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cannot visualize/explain well attributes that are not spatially

localized, like size, color, etc. In addition, they can show

which areas of the image may be changed in order to affect

the classification, but not how they should be changed.

Counterfactual explanations address these limitations by

providing alternative inputs, where a small set of attributes

is changed and the different classification outcomes are ob-

served. Generative models are natural candidates to produce

visual counterfactual explanations, and indeed recent works

have shown progress towards this goal. In [31, 7, 32, 1] gen-

erative counterfactual explanations are produced, yet their

visualization changes all relevant attributes at once, as shown

in Fig. 2. Another related approach offered in [29] is to use

deep representations from a classifier to manipulate gener-

ated images at different granularities. Yet these may involve

properties that do not affect the classification outcome and

also combine several attributes. Hence these methods do

not allow the analysis of a classifier in terms of atomic at-

tributes and their effect on classifications. Other explanation

methods generate counterfactuals using attributes, where full

or partial supervision for the desired attributes is available

[10, 5]. [11] propose a counterfactual explanation method

that is not based on a generative model, and instead replaces a

small number of patches from one image into another. Their

method does decompose the counterfactual generation into

several patch replacements, though the counterfactuals are

often not realistic images and the method does not explicitly

define a set of controllable attributes. The closest method in

spirit to the explanations provided by our StylEx approach is

[21], though their method only works on small images, and

they do not demonstrate explanations that consist of more

than a single change of attributes (nor do they claim to find

multiple semantic attributes that affect the classification).

Explanations based on multiple attributes that are ex-

tracted in an unsupervised manner are given in [38, 6]. They

extract attributes based on superpixels, or activations in the

mid-layers of the classifier, and do not use a generative

model. Hence they do not create images that serve as coun-

terfactuals, and their attributes are demonstrated by showing

relevant image patches or superpixels. In terms of visualiza-

tion, representative patches are limited in their ability to visu-

alize attributes that are not spatially localized. Furthermore,

counterfactual images let us observe how the classification

changes under interventions on a combination of attributes.

3. Method

We next describe our approach for discovering classifier-

related attributes and modifying these attributes in real im-

ages. Our approach consists of two key steps. First, we train

a StyleGAN model in a way that incorporates the classifier,

thus encouraging the StyleSpace of the StyleGAN to accom-

modate classifier-specific attributes (Sec. 3.2). Then, we

search the StyleSpace of the trained GAN to automatically

discover coordinates that correspond to classifier-specific

Figure 3: StylEx architecture. We jointly train the generator G,

discriminator D, and encoder E. During the training phase, an

input image is transformed via the encoder into a latent vector w.

w is then concatenated to the output C(x) of the classifier C on

the image x. The result is transformed via affine transformations

to the style vectors s0, ..., sn, which are then used to generate an

image close to the original image. A reconstruction loss is applied

between the generated image and the original image, as well as

between the corresponding encoder outputs. A GAN loss is applied

on the generated image, and a KL loss is applied between the output

of the classifier C on the generated image and the input condition.

attributes (Sec. 3.3). Finally, we show how to use these at-

tributes in order to visually explain a classifier’s decision for

a given input image (Sec. 3.4).

3.1. StylEx Architecture

Recall that our goal is to explain the classification of a

given image by changing certain attributes in the image, and

to show they affect the classifier output. We achieve this

by combining the following components: a) A conditional

generative model that maps an embedding w into an output

image. b) An encoder that maps any input image into an

embedding w, so that the generator can modify attributes

in real images. c) A mechanism for “intervening” with the

generation process to change visual attributes in the image.

For the generative model we use StyleGAN2 [16]. This ar-

chitecture was shown to generate realistic images in multiple

domains. But more important to our goal is the observation

recently made by [35] that StyleGAN2 tends to inherently

contain a disentangled StyleSpace space, which can be used

to extract individual attributes. Thus, we argue that modify-

ing coordinates of StyleSpace is a natural approach to our

problem of modifying classifier-related attributes. In [35]

the authors extracted coordinates of StyleSpace that corre-

sponded to known attributes in a pre-trained StyleGAN2.

In general, however, StyleGAN2 is not trained to discover

classifier-related attributes of an arbitrary classifier, since

standard StyleGAN training does not involve that classifier

in any way (as shown in Sec. 4.2.3).

To overcome the above problem and allow for the

StyleSpace to contain classifier-related attributes, we train

our GAN to explicitly explain the classifier, by conditioning
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the Classifier-Loss is Lcls = DKL [C(x′)||C(x)]. In Sec. 4

we provide ablation results on these losses.

3.3. Extracting Classifier­Specific Attributes

Thus far we trained a generative model that is constrained

to capture classifier-related information. We next turn to

finding coordinates in the StyleSpace of the model, which

encode classifier-specific attributes. Namely, we seek spe-

cific coordinates in the StyleSpace such that changing them

will change the generated image in a way that alters the

classifier output in a non-negligible way. This will enable

generating counterfactual explanations for a given image.

Algorithm 1 describes the AttFind procedure for discover-

ing classifier-specific attributes. Denote by K the dimension

of the style vector (across all layers), and by C(x) the vector

of classifier logits (pre-softmax probabilities) for image x.

AttFind takes as input the trained model and a set of N im-

ages whose predicted label by C is different from y. For

each class y (e.g., y=“cat” or y=“dog”), AttFind then finds

a set Sy of M style coordinates (i.e., Sy ⊂ [1, . . . ,K] and

|Sy| = M ), such that changing these coordinates increases

the average probability of the class y on these images.2 Ad-

ditionally it finds a set of “directions” Dy ∈ {±1}M that

indicate in which direction these coordinates need to be

changed to increase the probability of y.

AttFind proceeds as follows: At each iteration it consid-

ers all K style coordinates and calculates their effect on the

probability of y.3 4 It then selects the coordinate with largest

effect, and removes all images where changing this coordi-

nate had a large effect on their probability to belong to class

y (i.e., this coordinate suffices to “explain” those images;

no need to proceed to other coordinates). This is repeated

until no images are left, or until M attributes are found. The

process is summarized in Algorithm 1. Examples of these

automatically detected attributes, for a variety of different

classifiers (binary and multi-class), are found in Figs. 4,5, 6.

3.4. Generating Image­Specific Explanations

StylEx provides a natural mechanism for explaining the

decision of a classifier on a specific image: simply find

StylEx attributes that affect the classifier’s decision on this

image, and visualize the effect of changing those.

There are various strategies for finding a set of image-

specific attributes. The simplest is to iterate over StylEx

attributes, calculate the effect of changing each on the classi-

fier output for this image, and return the top-k of these. We

can then visualize the resulting k modified images. We refer

to this strategy as Independent selection. Alternatively, it

could be that individual attributes do not have a large effect,

and thus we can search for a set of k StylEx attributes, whose

joint modification maximizes classifier change. In order to

2This may be viewed as an estimate of the Average Causal Effect [22].
3More precisely, we use logits instead of probabilities, as often preferred

in classifier explanations, e.g. [30, 4].
4If a coordinate has an inconsistent change direction it is discarded.

Algorithm 1: AttFind

Result: Set Sy of top M style coordinates & set Dy

of their directions.

Data: Classifier C. A set X of images whose

predicted label by C is not y. Generative

model G. Threshold t.
Initialization :Sy , Dy = empty.

while |Sy| < M or |X| > 0 do

for x in X do

for style coordinate s /∈ Sy do
Set x̃ to be the image x after changing

coordinate s in directions d ∈ {±1};

Set ∆[x, s, d] = Cy(x̃)− Cy(x);
end

end

Set ∆̄[s, d] = Mean (∆[x, s, d]) over all x ∈ X;

for style coordinate s /∈ Sy do

if 4 ∆̄[s, 1] > 0 & ∆̄[s,−1] > 0 then

set to Zero: ∆̄[s, 1] = 0 & ∆̄[s,−1] = 0;

end

Set smax, dmax to be argmaxs,d ∆̄[s, d];
Add smax to Sy , and dmax to Dy;

Let Xexplained be all x ∈ X s.t.

∆[x, smax, dmax] > t;
Set X = X \Xexplained;

end

avoid checking all possible O(2k) subsets, we perform a

greedy search (i.e., at each step find the next most influential

attribute for this image, given the subset of attributes selected

so far; halt once the classifier has flipped its classification).

We can then visualize the effect of modifying this subset.

We refer to this as Subset selection.

Figures 7 and 8 show examples of image-specific expla-

nations (one per selection strategy; see Sec. 4). We ask what

has led the classifier to classify this person as “Perceived Old”

and not “Perceived Young”, or this leaf as “Sick” and not

“Healthy”. The figures show the top image-specific attributes

that drove the classifier to its prediction on this image.

Dataset Classifier

AFHQ [2] Cats / dogs

AFHQ Wild cats species

FFHQ [15] Perceived gender

FFHQ Perceived age

Plant-Village [14] Healthy / sick leaves

Retinal Fundus [18] DME / non-DME

CUB-2011 [34] Bird species

Table 1: List of datasets used in this paper.

4. Evaluation and Results

We test our StylEx method on a variety of classifiers from

a diverse set of domains, as listed in Table 1. The classifiers
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explanation is easy to understand and is informative. To find

a counterfactual explanation, we use the method in Sec. 3.4.

Fig. 7 illustrates this for the “Perceived Age” classifier,

where we use the Independent selection method. It can be

seen that there are five attributes that individually affect that

classifier output considerably. Also, these are not the at-

tributes with largest average effect across many images (see

Fig. 4), but rather those that most affect this specific image.

Fig. 8 shows an example for the Plants domain, where we

use the Subset selection method. Here each of the selected

attributes has a smaller effect (though the change in logit is

significant), but the combined effect of changing the three

attributes results in flipping the classifier decision. These

examples nicely demonstrate that StylEx can be used to “de-

compose” classifier decisions into a set of visual attributes.

4.2. Quantitative Evaluation

It is not immediately clear how to evaluate multi-attribute

counterfactual explanations. However, the three following

criteria seem key to any such method:

Visual Coherence. Attributes should be identifiable by hu-

mans. For instance, the effect of a coordinate that controls

pupil dilation in cats can be easily understood by humans

after seeing a few examples. On the other hand, if the co-

ordinate changes different visual attributes for each image

(e.g. dilates pupils in some images, while shortening ears in

others) then understanding its effect is a more difficult task,

resulting in a less coherent visual attribute.

Distinctness. Extracted attributes should be distinct. Hav-

ing distinct attributes lets us compose several counterfactual

explanations that expose different elements underlying clas-

sifier decisions (e.g., as opposed to GANalyze [7]).

Effect of Attributes on Classifier Output. Changing the

value of attributes in an image should result in a change in

classifier output. Furthermore, different attributes should

have complementary effects so that modifying multiple at-

tributes will result in flipping the decision of the classifier

on most images.

4.2.1 Baselines and Model Variants

As discussed in Sec. 2, to-date, multi-attribute counterfactual

explanations of visual classifiers have not yet been achieved

for real images. Thus, there are no directly comparable

baselines in the literature. However, most closely related

to our method is the original StyleSpace defined in [35].

While [35] was not proposed as a method to explain a clas-

sifier, we can use it as a baseline to test two key compo-

nents our method adds to the StyleSpace framework: (i)

classifier-specific training (CST) of the StyleGAN and (ii)

the AttFind method for finding classifier-related coordinates

in StyleSpace. To test the importance of these two contri-

butions, we compare against StylEx without CST and also

against using the StyleSpace selection method in [35]:

• StylEx w/o Classifier-Specific Training (CST): The

training procedure for StylEx incorporates the classi-

fier into the StyleGAN training procedure to obtain a

classifier-specific StyleSpace. Here we consider the

effect of using our AttFind procedure with a standard

StyleGAN2 that does not involve the classifier.

• Wu et al. [35]: [35] proposed identifying StyleSpace

coordinates that relate to known visual labels. These co-

ordinates can be identified by measuring the normalized

difference between the coordinate values on each of the

labels. As a baseline we use their method to find the

top-M classifier-related coordinates in standard Style-

GAN2 StyleSpace and compare against our method,

which instead uses AttFind and a StyleSpace trained

with CST.

4.2.2 A User Study for Coherence and Distinctness

To evaluate coherence and distinctness we conducted a two-

part user study. The first part uses a setup similar to [38].

Users are shown four animated GIFs, each corresponding

to modifying an attribute for a given image. The left two

GIFs are produced from an attribute i and the right two GIFs

are from attributes i and j. The user is asked to identify the

right GIF corresponding to attribute i (see supplementary for

more information). We use the top 6 style coordinates for

StylEx and for Wu et al., and perform the experiment using

each of these sets. A correct answer shows that attributes

are distinct, since users are able to distinguish between the

extracted attributes. It also establishes visual coherence

since users are able to classify animations as belonging to

the attribute based only on two examples. The results in

Table 2 show that StylEx achieves high accuracy in this

task, suggesting attributes are distinct and coherent. It also

outperforms Wu et al. on all domains but Plants. However,

on Plants we show in Sec. 4.2.3 that Wu et al. attributes have

little effect on the classifier.

Wu et al. Ours

Perceived Gender 0.783(±0.186) 0.96 (±0.047)

Perceived Age 0.85 (±0.095) 0.983 (±0.037)

Plants 0.91(±0.081) 0.916 (±0.068)

Cats/Dogs 0.65 (±0.18) 0.933 (±0.05)

Table 2: User study results. Fraction of correct answers on identi-

fication of the top-6 extracted attributes.

For the second part of the study (performed on a different

set of users) we show 4 GIFs demonstrating an intervention

on a single style coordinate. Users are then asked to de-

scribe in 1-4 words the single most prominent attribute they

see changing in the image. We perform these experiments

for Face classifiers and Cats/Dogs. These datasets are cho-

sen since they are more familiar to a layperson, making it

more likely that users write similar words when describing

an attribute. We provide the full answers of users in the

supplementary material, yet a qualitative assessment of the

responses leads to similar conclusions as in the first part
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