated effect on the
classification of the image in (a). Interventions on individual attributes result in a small change of the classifier output, yet intervening on all
of them results in image (b) where the classification is flipped. The classifier probabilities of healthy are presented in the top-left corner.

of the study regarding the distinctness and coherence. For
instance, all users used the word “glasses” when describing
the top coordinate extracted by StylEx for the perceived age
classifier. In general for all coordinates extracted by StylEx,
except one, there is a common word shared by all descrip-
tions, and only in two coordinates the most common word is
the same. On the other hand, for Wu et al. less than half of
the coordinates have a common word in all their descriptions,
and two pairs of coordinates have the same most common
word.

4.2.3 ‘Sufficiency’: Effect of Attributes on Classifier Output

To test the effect of the attributes on the classifier, we ask
if interventions on a small set of attributes can flip the clas-
sifier decision. Specifically, we try modifications on top k
attributes up-to £ = 10. We then measure the fraction of
images that can be flipped (hence explained) in this way.

Table 3 presents this measure on 1000 randomly chosen
images. It can be seen that StylEx achieves high explanation
percentages on most domains. Table 3 also reports results
of StylEx without the classifier-specific training (i.e. without
conditional training and classifier loss). Note that this com-
ponent has a dramatic effect on performance in the retina and
plants domains. This is in line with the fact that the classes
in these cases correspond to features that are more subtle and
localized, thus less likely to be captured by a GAN that is
oblivious to the classifier. Specifically, we verified that when
training without classifier information, the generated images
in the retina domain collapse to one class (‘“healthy”).

| Wuaetal. | Ours w/o CST | Ours

Perceived Gender 14.3% 82.7% 83.2%
Perceived Age 16.9% 93.0% 93.9%
Cats/Dogs 1.0% 15.7% 25.0%
Wild Cats 11.8% 18.9% 66.7%
Plants 14.6% 58.2% 91.2%
Retina 0.0% 0.0% 100%

Table 3: Effect of Top-10 Attributes on the Classifier. The frac-
tion of images for which the classification flipped when modifying
top-k attributes up to £ = 10 (see Sec. 4.2.3). Attributes discovered
by StylEx affect classification results for a much larger percent-
age of images than the baseline methods. On the face domains,
AttFind finds sufficient attributes even on standard StyleGAN2,
while in other domains, classifier-specific training is required. On
the Cats/Dogs classifier, due to the large visual differences between
the two classes, top-10 attributes are not enough. 40 attributes are
required to flip the classifier in 94% of the images.

5. Conclusion

We introduced a new technique for generating different
counterfactual explanations for a given classifier on a given
image. Our results demonstrate that these attributes corre-
spond to clear visual concepts and directly affect classifier
decisions. We believe that StylEx is a promising step towards
detection and mitigation of previously unknown biases in
classifiers. Additionally, our focus on multiple-attribute
based counterfactuals is key to providing new insights about
previously opaque classification processes and aiding in the
process of scientific discovery.
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