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Figure 1. Examples from our OpenForensics dataset (best viewed online in color with zoom-in). Can you spot the forged faces and identify
the manipulated areas in these images? The answers are in the supplementary material.

Abstract

The proliferation of deepfake media is raising concerns
among the public and relevant authorities. It has become
essential to develop countermeasures against forged faces
in social media. This paper presents a comprehensive study
on two new countermeasure tasks: multi-face forgery detec-
tion and segmentation in-the-wild. Localizing forged faces
among multiple human faces in unrestricted natural scenes
is far more challenging than the traditional deepfake recog-
nition task. To promote these new tasks, we have created the
first large-scale dataset posing a high level of challenges
that is designed with face-wise rich annotations explicitly
for face forgery detection and segmentation, namely Open-
Forensics. With its rich annotations, our OpenForensics
dataset has great potentials for research in both deepfake
prevention and general human face detection. We have also
developed a suite of benchmarks for these tasks by conduct-
ing an extensive evaluation of state-of-the-art instance de-
tection and segmentation methods on our newly constructed
dataset in various scenarios.

1. Introduction
Continuing advances in deep learning have led to impres-

sive improvements in deepfake methods (i.e., deep learning-
based face forgery), which can change the target person’s
identity [32, 1, 64, 42]. Emerging techniques such as au-
toencoder (AE) models and generative adversarial networks
(GANs) enable transferring one person’s face to another
person while retaining the original facial expression and
head pose [68, 67, 56, 66]. The realistic appearance syn-
thesized with deepfake methods is drawing much attention

Figure 2. Face-wise multi-task ground truth in OpenForensics
dataset (best viewed online in color with zoom-in). From left to
right, original images followed by overlaid ground truth bounding
box and segmentation mask, forgery boundary, and general facial
landmarks.

in the fields of computer vision and graphics because of the
potential application of such methods in a wide range of ar-
eas [18, 26, 30, 79, 39]. Moreover, falsified AI-synthesized
images/videos have raised serious concerns about individ-
ual harassment and criminal deception [6, 62, 12]. To ad-
dress threats posed by spoofing and impersonation attacks,
it is essential to develop countermeasures against face forg-
eries in digital media.

Conventional face forgery recognition methods [2, 54,
53] require the input of given face regions. Therefore, they
can process only one face at a time, and processing multiple
faces sequentially is time-consuming. Moreover, their per-
formance greatly depends on the accuracy of the indepen-
dent face detection method used. Given that these methods
have been evaluated only in laboratory environments using
images with a simple background and a single clear front
face [31, 78], they are not ready for deployment in the real
world, where the contexts are much more diverse and chal-
lenging than simple staged scenarios.

It has thus become essential to develop methods that can
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Table 1. Basic information about deepfake datasets. “Cls.”, “Det.” and “Seg.” stand for classification, detection, and segmentation, respec-
tively. Pristine scenarios are originally collected images/videos used to generate fake data. Unique fake scenarios are fake images/videos
ignoring perturbations. Released scenarios are number of real/fake (or both) images/videos publicly released by authors.

Dataset Year Task GT Type Fake Identity #Face
Per Image

Face
Occlusion

#Pristine
Scenario

#Unique Fake
Scenario

#Released
Scenario

Data
Augmentation

DF-TIMIT [31] 2018 Cls. Image label Other videos 1 ✗ 320 320 640 ✗
UADFV [78] 2019 Cls. Image label Other videos 1 ✗ 49 49 98 ✗
FaceForensics++ [61] 2019 Cls. Image label Other videos 1 ✗ 1,000 4,000 5,000 ✗
Google DFD [16] 2019 Cls. Image label Other videos 1 ✗ 363 3,068 3,431 ✗
Facebook DFDC [14] 2020 Cls. Image label Other videos 1 ✗ 48,190 104,500 128,154 ✓
Celeb-DF [46] 2020 Cls. Image label Other videos 1 ✗ 590 5,639 6,229 ✗
DeeperForensics [27] 2020 Cls. Image label Hired actors 1 ✗ 1,000 1,000 10,000 ✓
WildDeepfake [84] 2020 Cls. Image label N/A 1 ✗ 0 707 N/A ✗
OpenForensics 2021 Det. / Seg. BBox/Mask GAN > 1 ✓ 45,473 70,325 115,325 ✓

effectively process multiple faces simultaneously from an
input image. To our best knowledge, no methods have been
proposed for face forgery detection and segmentation offi-
cially. We attribute this partially to the lack of a large-scale
dataset for training and testing. To encourage more studies
in this field, we present four contributions in this paper.

First, we present a comprehensive study on tasks related
to massive face forgery in-the-wild. Particularly, we intro-
duce two new tasks: multi-face forgery detection and seg-
mentation in-the-wild. This is the first formal exploration of
these tasks to the best of our knowledge. Previous work has
explored only single-face forgery recognition.

Second, we propose generating an infinite number of
fake individual identities using GAN models for non-target
face-swapping without repeatedly training a deepfake AE.
Our proposed forgery workflow reduces the cost of synthe-
sizing fake data.

Third, using the proposed forgery workflow, we intro-
duce a novel image dataset to support the development of
multi-face forgery detection and segmentation tasks. Our
newly constructed OpenForensics dataset is the first large-
scale dataset designed for these tasks. It consists of 115K
unrestricted images with 334K human faces. Unlike exist-
ing datasets, ours contains various backgrounds and mul-
tiple people of various ages, genders, poses, positions, and
face occlusions. All images have face-wise rich annotations
supporting multiple tasks, such as forgery category, bound-
ing box, segmentation mask, forgery boundary, and general
facial landmarks (see Figs. 1 and 2). The dataset can thus
support not only multi-face forgery detection and segmenta-
tion tasks but also conventional tasks involving the general
human face.

Fourth, we present a benchmark suite to facilitate the
evaluation and advancement of these tasks. We conducted
an extensive evaluation and in-depth analysis of state-of-
the-art instance detection and segmentation models in vari-
ous scenarios.

The whole dataset, evaluation toolkit, and trained models
will be freely available on our project page1.

1https://sites.google.com/view/ltnghia/research/openforensics

2. Related Work

2.1. Existing Forensic Datasets

Table 1 summarizes basic information about existing
forensic datasets. The DF-TIMIT dataset [31] has 640
fake videos crafted from Vid-TIMIT dataset [63] using
Faceswap-GAN [64]. The UADFV dataset [78] con-
sists of 98 videos, half of which are fake, created using
FakeAPP [18]. The FaceForensics++ dataset [61] con-
tains 1000 pristine videos from YouTube and 4000 synthetic
videos manipulated using deepfake methods [1, 68, 32, 67].
The Google DFD dataset [16] includes 3068 fake videos.
The Facebook DFDC dataset [14] contains 128K original
and manipulated videos created using various deepfake and
augmentation methods [59, 24, 79, 56, 28]. The Celeb-DF
dataset [46] comprises YouTube celebrity videos and 5,639
fake videos. The DeeperForensics dataset [27] consists of
10K manipulated videos using a deepfake VAE and aug-
mentations on 1000 original videos in the FaceForensics++
dataset. The WildDeepfake dataset [84] contains face se-
quences extracted from 707 deepfake videos collected from
the Internet. As shown in Table 1, our OpenForensics is the
first dataset designed for face forgery detection and segmen-
tation.

Existing forensic datasets were created by dividing long
videos into short ones, leading to that even pristine videos
have the same background. Subsequent synthesizing many
fake videos from one pristine video resulted in lots of sim-
ilar backgrounds. Deep models trained on the existing
datasets may not generalize well to the real world due to
the repeated background. In contrast, our large-scale image
dataset contains diverse backgrounds. Inspired by the work
of Dolhansky et al. [14] and Jiang et al. [27], we system-
atically applied a mixture of perturbations to raw manipu-
lated images to imitate real-world scenarios. With the exist-
ing datasets, a deepfake model needs to be trained on each
pair of videos to swap human identities, yielding a consid-
erable number of models requiring training. In contrast, a
massive number of fake faces in our dataset are synthesized
by GAN without repeatedly re-training deepfake models.
While existing datasets were developed for only the single-
face forgery classification task, our dataset is the first one
designed for multi-face forgery detection and segmentation
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Figure 3. Visual artifacts of forged faces in datasets. From left to
right, FaceForensics++ [61], DFDC [14], DeeperForensics [27],
Celeb-DF [46], and our OpenForensics. Faces generated in our
dataset have the highest resolution and best quality.

tasks, which require more annotation than the classification
task. Our dataset can also be utilized for various general
face-related tasks.

2.2. Face Manipulation and Generation

A number of deepfake open-source techniques for swap-
ping human faces have been released [32, 1, 64]. These
techniques have gradually evolved from using hand-crafted
features [32] to using deep learning by training AE architec-
tures [1] and GAN models [64] [42] to achieve realism. Fa-
cial reenactment techniques have been developed for trans-
ferring expressions [68, 67, 56]. Different techniques such
as 3D reconstruction [68] and neural textures [67] were used
to preserve the target skin color and lighting conditions.
Boundary latent space [75] and disentangle shape [66] were
combined with AE models to morph expressions. In addi-
tion to transferring expressions, the head pose can be con-
trolled by using a recurrent neural network to enhance natu-
ralness [56] by using different modalities [74] and by using
human interpretable attributes and actions [70].

Subsequently proposed techniques for face synthesis use
deep learning. They generally use GAN for facial attribute
translation [8, 9, 28, 29], for identity-attribute combina-
tion [3], for identified characteristics removal [51], and for
interactive semantic manipulation [40, 83]. Facial disentan-
gled features are being interpreted in different latent spaces,
resulting in more precise control of attribute manipulation
in face editing [28, 29, 65, 60].

Existing deepfake methods require face pairs for spe-
cific training, meaning that the cost of training is very high.
Training requires sequences of images; thus, these meth-
ods are practical only for videos, and the generated faces
usually have low-resolution. Although existing face syn-
thesis methods can generate high-quality faces, the synthe-
sized faces are oriented to the front and are not consistent
with the original faces if the original faces are not close to
the distribution of the training data. We combine these two
approaches to generate an infinite number of fake human

Table 2. Scale of object detection/segmentation datasets.
Dataset Year Object Type #Annotated Images Ground-Truth Type

COCO [48] 2014 General object 200,000 Coarse mask
CityScapes [11] 2016 Road object 25,000 Coarse&Fine mask
WiderFace [77] 2016 Human face 32,200 Bounding box
SESIV [37] 2019 Salient object 5,700 Fine mask
ADV [38] 2020 Accident object 10,000 Fine mask
CAMO++ [36] 2021 Camouflaged object 5,500 Fine mask
OpenForensics 2021 Forged face 115,325 Fine mask

Table 3. Image distribution in OpenForensics dataset.
Subset #Images #Faces #Real Faces #Forged Faces
Training 44,122 151,364 85,392 65,972
Validation 7,308 15,352 4,786 10,566
Test-Development 18,895 49,750 21,071 28,670
Test-Challenge 45,000 117,670 49,218 68,452
Total 115,325 334,136 160,67 173,660

identities without repeatedly training the AEs. We achieve
this by transforming GAN-based high-quality synthesized
faces into original poses.

2.3. Face Forgery Classification

Researchers have been investigating the problem of face
forgery classification, which is generally regarded as merely
a binary classification problem (real/fake). The research
task is also called ‘deepfake detection,’ but the term ‘de-
tection’ may lead to a misunderstanding of the fundamen-
tal task of object detection. Early methods exploited in-
consistencies created by visual artifacts in deepfake images
and videos by analyzing biological clues such as eye blink-
ing [44], head pose [78], skin texture [49], and iris and teeth
color [50]. A few works investigated artifacts in affine face
warping [45] or in the blending boundary [43] to distinguish
real and fake faces. Most current methods are data-driven,
directly training deep networks on real and fake images and
videos [2, 54, 61, 53, 82, 71]. They do not rely on specific
artifacts.

Existing face forgery classification approaches do not
have a face localization ability. They can work only on a
single cropped face; thus, their performance relies heavily
on independent face detection performed as pre-processing.
To the best of our knowledge, ours is the first work address-
ing multi-face detection and segmentation in-the-wild.

3. Large-Scale OpenForensics Dataset
The emergence of new tasks and datasets has led to rapid

progress in human research areas [77, 13, 55, 20, 19]. How-
ever, research on human forgery prevention is only now be-
ginning, and the field is still immature with work only on the
face forgery classification task. With this in mind, our goal
is to study and develop a dataset that will support challeng-
ing new forgery research tasks in both the computer vision
and forensic communities.

3.1. Dataset Construction

As shown in Fig. 4, the dataset construction workflow
includes three main steps: real human image collection,
forged face image synthesis, and multi-task annotation.
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Figure 4. Dataset construction workflow: 1) collect raw images
and manually select real face images; 2) synthesize forged face im-
ages (for each original extracted face, new identities are repeatedly
generated until swapped faces can spoof our simple classifier); 3)
perform face-wise multi-task annotation.

3.1.1 Real Human Image Collection

We collected raw images from Google Open Images [34]
and removed images without people. Images consisting of
unreal human faces (e.g., images on money and in books,
magazines, cartoons, and sketches) or human-like objects
(e.g., dolls, robots, and sculptures) were also removed. We
ended up with 45,473 images, which were used as pristine
data.

3.1.2 Forged Face Image Synthesis

Figure 4 shows an overview of the process used to synthe-
size forged face images. First, all faces in the real human
images are extracted and checked in the manipulation fea-
sibility inspection module to see whether they can be ma-
nipulated. This is done using various conditions (e.g., face
size, image quality, and blurring) and a random manipula-
tion probability. If manipulation is feasible, the image un-
dergoes a cyclical process. Inspired by GAN-based face
synthesis [9, 29], we first extract the facial identity latent
vector and modify it using random values. The modified
latent vector is then fed into GAN models [65, 60] to gener-
ate a new face. The synthesized face is subsequently trans-
formed into an original pose. Feasible manipulation regions
in the synthesized face (e.g., regions inside facial landmarks
or the entire face) are extracted and blended into the origi-
nal face using Poisson blending [58] and a color adaptation
algorithm in the face-swapping module, with the final re-
sult being a new identity. The new identity image is then
tested to determine whether it can spoof a simple classi-
fier (i.e., XceptionNet [10]) in the forgery justification mod-
ule, which is trained to distinguish real and fake identities.
Those for which spoofing is successful are overlaid onto the
original image. The others are discarded, and new faces are
generated. We provide detailed implementation and train-
ing of networks in the supplementary material.

Our synthesis workflow features the ability to synthesize
an unlimited number of fake identities at low cost for non-
target face-swapping without paired training. Meanwhile,
other deepfake methods use a limited number of fake iden-
tities extracted from videos and perform paired training us-

Figure 5. Example images in test-challenge set (three levels: easy,
medium, and hard from top to bottom). Each image contains at
least one forged face. See supplementary material for overlaid
ground truth.

ing deep models for target face-swapping. They thus re-
quire much time and resources to synsthesize datasets. Our
synthesis approach also overcomes the limitations of exist-
ing approaches. Existing approaches [61, 14, 27] generate
low-resolution faces (typically less than 256 × 256 pixels)
while our approach generates faces with higher resolution
(i.e., 512×512 pixels) and better visual quality (cf. Fig. 3).
Our use of Poisson blending [58] and a color adaptation al-
gorithm to reduce the color mismatch between the synthe-
sized and original face (Fig. 3) enhances the naturalness of
the forged faces. We also improve the smoothness of the
blending mask by extracting 68 facial landmark points and
training face segmentation models, resulting in fine bound-
aries and complete facial coverage (see Fig. 2 for different
blending masks). The blending masks used to create exist-
ing datasets were either rectangular or rough convex hulls
between the eyebrows and lower lip, resulting in incomplete
facial coverage or visible boundaries (cf. Fig 3).

Finally, we randomly split the accepted images into sep-
arate training, validation, and test-development sets (ratio
of 60:10:30). Table 3 shows the distribution of images and
faces in our newly constructed OpenForensics dataset.

3.1.3 Challenging Scenario Augmentation

To enhance the challenges posed by our OpenForensics
dataset for real-world face forgery detection and segmen-
tation, we applied various perturbations to better simulate
contexts in natural scenes, resulting in a test-challenge sub-
set. Various augmented operators are divided into overarch-
ing groups.

• Color manipulation: Hue change, saturation change,
brightness change, histogram adjustment, contrast ad-
dition, grayscale conversion.

• Edge manipulation: edge detection and alteration.
• Block-wise distortion: color grouping, color pooling,

color quantization, and pixelation.
• Image corruption: elastic deformation, jigsaw distor-

tion, JPEG compression, noise addition, and dropout.
• Convolution mask transformation: Gaussian blurring,

motion blurring, sharpening, and embossing.
• External effect: fog, cloud, sun, frost, snow, and rain.
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Figure 6. Distributions in OpenForensics dataset (best viewed online in color with zoom-in). In image scene distribution, red represents
indoor scenes and blue represents outdoor scenes (percent of indoor scenes is 63.7%). There are 2.9 faces per image on average.

These augmentations are divided into three intensity lev-
els (i.e., easy, medium, and hard) to ensure diverse scenar-
ios. For each level, random-type augmentation is applied
separately or as a mixture, resulting in 45,000 images. Ex-
ample images in the test-challenge set are shown in Fig. 5.

3.2. Dataset Description

Task Diversity. Existing deepfake datasets [61, 14, 27,
46] focus exclusively on video-wise labels for classifica-
tion. In contrast, we aim to exploit the face-wise ground
truth, which requires much more annotation effort, to ad-
vance further forgery analysis. Each face was labeled with
various ground-truths such as forgery category (real/fake),
bounding box, segmentation mask, forgery boundary, and
facial landmarks (cf. Fig. 2). Our rich annotation can be
utilized for various tasks and even multi-task learning.

Dataset Size. OpenForensics is one of the largest de-
tection and segmentation datasets (cf. Table 2) and is large
enough to train and evaluate deep networks. This should
encourage more research in this field.

Diverse Scenarios. Existing datasets [61, 14, 27, 46]
were released as short videos. Although they contain a vast
number of images, frames in a short video are similar and
do not contribute much to the training of deep networks.
With these datasets, data sampling is usually used for train-
ing deep networks to avoid overfitting and to reduce train-
ing time. We define similar frames in a short video as a
‘scenario’ and assert that training using a diversity of sce-
narios helps to make deep networks more effective. Table 1
shows that the OpenForensics dataset is an order of magni-
tude larger than existing datasets in terms of the number
of scenarios, with only slightly fewer than in the DFDC
dataset.

Image Scene. Existing deepfake datasets [61, 46]
contain limited types of image scenes, such as indoor
scenes and television scenes. In contrast, the OpenForen-
sics dataset contains various types of scenes. We com-
puted scenes using a pre-trained model on the large-scale
Places2 dataset [81]. Figure 6(a) shows the distribution as a
word cloud, with the various outdoor scenes accounting for
36.3% of the images.

Image Resolution. Figure 6(b) shows the distribution of
image resolutions in the OpenForensics dataset. The large
number of high-resolution images, which provide more face

boundary details for model training, results in better perfor-
mance.

Multiple Faces Per Image. Existing deepfake
datasets [61, 14, 27, 46] mostly have only one face per im-
age. In contrast, the OpenForensics dataset has multiple
faces per image (2.9 on average). Figure 6(c) shows the
distribution.

Face Characteristics. Figures 6(d and e) show the dis-
tribution of faces in the OpenForensics dataset by bound-
ing box size and mask size (i.e., number of pixels covering
face). OpenForensics contains faces of various sizes, from
tiny to large. The distribution of face centroids in Fig. 6(f)
shows that the faces tend to be near the image center. In
addition, the ratio of male and female faces is 50:50, and
there is a diversity of ages. More details are provided in the
supplementary material.

Data Augmentation. Deep models trained on existing
deepfake datasets may not perform well in the real world
due to overfitting caused by image similarity in the train-
ing data. Although strong deep models have obtained very
high accuracy [54, 43], even near 100%, they may easily
fail in the real world if they do not share a close distribution
with the training dataset. To simulate real-world contexts in
the OpenForensics dataset, diverse perturbations were used
to improve scenario diversity so as to better imitate real-
world data distributions. Improvements have been made to
a couple of existing datasets by using simple perturbations,
which have increased their size. For instance, the DFDC
dataset [14] and DeeperForensics dataset [27] have been im-
proved by applying geometric and color transforms, adding
noise, blurring, and overlaying objects.

3.3. User Study

To evaluate the visual quality of the images in the Open-
Forensics dataset and human performance in face forgery
detection, we conducted a user study with 200 participants,
80 of whom are experts, who can provide knowledgeable
opinions due to their researching deepfakes. The study re-
sults can fairly reflect the performance of both experts and
non-experts.

The study was conducted on the OpenForensics dataset
and four existing deepfake datasets: FaceForensics++ [61],
DFDC [14], Celeb-DF [46] and DeeperForensics [27]. For
each dataset, we randomly selected 600 images and pre-
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Figure 8. Human accuracy in face forgery classification. Images
in OpenForensics dataset were most effective in spoofing both ex-
perts and non-experts.

pared a virtual platform for the participants.
We argue that participants can quickly see that a face

is fake if they see two similar images but different people,
leading to unfair comparison with existing datasets. In ad-
dition, the forgery identification may becomes difficult if
forged faces are mixed with real faces. To investigate these
hypothesises, our user study focused on both two cases:
cropped faces to eliminate surrounding contexts and full im-
ages with multi-face.

Evaluation of Image Realism. We cropped the forged
heads, which had been doubly extended from the faces, to
ensure that the upper-half of each person was completely
extracted. The participants were asked to view 200 forged
head images and then provide feedback on each image’s
realism in the form of a score 1 to 5, corresponding to
‘clearly fake,’ ‘weakly unreal,’ ‘borderline,’ ‘almost real,’
and ‘clearly real.’ As shown by the results in Fig. 7, the
visual quality of the images in the OpenForensics dataset
was highly evaluated by most of the participants. That is,
the forged faces in the OpenForensics dataset were judged
to be the most realistic. Our dataset achieved the highest
mean opinion score (MOS) 4.0, much higher than that of
the second-best dataset Celeb-DF (3.2). The DeeperForen-
sics and DFDC datasets had medium-quality images (MOS
of 2.8). The FaceForensics++ dataset had the most unreal-
istic images (MOS of only 1.3).

Human Performance on Face Forgery Classification.
We again cropped the heads similar to the cropping done
for the evaluation of image realism. The participants were
asked to view a mixture of 400 images randomly composed
of pristine and forged heads with a ratio of 50:50. After
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Figure 10. Human performance on multi-face forgery detection.
Accuracy deceased as number of forged faces increased.

viewing each image, the participants were asked whether
the image was ’real’ or ’fake.’ As shown in Fig. 8, the par-
ticipants had the most trouble distinguishing between the
real and fake images in the OpenForensics dataset. This is
evidenced by the OpenForensics dataset having the lowest
overall accuracy (59.7%), followed by Celeb-DF (68.7%),
DFDC (72.0%), FaceForensics++ (82.0%), and Deeper-
Forensics (82.9%,). The graph also shows that both ex-
perts and non-experts had difficulty distinguishing between
the real and fake images in our dataset. It is interesting
that although experts could recognize fake faces better than
non-experts, they incorrectly identified real faces with low
quality, low resolution, or low contrast (i.e., FaceForen-
sics++ dataset). We attribute this to their overconfidence
and their belief that GANs might generate such faces, lead-
ing to misidentification.

Figure 9 illustrates the correlation between the visual
properties and the human ability to recognize forged faces.
The ability to recognize forged faces depends on image re-
alism, resulting in an increased false alarm rate as realism
improves (i.e., as the MOS increases). The graph shows that
a large number of participants misclassified forged faces in
the OpenForensics dataset as real faces. The OpenForen-
sics dataset had the highest MOS (4.0) and the highest
false alarm rate (34.6%). The figure also shows that the
BRISQUE score [52] of the OpenForensics dataset was the
lowest (35.2), which indicates that the images in our dataset
have the best visual quality. Reducing image quality (i.e.,
increasing the BRISQUE score) would affect human obser-
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vation, resulting in a lower false alarm rate.
Human Performance on Multi-Face Forgery Detec-

tion. The participants were asked to view a set of 160 im-
ages, each with multiple persons and each consisting of both
pristine and forged faces randomly selected, of only pristine
faces, or of only forged faces. They were asked to identify
the number of forged faces in each image. Figure 10 shows
that detection accuracy was the highest (86%) when there
were no forged faces in the images and tended to drop as
the number of forged faces increased. This can be explained
that when there are many faces in an image, participants
tend to less carefully check each face and guess that all the
faces are real. That explains why the accuracy is high when
all faces are real while it significantly reduces when forged
faces exist. Indeed, when the number exceeded 7, accuracy
dropped to 0%. Even people find it extremely difficult to
identify forged faces among mixture of pristine and forged
faces on in-the-wild images, highlighting the challenge of
our OpenForensics dataset.

4. Benchmark Suite
4.1. Baseline Methods

We conducted a competitive benchmark for multi-face
forgery detection and segmentation. To this end, we trained
and evaluated the latest instance detection and segmentation
methods in various scenarios. The methods were MaskR-
CNN [22], MSRCNN [25], RetinaMask [17], YOLACT [4],
YOLACT++ [5], CenterMask [41], BlendMask [7], Polar-
Mask [76], MEInst [80], CondInst [69], SOLO [72], and
SOLO2 [73]. MaskRCNN and MSRCNN are well-known
two-stage models that perform detect-then-segment slowly.
The YOLACT ones [4, 5] are early single-stage models
aimed at real-time performance. The remaining methods
are widely used modern single-stage models that overcome
accuracy and processing time problems. Among them, the
SOLO ones [72, 73] directly output masks without comput-
ing bounding boxes.

All the methods were used with the same backbone
(FPN-ResNet50 [47, 23]) to make the comparison fair. We
trained models on PCs with 32 GB of RAM and a Tesla
P100 GPU. The models were initialized with ImageNet
weights [33] and trained on our training set for 12 epochs.
The base learning rate was decreased by 1/10 at the 8th

and 11th epochs. Other settings were in accordance with
the default public configurations provided by the authors.

4.2. Evaluation Metrics

We evaluated the methods using standard COCO-style
average precision (AP) [48]. We report the results for mean
AP and AP on different scales (APS , APM , APL, where
S, M, and L represent small, medium, and large objects).
We also evaluated the methods using the localization recall
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Figure 11. Benchmark results achieved by baseline methods
for multi-face forgery multi-task on OpenForensics dataset (best
viewed online in color with zoom-in). Test-dev set results reflect
benchmark performance on standard images while test-challenge
set results reflect robustness for unseen images. Lower oLRP er-
ror is better while higher AP is better. BlendMask had the best
performance, and YOLACT++ was the most robust. Result for
CenterMask on test-challenge set is out of the range and is shown
in Table 5.

precision (LRP) error [57]. We report the results for mean
optimal LRP (oLRP) and its error components including lo-
calization (oLRPLoc), the false positive rate (oLRPFP ), and
the false negative rate (oLRPFN ).

4.3. Overall Evaluation

As shown in Fig. 11, BlendMask had the best perfor-
mance, with the highest AP and lowest oLRP error for both
the detection and segmentation tasks on standard images.
The other modern single-stage methods also had high per-
formance, and the two-stage methods had medium perfor-
mance. The YOLACT methods had the worst performance
on both tasks because they are mainly focused on real-time
processing. YOLACT++ and BlendMask were the most ro-
bust for unseen images.

4.4. Multi-Face Forgery Detection Benchmark

Table 4 shows detailed results for the multi-face forgery
detection task broken down by metric. They show that
BlendMask had the best performance, achieving the high-
est AP (87.0) and the lowest oLRP error (19.5). BlendMask
also achieved the highest AP for all object scales. The mod-
ern single-stage methods (i.e., BlendMask, PolarMask, and
CondInst) had minor location errors and false positive rates
while the two-stage methods (i.e., MaskRCNN and MSR-
CNN) had low false negative rates.

4.5. Multi-Face Forgery Segmentation Benchmark

With the emergence of explainable AI (XAI) technol-
ogy [15, 21, 35, 38], it is useful to identify manipulated
areas in detected faces. Therefore, we also evaluated seg-
mentation performance. As shown in Table 4, for the multi-
face forgery segmentation task, the trends in the ranking of
method performance are similar to those for the detection
task. BlendMask had the best segmentation performance,
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Table 4. Benchmark results for multi-face forgery detection and segmentation on test-dev set. Higher AP is better while lower oLRP error
is better. Best and second-best results are shown in blue and red, respectively.

Method Year Multi-Face Forgery Detection Multi-Face Forgery Segmentation
AP↑ APS↑ APM↑ APL↑ oLRP↓ oLRPLoc↓ oLRPFP ↓ oLRPFN↓ AP↑ APS↑ APM↑ APL↑ oLRP↓ oLRPLoc↓ oLRPFP ↓ oLRPFN↓

MaskRCNN [22] ICCV 2017 79.2 29.9 80.2 79.5 24.3 9.5 2.7 4.0 83.6 16.1 82.1 85.8 21.2 7.6 3.0 4.2
MSRCNN [25] CVPR 2019 79.0 29.5 80.1 79.5 24.3 9.6 2.7 3.8 85.1 16.8 84.2 86.8 21.1 7.7 2.6 4.4
RetinaMask [17] arXiv 2019 80.0 30.9 80.2 80.7 24.2 9.0 3.0 4.6 82.8 16.4 80.6 85.1 22.6 8.1 2.9 4.9
YOLACT [4] ICCV 2019 68.1 12.5 67.1 69.3 37.2 13.4 6.3 8.7 72.5 3.1 67.0 75.7 34.0 11.4 6.4 8.7
YOLACT++ [5] TPAMI 2020 72.9 20.9 73.4 73.6 31.5 12.1 4.0 5.8 77.3 6.5 73.9 80.0 28.2 10.0 3.9 6.5
CenterMask [41] CVPR 2020 85.5 32.0 85.2 86.2 21.1 6.8 3.3 5.9 87.2 16.5 85.0 89.4 21.4 6.1 3.2 7.8
BlendMask [7] CVPR 2020 87.0 32.7 86.3 88.0 19.5 6.2 2.4 6.2 89.2 19.8 87.3 91.0 18.3 5.4 2.5 6.3
PolarMask [76] CVPR 2020 85.0 27.4 85.4 85.7 20.7 6.6 2.5 6.6 85.0 15.3 83.3 87.0 21.3 6.9 2.5 6.6
MEInst [80] CVPR 2020 82.8 26.0 82.7 83.4 23.8 7.6 4.1 6.8 82.2 13.9 81.5 83.3 25.0 8.1 4.0 7.2
CondInst [69] ECCV 2020 84.0 29.4 83.6 84.8 20.8 7.4 2.3 5.2 87.7 18.1 85.1 89.8 18.3 5.9 2.4 5.3
SOLO [72] ECCV 2020 - - - - - - - - 86.6 15.4 85.6 88.4 20.0 6.6 2.1 6.0
SOLO2 [73] NeurIPS 2020 - - - - - - - - 85.1 13.7 83.7 87.1 21.5 7.1 3.1 5.8

Table 5. Benchmark results for multi-face forgery detection and segmentation on test-challenge set. Higher AP is better while lower oLRP
error is better. Best and second-best results are shown in blue and red, respectively.

Method Year Multi-Face Forgery Detection Multi-Face Forgery Segmentation
AP↑ APS↑ APM↑ APL↑ oLRP↓ oLRPLoc↓ oLRPFP ↓ oLRPFN↓ AP↑ APS↑ APM↑ APL↑ oLRP↓ oLRPLoc↓ oLRPFP ↓ oLRPFN↓

MaskRCNN [22] ICCV 2017 42.1 11.8 46.2 40.5 65.4 13.6 29.3 40.0 43.7 4.7 44.3 44.0 64.4 11.8 29.4 41.2
MSRCNN [25] CVPR 2019 42.2 11.8 45.9 40.8 65.3 13.7 29.6 39.9 43.3 5.2 44.6 43.5 64.1 11.8 30.4 39.6
RetinaMask [17] arXiv 2019 48.5 12.8 51.0 48.1 63.3 12.6 33.2 34.6 48.0 4.7 46.5 49.7 63.3 11.8 30.9 38.0
YOLACT [4] ICCV 2019 49.4 5.6 49.6 50.3 60.1 15.3 23.2 29.9 51.8 1.4 47.2 54.6 58.4 13.5 23.4 30.1
YOLACT++ [5] TPAMI 2020 53.7 11.1 54.0 54.8 57.1 14.1 19.7 29.3 54.7 2.4 50.7 57.9 55.4 12.2 20.0 30.0
CenterMask [41] CVPR 2020 0.03 0.4 0.0 0.0 99.5 29.7 97.7 97.9 0.02 0.0 0.0 0.0 99.6 28.3 97.9 98.4
BlendMask [7] CVPR 2020 53.9 13.5 56.6 53.5 60.2 10.6 26.5 37.4 54.0 7.1 54.5 54.5 59.9 9.8 26.4 38.4
PolarMask [76] CVPR 2020 51.7 12.3 53.2 51.5 60.4 10.7 24.6 39.5 52.7 5.3 54.1 37.6 60.2 10.4 24.7 39.5
MEInst [80] CVPR 2020 46.1 8.6 49.9 44.9 65.9 12.4 34.6 39.7 46.0 3.8 49.0 45.2 66.2 12.6 34.8 39.8
CondInst [69] ECCV 2020 52.7 12.6 55.3 51.8 60.7 11.5 28.3 35.3 54.1 6.5 55.2 53.8 59.6 10.0 26.7 37.3
SOLO [72] ECCV 2020 - - - - - - - - 55.9 3.9 53.3 57.3 57.6 11.3 24.6 33.0
SOLO2 [73] NeurIPS 2020 - - - - - - - - 53.2 3.6 52.1 54.0 59.6 11.0 24.5 37.2

with AP of almost 90 and an oLRP error of approximately
18 for the test-dev set.

Images in the real world obviously contain human faces
of various sizes. It is thus essential to investigate detec-
tion and segmentation abilities on different scales. Table 4
shows that all the baseline methods achieved high perfor-
mance for only medium-size and large faces. Performance
decreased with the face size, resulting in a marginal differ-
ence between small faces and medium/large faces in both
detection and segmentation. These results illustrate the
challenges of our OpenForensics dataset, which consists of
enormous face sizes.

Similar to the detection task, we found that single-stage
methods, which are based on dense detection, have fewer
FP errors while the two-stage ones, which are based on
sparse detection, have fewer FN errors. Therefore, the de-
velopment of post-processing using NMS and the improve-
ment of RPN, respectively, can help to improve forgery de-
tectors.

4.6. Robustness Evaluation

We conducted experiments to evaluate the robustness of
the methods on our test-challenge set, which simulates sce-
narios in the real world. Table 5 shows that YOLACT++
and BlendMask were the most robust methods for unseen
images. CenterMask was the least robust method, which is
attributed to its results containing a lot of noise, resulting in
extremely high false positive and false negative rates.

Tables 4 and 5 show a substantial drop in performance
for all methods for unseen images, which are beyond the
distribution of the training set. Although existing methods
can work well on standard images, their robustness is weak
for unseen images. Even leading forgery-identification
methods in the deep learning era remain limited and can-

not yet effectively address real-world challenges (Top-1:
AP < 60 on test-challenge set). Hence, multi-face forgery
detection and segmentation problems in-the-wild are still
far from being solved, leaving much room for improvement.
These results also illustrate the challenges of our Open-
Forensics dataset.

5. Conclusion and Outlook

As part of our comprehensive study on multi-face
forgery detection and segmentation in-the-wild, we created
a large-scale dataset. In-depth analysis of our OpenForen-
sics dataset demonstrated its diversity and complexity. We
also conducted an extensive benchmark by evaluating state-
of-the-art instance segmentation methods in various experi-
mental settings. We expect that our OpenForensics dataset
will boost research activities in deepfake prevention. We in-
tend to continue enlarging this dataset to accompany future
developments in deepfake technology.

Thanks to the rich annotations in our OpenForen-
sics dataset, there are a number of foreseeable re-
search directions that will provide a solid basis for
forgery and general face studies, including fundamental re-
search (e.g., weak/semi-supervised/self-supervised detec-
tion/segmentation, universal network for multiple tasks)
and specific research (e.g., anti-forgery robustness detec-
tion, forgery boundary detection, forgery ranking, face
anonymization, face detection/segmentation, facial land-
mark prediction).
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