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Abstract

The natural association between visual observations
and their corresponding sound provides powerful self-
supervisory signals for learning video representations,
which makes the ever-growing amount of online videos an
attractive source of training data. However, large portions
of online videos contain irrelevant audio-visual signals
because of edited/overdubbed audio, and models trained
on such uncurated videos have shown to learn subopti-
mal representations. Therefore, existing self-supervised ap-
proaches rely on datasets with predetermined taxonomies of
semantic concepts, where there is a high chance of audio-
visual correspondence. Unfortunately, constructing such
datasets require labor intensive manual annotation and/or
verification, which severely limits the utility of online videos
for large-scale learning. In this work, we present an au-
tomatic dataset curation approach based on subset opti-
mization where the objective is to maximize the mutual in-
formation between audio and visual channels in videos.
We demonstrate that our approach finds videos with high
audio-visual correspondence and show that self-supervised
models trained on our data achieve competitive perfor-
mances compared to models trained on existing manually
curated datasets. The most significant benefit of our ap-
proach is scalability: We release ACAV100M that contains
100 million videos with high audio-visual correspondence,
ideal for self-supervised video representation learning.

1. Introduction
Our long-term objective is learning to recognize objects,

actions, and sound in videos without the need for manual
ground-truth labels. This is not only a theoretically in-
teresting problem, since it mimics the development of au-
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Figure 1. We address the challenge of constructing a large-scale
audio-visual dataset from uncurated Internet videos without rely-
ing on manual annotation or verification. We solve a constrained
optimization problem that finds a subset maximizing the mutual
information between audio and visual signals in videos. The result
is a new 100M video dataset with high audio-visual correspon-
dence, ideal for self-supervised video representation learning.

ditory and visual perception by infants [21], it is also of
immense practical importance, since accurate manual la-
beling of audio-visual data is impractical. Compared to
self-supervised learning on static images [50, 28, 25, 12],
audio-visual inputs pose additional challenges: large por-
tions of a video may contain no relevant information, and
auditory and visual inputs may not always be in correspon-
dence. Consequently, existing self-supervised methods on
audio-visual data either start with datasets for which there is
a high probability of audio-visual correspondence, or they
learn audio-visual properties corresponding only to short-
term statistical regularities. The necessary datasets are usu-
ally manually created or rely on domain-specific properties
(e.g., [9, 20] and below). If we want to carry out self-
supervised learning on full length (minutes, hours) of video
without manually generating and/or selecting video clips,
we need automated ways of curating such collections of au-
dio/video clips from diverse collections of full length video.

We consider self-supervised learning from unlabeled
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videos as a two-step process: (1) an automatic dataset cura-
tion process that generates short, relevant clips with useful
self-supervisory signals, e.g., audio-visual correspondence,
and (2) a self-supervised learning approach that operates on
the collection of short clips. This paper focuses on step (1)
and not on step (2), providing an automated way of taking a
collection of general or domain-specific videos of arbitrary
length and reducing it to a collection of shorter clips con-
taining a high portion of relevant audio-video correspon-
dences. The output of this step is a dataset, which can
be used as input to existing self-supervised algorithms on
audio-visual data [34, 3, 54], as well as the development of
novel self-supervised techniques.

To achieve step (1), we assume access to a large collec-
tion of unconstrained videos and solve a subset selection
problem with an information-theoretic measure of audio-
visual correspondence as a selection criterion. Specifically,
we find a subset that maximizes mutual information (MI)
between audio and visual channels of videos. This is a
necessary condition for self-supervised learning approaches
that rely on audio-visual correspondence [17]. The main
technical challenge we address is how to efficiently measure
the audio-visual MI and find a subset that maximizes the MI
in a scalable manner. Given that video processing is noto-
riously compute and storage intensive, we put a particular
emphasis on scalability, i.e., we want an approach that can
easily handle hundreds of millions of video clips.

MI estimation has a long history of research [53, 35],
including the recent self-supervised approaches [50, 28, 12]
that use noise contrastive estimation [23] as the learning ob-
jective. While it is tempting to use such approaches to es-
timate MI in our work, we quickly encounter the “chicken-
and-egg” problem: to obtain such models for estimating
audio-visual MI, we need a training dataset where we can
reliably construct positive pairs with a high probability of
audio-visual correspondence; but that is what we are set out
to find in the first place! One might think that randomly cho-
sen videos from the Internet could be sufficient, but this has
shown to produce suboptimal representations [3]; our em-
pirical results also show that self-supervised models indeed
suffer from noisy real-world audio-visual correspondences.

In this work, we turn to a clustering-based solution that
estimates the MI by measuring the agreement between two
partitions of data [42, 67]. To circumvent the “chicken-and-
egg” issue, we use off-the-shelf models as feature extractors
and obtain multiple audio and visual clusters to estimate the
MI. The use of off-the-shelf models is a standard practice in
video dataset generation. Unlike existing approaches that
use them as concept classifiers [8, 1, 43, 47, 11], here we
use them as generic feature extractors. To avoid estimating
the MI based on a restricted set of concepts the off-the-shelf
models are trained on, we perform clustering over features
computed across multiple layers (instead of just the penul-

timate layers), which has been shown to provide general
feature descriptors not tied to specific concepts [76].

To make our approach scalable, we avoid using memory-
heavy components such as the Lloyd’s algorithm [52] and
instead use SGD [7] to perform K-means clustering. Fur-
ther, we approximately solve the subset maximization ob-
jective with a mini-batch greedy method [13]. Through
controlled experiments with ground-truth and noisy real-
world correspondences, we show that our clustering-based
approach is more robust to the real-world correspondence
patterns, leading to superior empirical performances than
the contrastive MI estimation approaches.

We demonstrate our approach on a large collection of
videos at an unprecedented scale: We process 140 mil-
lion full-length videos (total duration 1,030 years) and pro-
duce a dataset of 100 million 10-second clips (31 years)
with high audio-visual correspondence. We call this dataset
ACAV100M (short for automatically curated audio-visual
dataset of 100M videos). It is two orders of magni-
tude larger than the current largest video dataset used in
the audio-visual learning literature, i.e., AudioSet [20] (8
months), and twice as large as the largest video dataset in
the literature, i.e., HowTo100M [44] (15 years).

To evaluate the utility of our approach in self-supervised
audio-visual representation learning, we produce datasets
at varying scales and compare them with existing datasets
of similar sizes that are frequently used in the audio-visual
learning literature, i.e., Kinetics-Sounds [4] at 20K-scale,
VGG-Sound [11] at 200K-scale, and AudioSet [20] at 2M-
scale. Under the linear evaluation protocol with three down-
stream datasets, UCF101 [62], ESC-50 [56], and Kinetics-
Sounds [4], we demonstrate that models pretrained on our
datasets perform competitively or better than the ones pre-
trained on the baseline datasets, which were constructed
with careful annotation or manual verification.

To summarize, our main contributions are: 1) We pro-
pose an information-theoretic subset optimization approach
to finding a large-scale video dataset with a high portion
of relevant audio-visual correspondences. 2) We evalu-
ate different components of our pipeline via controlled ex-
periments using both the ground-truth and the noisy real-
world correspondence patterns. 3) We release ACAV100M,
a large-scale open-domain dataset of 100M videos for fu-
ture research in audio-visual representation learning.

2. Related Work
Large-Scale Data Curation. Several different types of

audio-visual video datasets have been collected: (1) man-
ually labeled, e.g., AudioSet [20], AVE [65], (2) domain
specific, e.g., AVA ActiveSpeaker [58], AVA Speech [10],
Greatest Hits [51], FAIR-Play [19], YouTube-ASMR-
300K [75], and (3) unlabeled, unrestricted collections from
consumer video sites, e.g., Flickr-SoundNet [5, 4].
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AudioSet [20] contains about 2M clips corresponding to
audio events retrieved from YouTube by keyword search;
human raters verified the presence of audio events in the
candidate videos. Moments in Time [46] contains over one
million clips of diverse visual and auditory events; video
clips were selected using keywords (verbs) and manually
reviewed for high correspondence between the clips and
the keywords. HowTo100M [44] contains 136M clips seg-
mented from 1.22M narrated instructional web videos re-
trieved by text search from YouTube, with an additional
filtering step based on metadata. Web Videos and Text
(WVT) [64] contains 70M clips obtained by searching the
web with keywords based on the Kinetics-700 [9] categories
and retaining both the video and the associated text. Chen et
al. [11] created a dataset of 200K clips for audio-visual re-
search; clips were originally obtained by keyword search on
YouTube and frames were classified with pretrained visual
classifiers. Since keywords and visual classes do not per-
fectly correspond, such correspondences needed to be man-
ually reviewed and corrected on randomly sampled clips in
an iterative and interactive process.

We are building systems for learning audio-visual cor-
respondence on diverse, unrestricted inputs. This requires
large amounts of training data, making manual collec-
tion and labeling costly and impractical. Unlike previous
dataset curation processes that involve costly human inter-
vention, we introduce an automatic and scalable data cura-
tion pipeline for large-scale audio-visual datasets.

Subset Selection. Our work focuses on data subset se-
lection; extensive prior work exists in supervised [66, 72,
61, 71], unsupervised [24, 73], and active learning set-
tings [39, 60]. Different criteria for subset selection have
been explored in the literature. Submodular functions nat-
urally model notions of information, diversity and cover-
age [70], and can be optimized efficiently using greedy al-
gorithms [45, 48]. Geometric criteria like the coreset [2]
aim to approximate geometric extent measures over a large
dataset with a relatively small subset.

Mutual-information (MI) between input feature values
and/or labels has been used successfully [22, 40, 63] as a
probablistically motivated criterion. We propose to use MI
as an objective function for subset selection and make the
following two unique contributions: First, we use MI to
measure audio-visual correspondence within videos by for-
mulating MI between the audio and visual features. Second,
we apply MI for the large-scale video dataset curation prob-
lem. In case of clustering-based MI estimation, we demon-
strate that optimizing MI objective with a greedy algorithm
is a practical solution for building a large-scale pipeline.

3. Data Collection Pipeline
Our pipeline consists of four steps: (i) acquiring raw

videos from the web and filtering them based on metadata,

(ii) segmenting the videos into clips and extracting features
with pretrained extractors, (iii) estimating mutual informa-
tion (MI) between audio and visual representations, and (iv)
selecting a subset of clips that maximizes the MI.

3.1. Obtaining Candidate Videos

We crawl YouTube to download videos with a wide va-
riety of topics. Unlike previous work that use a carefully
curated set of keywords [11], which could inadvertently in-
troduce bias, we aim for capturing the natural distribution
of topics present in the website. To ensure the diversity
in topics, cultures and languages, we create combinations
of search queries with diverse sets of keywords, locations,
events, categories, etc., to obtain an initial video list.

Before downloading videos, we process the search re-
sults using metadata (provided by YouTube API) to filter out
potentially low quality / low audio-visual correspondence
videos. We use the duration to exclude videos shorter than
30 seconds (to avoid low quality videos) and longer than
600 seconds (to avoid large storage costs). We also exclude
videos that contain selected keywords (in either title or de-
scription) or from certain categories – i.e., gaming, anima-
tion, screencast, and music videos – because most videos
exhibit non-natural scenes (computer graphics) and/or low
audio-visual correspondence. Finally, we detect language
from the titles and descriptions using fastText [31, 32] and
keep the ones that constitute a cumulative ratio of 0.9, re-
sulting in eight languages (English, Spanish, Portuguese,
Russian, Japanese, French, German, and Korean).

The result is 140 million full-length videos with a total
duration of 1,030 years (median: 198 seconds). To mini-
mize the storage cost we download 360p resolution videos;
this still consumes 1.8 petabytes of storage. Handling such
large-scale data requires a carefully designed data pipeline.
We discuss our modularized pipeline below.

3.2. Segmentation & Feature Extraction

Clip Segmentation. To avoid redundant clips, we ex-
tract up to three 10-second clips from each full-length
video. We do this by detecting shot boundaries (using the
scdet filter in FFmpeg) and computing pairwise clip sim-
ilarities based on the MPEG-7 video signatures (using the
signature filter in FFmpeg). We then select up to 3
clips that give the minimum total pairwise scores using local
search [30]. This gives us about 300M clips.

Feature Extraction. To measure correspondence be-
tween audio and visual channels of the 300M clips, we need
good feature representations. An ideal representation would
capture a variety of important aspects from low-level details
(e.g., texture and flow) to high-level concepts (e.g., seman-
tic categories). However, such an oracle extractor is hard
to obtain, and the sheer scale of data makes it impractical
to learn optimal feature extractors end-to-end. Therefore,
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we use the “off-the-shelf” pretrained models to extract fea-
tures, i.e., SlowFast [15] pretrained on Kinetics-400 [33]
and VGGish [27] pretrained on YouTube-8M [1] for visual
and audio features, respectively.

3.3. Subset Selection via MI Maximization

Next, we select clips that exhibit strong correspondence
between visual and audio channels. To this end, we esti-
mate the mutual information (MI) between audio and visual
signals. Computing the exact MI is infeasible because it re-
quires estimating the joint distribution of high dimensional
variables, but several approximate solutions do exist [68].
Here we implement and compare two approaches: a noise-
contrastive estimator (NCE) [23], which measures MI in a
continuous feature space, and a clustering-based estimator
that computes MI in a discrete space via vector quantiza-
tion. The former estimates MI for each video clip, while
the latter estimates MI for a set of video clips. As we show
later in our experiments, we find the clustering-based MI
estimator to be more robust to real-world noise.

3.3.1 NCE-based MI Estimation

Contrastive approaches have become a popular way of es-
timating MI between different views of the data [50, 28].
We add linear projection heads over the precomputed au-
dio/visual features and train them using the contrastive
loss [12]. From a mini-batch {(vi, ai)}Nb

i=1 where vi and
ai are visual and audio features, respectively, we minimize

l(vi, ai) = − log
exp(S(zvi , z

a
i )/τ)∑Nb

j=1 exp(S(z
v
i , z

a
j )/τ)

, (1)

where zvi and zai are embeddings from the linear projection
heads, S(·, ·) measures the cosine similarity, and τ is a tem-
perature term (we set τ = 0.1). For each mini-batch we
compute l(vi, ai) and l(ai, vi) to make the loss symmetric.

Once trained, we can directly use S(zv, za) to estimate
audio-visual MI and find a subset by taking the top N can-
didates from a ranked list of video clips.

3.3.2 Clustering-based MI Estimation

MI Estimation. Clustering is one of the classical ways of
estimating MI [42, 67]. Given two partitions of a dataset X
w.r.t. audio and visual features, A = {A1, · · · ,A|A|} and
V = {V1, · · · ,V|V|}, we estimate their MI as:

MI(A,V) =
|A|∑
i=1

|V|∑
j=1

|Ai ∩Vj |
|X|

log
|X||Ai ∩Vj |
|Ai||Vj |

. (2)

This formulation estimates MI in a discrete (vector-
quantized) space induced by clustering, and thus the quality

Algorithm 1: Batch Greedy Subset Selection
Input: initial dataset D, MI estimator F , target

subset size M , batch size b, selection size s
Output: X ⊆ D, |X| = M
X0 ← ∅, i← 0
while |Xi| < M do

Randomly sample B ⊆ D\Xi, |B| = b
Y0 ← ∅, j ← 0
while j < s do

x← argmaxx∈B\Yj
F (Xi ∪Yj ∪ {x})

Yj+1 ← Yj ∪ {x}, j ← j + 1
if |Xi ∪Yj | = M then break

end
Xi+1 ← Xi ∪Yj , i← i+ 1

end
X← Xi

Return X

of clustering affects the quality of the estimator. A straight-
forward approach to obtaining A and V is to cluster videos
using the output from the penultimate layers of the pre-
trained networks. However, this can introduce distributional
bias specific to the datasets on which the networks are pre-
trained [76, 69]. To address this issue, we cluster samples
over each output space induced by different layers of the
networks. This allows the MI estimator to consider a wide
range of abstract concepts, from low-level (such as textures)
to high-level (such as object parts) [6].

Specifically, we use the feature spaces induced by the
five convolutional blocks from each of the SlowFast and
VGGish feature extractors. We then compute the average
MI between all pairs of clusterings as our MI estimator. Let
CV(i)

X = {V(i)
1 , · · · ,V(i)

ni } and CA(i)
X = {A(i)

1 , · · · ,A(i)
mi}

denote the clustering results induced by the i-th convolu-
tional block of the visual and audio feature extractors, re-
spectively. We compute:

F (X) =
∑

(X ,Y)∈CX

MI(X ,Y)
10C2

, (3)

where CX denotes the combination of two elements from
{CV(i)

X }5i=1 ∪ {CA
(j)
X }5j=1 and 10C2 denotes the number

of 2-combinations out of 10 elements, which equals to 45.
This computes MI between layers from both within and
across the extractors of different modalities (referred to as
combination pairing scheme in Section 4.2).

Batch Greedy Subset Selection. Since the MI estimator
F (·) is a function of X, we can formulate an optimization
problem where the goal is to find a subset X that maximizes
F (X). In general, finding a global solution to problems
such as ours is NP-hard and thus greedy heuristic solutions
are used instead [49]. However, they typically select one
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sample in each iteration and re-evaluate the goodness func-
tion, e.g., F (·), on all the remaining candidates. This intro-
duces a challenge to our setting because the time complexity
is quadratic to the size of the population; this is clearly not
scalable to 300 million instances.

Therefore, we approximate the typical greedy solution
using the batch greedy algorithm [13], as shown in Algo-
rithm 1. It randomly samples a batch B from the remain-
ing pool of candidates, and searches for the next element to
be included in the active solution set only within B. This
batch trick reduces the time complexity down to linear, i.e.,
O(N × |B|), where N is the size of the input dataset. We
demonstrate the efficacy of the algorithm in Section 4.

Stochastic Clustering. One missing piece in this
pipeline is an efficient clustering algorithm scalable to hun-
dreds of millions of instances. The most popular choice
among various clustering methods is K-means cluster-
ing [74], which is a special case of mixture density es-
timation for isotropic normal and other densities. Typi-
cally, an expectation-maximization (EM) algorithm, such
as Lloyd’s [52], is used to find the cluster centers. Such al-
gorithms require repeated computation of the distances of
all samples from all k cluster centers, followed by clus-
ter assignment, until convergence. Lloyd’s algorithm up-
dates cluster centers only after each pass through the entire
dataset. But for very large datasets (like ours), a small sub-
set usually contains enough information to obtain good es-
timates of the cluster centers, meaning that EM-style algo-
rithms tend to take (perhaps too) many epochs to converge.

There are different strategies for addressing this issue,
including random sampling and subsetting, but a straight-
forward approach is to replace EM algorithm with an
SGD [41, 7, 59]. In such an approach, for large datasets,
convergence rate and final accuracy of the cluster centers
are determined not by the total dataset size, but by the learn-
ing rate schedule. A straightforward SGD update rule is
to compute the nearest cluster centers for each sample in
a batch and then update the cluster centers using a convex
combination of the cluster centers and their nearest samples,
weighting the samples with a learning rate λ and the cluster
centers with (1 − λ). However, mixture density estimators
in general suffer from the problem that adding mixture com-
ponents with zero probability does not change the mixture
density; in practice, this means EM and SGD-based algo-
rithms may end up with cluster centers that stop receiving
updates at some point during the optimization.

We address this problem by estimating the mixture com-
ponent utilization rate as the ratio of the total number of
updates to the cluster center divided by the total number of
estimation steps, and reinitializing cluster centers when that
probability falls below (1/k)2. In Section 4.2, we demon-
strate that our mini-batch SGD update shows comparable
accuracy to batch update in correspondence retrieval tasks.

4. Evaluation on Correspondence Retrieval
We systematically evaluate different components of

our pipeline with synthetic correspondence-retrieval tasks,
where we generate corresponding and non-corresponding
pairs using CIFAR-10 [36], MNIST [38] and FSDD [29].
In each correspondence retrieval task, the goal is to dis-
cover the known corresponding samples among the non-
corresponding pairs. To show the generality of the findings,
we also experiment with Kinetics-Sounds [4] which exhibit
real-world audio-visual correspondence.

4.1. Experimental Setting

Datasets We construct five datasets where each instance
is a pair of samples with different correspondence types.

1/2) CIFAR10-Rotation/Flip. We use images from five
randomly selected categories to construct a “positive pair”
set, and use the rest for a “negative pair” set. For the posi-
tive set, we create pairs of images by sampling two different
images from the same category (e.g., two images of a bird),
and apply a geometric transformation to one of them; we
apply either a 90◦ CCW rotation (CIFAR10-Rotation) or a
horizontal flip (CIFAR10-Flip). The negative set follows
the same process but each pair contains images from differ-
ent categories. We categorize this type of correspondence as
“Natural Class Correspondence” because pairings are made
over natural semantic categories.

3/4) MNIST-CIFAR10/FSDD. We use images from five
digit categories to construct a positive set and use the rest
for a negative set. Different from above, correspondence is
defined via an arbitrary class-level mapping, e.g., “digit 0”
images map to the “car” images in CIFAR-10 or “digit 0”
audio samples in FSDD. We take samples from the same
categories to construct the positive set and samples from
different categories for the negative set. We call these “Ar-
bitrary Class Correspondence” to differentiate from above.

5) Kinetics-Sounds. Unlike the above datasets where
the correspondence is defined over class categories, here the
correspondence is defined at the sample level, i.e., a positive
set contains pairs of audio and visual channels of the same
video, and a negative set contains randomly permuted pairs.
We do not utilize class labels to construct the dataset.

Methods We compare our pipeline (both contrastive-
based and clustering-based) to three ranking-based ap-
proaches. All the methods use the same precomputed fea-
tures. For images, we use ResNet-50 [26] pretrained on Im-
ageNet [14]. For videos, we use SlowFast [15] pretrained on
Kinetics-400 [33] and VGGish [27] pretrained on YouTube-
8M [1] for visual and audio features, respectively. For the
ranking baselines, we apply PCA [55] to reduce the fea-
ture dimensionality to 64 and rank the instances based on
three similarity metrics: inner product, cosine similarity,
and (negative) l2 distance. Because all our datasets have an
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Natural Class Correspondence Arbitrary Class Correspondence Audio-Visual
Method CIFAR10-Rotation CIFAR10-Flip MNIST-CIFAR10 MNIST-FSDD Kinetics-Sounds
Ranking-inner 87.872 ± 0.002 87.044 ± 0.001 63.076 ± 0.001 64.453 ± 0.003 52.558 ± 0.002
Ranking-cos 87.872 ± 0.002 87.044 ± 0.001 67.600 ± 0.002 61.893 ± 0.004 60.108 ± 0.001
Ranking-l2 87.872 ± 0.002 87.044 ± 0.001 66.796 ± 0.001 62.933 ± 0.003 51.236 ± 0.001
Ours-Contrastive 99.395 ± 0.000 99.480 ± 0.001 73.252 ± 0.040 73.733 ± 0.027 73.066 ± 0.036
Ours-Clustering 87.292 ± 0.014 87.248 ± 0.010 77.224 ± 0.009 69.440 ± 0.049 88.705 ± 0.004

Table 1. Correspondence retrieval results. We conduct a total of five runs and report the precision with the 99% confidence interval. We
use the clustering pairing scheme which gives the highest score in each configuration: combination, except diagonal for Ranking-inner,
Ranking-cos and Rank-l2 on CIFAR10-Rotation and CIFAR10-Flip.

equal number of positive and negative instances, we simply
select the top 50% instances as the retrieval result.

Protocol We split each dataset into train and test parti-
tions of the same size. We conduct a total of five runs for
each of the five datasets and report results on the test splits.
We use train sets only for the contrastive estimator to train
the projection heads. When constructing each dataset, we
sample at most n = 1000 instances from each category
of the source datasets. For the noise contrastive estimator,
we train the linear projection heads for 100 epochs using
the AMSGrad of Adam optimizer [57] with a learning rate
of 2e-4. We randomly take one sample from each class to
build a mini-batch for class-level correspondence datasets,
and sample random Nb = 10 clips to build a mini-batch
for the sample-level correspondence dataset. When apply-
ing our clustering-based method, we perform the SGD K-
means clustering with the “ground-truth” number of cen-
troids as the number of classes in each source dataset; we
use the batch greedy algorithm with a batch size b = 100
and a selection size s = 25.

4.2. Ablation Results & Discussion

Table 1 shows that the two variants of our approach –
contrastive and clustering – achieve overall higher precision
rates than the ranking baselines. The contrastive approach
performs well on the two datasets with the “natural class
correspondence,” conforming to the previous results that
shows contrastive learning is robust to geometric transfor-
mations [12]. The clustering approach excels on Kinetics-
Sounds that contains natural audio-visual correspondence,
which is closer to our intended scenario. Therefore, we con-
duct various ablation studies on Kinetics-Sounds to validate
different components of our clustering-based approach.

Multi-Layer Clustering. All the feature extractors that
we use consist of five convolutional blocks. As discussed in
Section 3.3.2, we cluster samples over each of the five out-
put spaces to capture a wide range of abstract concepts. This
raises a question: How should we combine audio-visual
clusters for MI estimation? Table 2 compares the single-
layer approaches to multi-layer approaches. Each of the
single-layer approach estimates the audio-visual MI based
on a single pair of clustering results. We can see that the

Layers Method Precision

Single

Layer1 50.820 ± 0.014
Layer2 51.412 ± 0.011
Layer3 52.659 ± 0.012
Layer4 54.422 ± 0.012
Layer5 58.418 ± 0.030

Multiple
Diagonal 71.450 ± 0.005
Bipartite 76.969 ± 0.005

Combination 88.705 ± 0.004

Table 2. Correspondence retrieval results on Kinetics-Sounds with
different clustering pairing schemes. We conduct a total of five
runs and report the precision with the 99% confidence interval.

precision increases as we use clustering results from higher
layers. However, all single-layer methods perform signifi-
cantly worse than multi-layer variants.

We explore three options to select pairs of clusterings for
MI estimation. Diagonal computes an average MI across
all five single-layer scores (with L layers, this computes
MI L times), Bipartite computes an average MI be-
tween all possible combinations of audio-visual clustering
results (L2 times), and Combination (ours) computes
an average MI between all possible combinations of clus-
tering results, regardless of modalities (2LC2 times). We
observe that the performance increases with the number of
connections as shown in the bottom rows of Table 2. This
positive relationship suggests that the consensus between
layers from the same extractor, as well as that across ex-
tractors, contributes to the clarity of correspondence signal.
We further experimented with different layer weights for
the Combination approach and found it to be robust to
different weight distributions; we provide the results in the
supplementary material.

Mini-Batch SGD K-means Clustering. We compared
mini-batch SGD K-means [7] to the standard EM (Lloyd’s)
approach [52] and obtained very similar results on Kinetics-
Sounds: 88.705 ± 0.004 (SGD) versus 88.732 ± 0.005
(EM). This shows that our SGD solution has negligible per-
formance degradation while enjoying a significantly less
memory requirement than the standard EM approach.

Batch Greedy Subset Selection. We explore how the
use of mini-batches affects the quality of the selected sub-
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Figure 2. Greedy vs. batch greedy algorithms with varying
selection-to-batch size ratios, s/b. The shaded regions show 99%
confidence intervals obtained by five runs on Kinetics-Sounds.
The batch greedy algorithm is robust when the ratio is ⩽ 25%.
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Figure 3. Sensitivity analysis on the number of centroids. We
determine under/over-clustering based on the ground-truth num-
ber of class categories in Kinetics-Sounds (c = 32). The shaded
regions show 99% confidence intervals over five runs.

sets. We compare the greedy algorithm and the batch greedy
algorithm with a batch size b = 160 and varying selection
sizes s = {5, 10, 20, 40, 80}. As shown in Figure 2, the per-
formance gap between the greedy algorithm and the batch
greedy algorithm is marginal (greedy: 98.970 vs. batch
greedy with (b, s) = (160, 5): 98.020), which validates our
use of the batch greedy algorithm. While the batch size it-
self does not have a large impact on the subset quality, the
ratio of selection size to batch size (s/b) highly affects the
retrieval performance; the performance drops sharply as the
ratio exceeds 0.25 in several (b, s) configurations. This is
mainly dataset-dependent: by construction, there is a 50%
chance that a sample will be a positive. We believe that the
constructed dataset contains roughly 25% easy positives,
i.e., videos with very high correspondence. When the se-
lection ratio s/b does not exceed the easy positive ratio, the
batch greedy algorithm finds those videos without introduc-

ing false positives, providing robustness. We found similar
patterns with other ratios of s/b > 25%.

Number of Centroids. We vary the number of centroids
k ∈ {8, 16, 32, 64, 128} to see how sensitive our approach
is to the parameter. We apply the batch greedy algorithm
with a batch size b = 100 and a selection size s = 25
on Kinetics-Sounds. Figure 3 shows that, although the final
performance is similar across different number of centroids,
they show different trends: underclustering (k = {8, 16})
shows high precision in early iterations while overclustering
(k = {64, 128}) shows slower drop in the later stage.

5. Large-Scale Evaluation
We construct datasets at varying scales (20K, 200K,

2M) and compare them to existing datasets often used in
the audio-visual learning literature: Kinetics-Sounds [4]
(20K), VGG-Sound [11] (200K), and AudioSet [20] (2M).
Note that all three datasets involve either human annota-
tion [4, 20] or manual verification [11]. To demonstrate the
scalable nature of our approach, we also generate datasets
with 10M and 100M videos and evaluate their performance.

For the contrastive approach, we train linear projection
heads on a batch size of 1024 from a randomly drawn
set of 100M videos. Note that these additional videos are
only used to train projection heads for MI estimation (Sec.
3.3.1), which is discarded once dataset curation is finished;
all approaches use the same number of videos under the
same evaluation protocol on all downstream tasks. We
train the model for three epochs and rank the entire video
set (300M) based on the cosine similarity [12]. We then
take top N ∈ {20K, 200K, 2M} ranked videos for the final
dataset. For the clustering-based variant, we vary the num-
ber of clusters C ∈ {100, 200, 500, 1000, 2000} for each
size of the datasets.

5.1. Linear Evaluation on Downstream Tasks

To assess the quality of the datasets, we pretrain iden-
tical models on different datasets and evaluate their perfor-
mance on downstream tasks. The idea is that if a model per-
formed particularly better than the others, the dataset used
to train that model must be superior to the other datasets.
We pretrain audio-visual CNNs from scratch using the self-
supervised objective of SimCLR [12]; we use 3D ResNet-
50 [16] and ResNet-50 [26] as the visual and audio CNNs,
respectively. We follow the linear evaluation protocol [12]
by adding a linear classifier on top of the learned and frozen
models. We test on three downstream tasks: visual action
recognition on UCF101 [62], sound classification on ESC-
50 [56], and audio-visual action recognition on Kinetics-
Sounds [4] (we concatenate audio-visual features for the
linear classifier). Note that the training procedures are iden-
tical for all the models except for the datasets used to train
them. We report mean accuracy across the official splits of
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Figure 4. Linear evaluation on downstream tasks. The top-1/5 accuracy (%) of video classification on UCF101 [62], audio classification
on ESC-50 [56] and audio-visual classification on Kinetics-Sounds (KS) [4]. We group the results by the downstream tasks and by the
scale of the pretrain datasets. Baselines are Kinetics-Sounds [4] (20K), VGG-Sound [11] (200K), and AudioSet [20] (2M).

UCF101 and ESC-50. We provide details of these experi-
mental settings in the supplementary material.

Figure 4 shows that models pretrained on our dataset
(green bars) achieve similar, or even slightly better, per-
formances compared to the baseline datasets (pink bars) at
20K, 200K, and 2M scales. The significant gap between
ours vs. random set (yellow bars) shows the improvement
does not come from the initial pool we crawl (the 300M set)
but rather come from higher portion of audio-visual corre-
spondence in the resulting dataset. Our clustering approach
to MI estimation (green bars) generally outperforms the
contrastive approach (blue bars), suggesting its robustness
to noisy real-world audio-visual correspondences. Finally,
we report the results obtained from 10M and 100M datasets
produced with our clustering-based MI estimation module
(we omit the baseline results at these scales due to computa-
tional reasons). The significant performance boost from the
10M and 100M models reaffirms the importance of large-
scale training. Considering our data curation process does
not involve human intervention (i.e., no manual annotation
and verification) this is a promising result showing the po-
tential for large-scale self-supervised learning: one can ob-
tain datasets of arbitrary scales and develop self-supervised
models by leveraging high portion of audio-visual corre-
spondences provided in the datasets.

5.2. Human Evaluation

We conduct a user study to assess the perceived pres-
ence/absence of audio-visual correspondence in video clips.
We compare clips from four datasets: AudioSet [20], VGG-
Sound [11], ours with clustering (2M scale, 1K clusters),
and random (drawn from the 300M set). We prepare 100
randomly sampled clips from each of these datasets, for a
total of 400 clips. We recruit 12 participants and present
each with 100 clips (25 clips per dataset), and ask them
whether audio and visual are corresponding or not. This
provides us with 3 votes per video (we provide the details

Dataset Majority Vote (%) Fleiss’ Kappa
AudioSet 65.66 0.4385
VGG-Sound 84.00 0.4634
Ours (2M) 69.00 0.5110
Random 44.00 0.6112

Table 3. Human evaluation results assessing the perceived audio-
visual correspondence in videos from different datasets.

of the questionnaire in the supplementary material).
Table 3 shows the majority voting accuracy and inter-

rater agreement (measured by Fleiss’ Kappa [18]). Every
dataset has Fleiss’ Kappa greater than 0.4, verifying the re-
liability of the accuracy statistics [37]. Ours significantly
improves audio-visual correspondence over a random sub-
set (69% vs. 44%), and is even rated slightly higher than
AudioSet. The annotation process for AudioSet has focused
on audio events so we suspect that several of videos do not
contain visible sound sources. There is still a significant
gap between ours and VGG-Sound; we note that our pro-
cess finds audio-visual correspondence without relying on
manual verification as was done in VGG-Sound.

6. Conclusion

This work complements existing line of research on self-
supervised representation learning with three main contri-
butions: i) proposing an automatic and scalable data col-
lection pipeline for audio-visual representation learning, ii)
demonstrating that the MI-based subset selection can re-
trieve correspondence in both artificial and practical set-
tings, and iii) releasing a large-scale open-domain video
dataset consisting of 100M clips curated with our pipeline.
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