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Abstract

Class Activation Mapping (CAM) is a powerful tech-
nique used to understand the decision making of Convolu-
tional Neural Network (CNN) in computer vision. Recently,
there have been attempts not only to generate better vi-
sual explanations, but also to improve classification perfor-
mance using visual explanations. However, previous works
still have their own drawbacks. In this paper, we propose a
novel architecture, LFI-CAM***(Learning Feature Impor-
tance Class Activation Mapping), which is trainable for im-
age classification and visual explanation in an end-to-end
manner. LFI-CAM generates attention map for visual ex-
planation during forward propagation, and simultaneously
uses attention map to improve classification performance
through the attention mechanism. Feature Importance Net-
work (FIN) focuses on learning the feature importance in-
stead of directly learning the attention map to obtain a more
reliable and consistent attention map. We confirmed that
LFI-CAM is optimized not only by learning the feature im-
portance but also by enhancing the backbone feature repre-
sentation to focus more on important features of the input
image. Experiments show that LFI-CAM outperforms base-
line models’ accuracy on classification tasks as well as sig-
nificantly improves on previous works in terms of attention
map quality and stability over different hyper-parameters.

1. Introduction

As Convolutional Neural Network (CNN) models have
become mainstream in computer vision tasks [1, 13, 6, 10,
17, 5, 8, 9], a rising need to understand the rationale be-
hind models’ decision has surfaced. Most deep neural net-
works are considered as black box due to the huge number
of parameters and implicit non-linearity. We currently use

* indicates equal contribution.
** indicates corresponding author.
*** https://github.com/TrustworthyAI-kr/LFI-CAM

Figure 1. Examples of stability test on visual explanation. Each
row displays CAM results of ABN or LFI-CAM models that were
trained with various (5) hyper-parameters. As illustrated, ABN’s
CAM results are unreliable and inconsistent even for same test
images despite the similar accuracies of the models. On the other
hand, LFI-CAM results in much more consistent CAM images
with better visual quality. (a)(c) ABN on STL10 (a) and Cat&Dog
(c), (b)(d) LFI-CAM on STL10 (b) and Cat&Dog (d).

metrics such as accuracy, precision, etc. for evaluation but
these metrics can be misleading or inaccurate. To empower
humans to trust the model, models should be equipped with
the capability of providing human-comprehensible explana-
tion on why it made certain decisions.

To address this need, several visual explanation methods
have been proposed [20, 16, 15, 21, 2, 14, 12, 4, 18, 11]
and are being widely used for various recognition tasks.
These methods include, but are not limited to CAM [21] ,
Grad-CAM [15], Grad-CAM++ [2], LIME [14], RISE [12],
ABN [4], and Score-CAM [18]. Broadly speaking, we
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can categorize the aforementioned methods into 4 cate-
gories: response-based, gradient-based, perturbation-based,
and hybrid-based visual explanation.

Response-based. CAM [21] is a response-based visual
explanation model which replaces the fully connected layer
with Global Average Pooling (GAP) and projects weight
matrix onto the channel-wise averaged feature maps. This
method is restrictive as it requires architecture-sensitive
changes in the original network, with degradation in clas-
sification accuracy compared to non-interpretable models.

Gradient-based. Grad-CAM [15] is a gradient-based vi-
sual explanation model that leverages the global average
pooling of partial derivatives to capture the importance of
a feature map for a target class. It fails to localize multiple
occurrences of the same class and the entire region of the
object. Grad-CAM++ [2] builds upon Grad-CAM’s logic by
capturing the weighted average of positive partial gradients
to resolve the downsides of Grad-CAM. Both models re-
quire an extra back-propagation step during inference time.

Perturbation-based. LIME [14] applies perturbations
on the input to learn a locally-weighted linear regression
model that presents image regions as explanation that have
the highest positive weight in approximating the true label.
Though it is model-agnostic and simple, it requires addi-
tional regularization and is time-consuming. RISE [12] es-
timates the importance of input image regions as the pre-
dicted score by randomly sampling masks.

Hybrid-based. Score-CAM [18] is a hybrid of
perturbation-based and response-based model. It uses atten-
tion maps as masks on the original image, and a forward-
passing score on the target class is obtained and then ag-
gregated as a weighted sum of score-based weights and at-
tention maps. Though it achieves high accuracy and stable
results compared to gradient-based methods, Score-CAM
is very slow and time-consuming as it needs as many infer-
ences as the number of feature maps to obtain CAM. At-
tention Branch Network (ABN) [4] is a hybrid model that
uses a response-based model with the attention mechanism.
It optimizes the loss term, which is the sum of attention
loss and perception loss. ABN’s limitation is that it often
results in an unstable and suboptimal attention map for cer-
tain hyper-parameter settings (See Fig. 1).

Inspired by ABN and Score-CAM, we propose a novel
architecture, LFI-CAM, which follows a similar structure to
ABN. However, to constrain the attention map generation
process as close as possible to the original CAM method,
the LFI-CAM attention branch treats the feature maps as
masks and obtains feature importance scores for each fea-
ture map to generate the attention map in a similar manner
to Score-CAM. Unlike Score-CAM, LFI-CAM’s Feature
Importance Network (FIN) in the attention branch learns
the feature importance for each feature map during train-
ing. Hence, LFI-CAM’s attention map is generated much

faster than Score-CAM during forward propagation.
LFI-CAM is composed of two parts: attention branch

and perception branch. Attention branch plays an important
role because it not only generates an attention map for vi-
sual explanation by learning the feature importance, but also
uses attention maps to improve classification performance
using the attention mechanism. The perception branch ex-
tracts feature maps and predicts a class through the attention
mechanism using the feature map from the convolutional
layer and attention map. LFI-CAM is trainable for image
classification and visual explanation in an end-to-end man-
ner and outputs more reliable and consistent attention maps
with smaller model parameters than ABN. Our key contri-
butions in this work are summarized as follows:

(1) We propose a new architecture LFI-CAM for image
classification and visual explanation based on Class Activa-
tion Mapping with a simple but efficient learnable feature
importance for each feature map.

(2) LFI-CAM learns the feature importance of attention
maps in an intuitive and understandable way and leverages
attention mechanism to improve classification performance
and generate more reliable and consistent attention map si-
multaneously during forward propagation. When compared
to Score-CAM, our model is equivalent in visual explana-
tion quality but much faster in speed. Also, it results in bet-
ter attention map quality and classification accuracy with
smaller network parameters compared to ABN.

(3) As a gradient-free method, LFI-CAM bridges the gap
between perturbation-based and CAM-based methods with
much faster inference speed than Score-CAM.

(4) LFI-CAM is not architecture-sensitive and can
be easily applied to various baseline models such as
ResNet [6], DenseNet [8], ResNeXt [19] and SENet [7] by
combining the baseline model with the Feature Importance
Network and the attention mechanism.

2. Preliminary

2.1. Attention Branch Network (ABN)

Attention Branch Network (ABN) [4] was proposed not
only to improve classification accuracy, but also to pro-
vide enhanced attention map for visual explanation simul-
taneously during inference time, by applying the attention
mechanism. ABN is composed of the feature extractor, at-
tention branch and perception branch. To create an attention
map, the attention branch generates K×h×w feature map
through multiple 1 × 1 convolution layers, and integrates
the feature map into one channel by applying a single 1× 1
convolution. Finally, the sigmoid function is applied to a
1×h×w feature map for normalization. Here K is the num-
ber of categories in dataset and also the number of channels,
while h and w are the feature map’s height and width.

We have observed that ABN outputs unreliable and in-
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Figure 2. Overview of LFI-CAM. Feature Importance Network, Attention Branch and Learning Feature Importance are the same concept.

consistent attention maps through several experiments. We
trained several ABN models with various hyper-parameters
on the Cat&Dog dataset, and then compared CAMs of the
same image from several models with similar accuracy. As
shown in Fig. 1, CAM results for the exactly same test im-
ages are unreliable and inconsistent although the trained
ABN models have similar accuracy.

We speculate this phenomenon is caused by two reasons:
(1) The K-channel feature map generated from the atten-

tion branch becomes very shallow if the dataset’s number of
categories K is small. The shallow feature map degrades at-
tention map quality and makes attention map inconsistent.

(2) The attention branch of ABN aggregates the K-
channel feature map to a one-channel feature map without
considering the channel-wise feature importance. Although
the attention map is trained by the attention mechanism, it
is possible to generate various types of attention maps de-
pending on the changes in the initial weight parameters or
hyper-parameters due to high degree of freedom.

2.2. Score-CAM

Score-CAM [18] is based on CAM with a simple but ef-
ficient importance representation for each feature map. Un-
like previous gradient-based visual explanation approaches
such as Grad-CAM [15] and Grad-CAM++ [2], Score-
CAM gets rid of the dependency on gradients by obtaining
the weight of each feature map through its forward pass-
ing score on the target class. Ultimately, the final attention
map is obtained as a weighted sum of feature maps. In order

to obtain the class-discriminative attention map of Score-
CAM, each feature map is first up-sampled to the original
input size and normalized to range [0, 1]. To project high-
lighted areas in the feature map to the original input space,
a masked image Mk is obtained by multiplying the normal-
ized feature map Ak with the original input I .

Mk = Ak ⊗ I (1)

where ⊗ denotes element-wise multiplication and k de-
notes the k-th channel of the last convolution layer. For each
masked image Mk, the output score Sk is obtained by the
Softmax operation after forward computing F (Mk).

Sk = Softmax(F (Mk)) (2)

The score Sc
k on target class c represents the importance of

the k-th feature map for target class c which is wc
k.

wc
k = Sc

k (3)

The final class activation map is obtained by a linear
weighted combination of all feature maps.

Lc
Score−CAM = ReLU(

∑
k

wc
kA

k) (4)

Although Score-CAM achieves better visual performance
with less noise and better stability than gradient-based ap-
proaches, multiple forward computing makes the generation
of visual explanation very slow.
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3. Proposed Method
In this section, we introduce LFI-CAM which is train-

able for image classification and visual explanation in an
end-to-end manner. LFI-CAM is composed of the attention
branch and perception branch, as shown in Fig. 2. The per-
ception branch extracts feature maps from the input image
by passing it through multiple convolutional layers and pre-
dicts a class through the attention mechanism of the feature
map from the convolutional layer and attention map. Mean-
while, the product between feature maps and down-sampled
grayscaled input is fed into the attention branch, also de-
noted as the Feature Importance Network (FIN). FIN ex-
tracts feature importance of each feature map, and then the
weighted sum between feature maps and extracted feature
importance are calculated, generating the attention map. In
this process, the attention branch not only generates atten-
tion map for visual explanation by learning feature impor-
tance but also leverages attention map to improve classifi-
cation performance through the attention mechanism.
3.1. Motivation

We propose a novel architecture, LFI-CAM, which is in-
spired by ABN [4] and Score-CAM [18]. By leveraging the
attention mechanism of ABN, LFI-CAM improves classifi-
cation performance. However, the attention branch of ABN
often generates unreliable and inconsistent visual explana-
tion, due to ignoring the original CAM mechanism. To solve
this issue, LFI-CAM’s attention branch treats feature maps
as masks and obtains feature importance scores for each fea-
ture map to generate the attention map in a similar manner
to Score-CAM. In other words, as ABN learns the atten-
tion map itself without taking feature importance into con-
sideration, we replaced ABN’s attention branch with a new
network architecture called ‘Feature Importance Network
(FIN)’ which helps our model focus on learning the fea-
ture importance. Ultimately, LFI-CAM’s attention map is
generated by the weighted sum of feature maps from the
last convolutional layer and the learned feature importance.
Therefore, it generates more stable and reliable attention
map. Since LFI-CAM’s FIN in the attention branch learns
the feature importance for each feature map during training
unlike Score-CAM, our attention map is generated much
faster than that of Score-CAM during forward propagation.

3.2. Feature Importance Network (Attention
Branch)

In contrast to the previous method [4], which directly
learns the class activation map in the attention branch, we
replaced ABN’s attention branch with a new network ar-
chitecture, “Feature Importance Network (FIN)”. FIN helps
LFI-CAM learn the feature importance to generate better
class activation map. Class activation map is generated by
the weighted sum of the feature maps from the last convo-

lutional layer and the learned feature importance vector.
To learn the feature importance, FIN follows a simi-

lar approach to Score-CAM [18]. However, unlike Score-
CAM, we convert the original input into gray, which is
downsampled to the feature map size. In addition, instead
of conducting several forward computations, a concatenated
masked image is fed as an input into the FIN. The feature
importance for each feature map is outputted from the FIN.

In order to obtain the class activation map of LFI-CAM,
the original input I ∈ R3×w×h is first converted from RGB
color space to a single gray scale space and down-sampled
to a feature map with a size of R1×m×n. An example would
be a conversion from I ∈ R3×224×224 to Ĩ ∈ R1×14×14 in
Resnet18 [6] architecture.

Ĩ = Down(rgb2gray(I)) (5)

Each feature map of the last convolutional layer, F k
last ∈

R1×m×n is normalized, where k denotes the channel in-
dex of the last convolutional layer. A masked image Mk ∈
R1×m×n is obtained by multiplying the down-sampled gray
input image Ĩ with the normalized feature map.

Mk = Ĩ ⊗ s(F k
last) (6)

where s(·) is a normalization function that maps each el-
ement in every feature map to range [0,1]. We generate a
set of masked images {M1,M2, ...,MN} and concatenate
them all, where N is the number of channels of the last
convolutional layer of the model. Finally, we feed the con-
catenated masked image M into the FIN model FIN(x) to
conduct a forward propagation FIN(M).

Sfi = FIN(M) (7)

where Sfi ∈ RN is the feature importance score vector. We
take the k-th score Sk

fi as weight to represent the feature
importance of the k-th feature map.

wk = Sk
fi (8)

The class activation map of the LFI-CAM is obtained by
a weighted combination of all feature maps.

LLFI−CAM = ReLU(
N∑

k=1

wkF
k
last) (9)

Similar to previous works [15, 18, 2], ReLU is applied to
the linear combination of feature maps to remove features
with negative influence.

3.3. Perception Branch

The perception branch takes the original input image as
input and outputs the final probability of each class. The
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Figure 3. Visual explanation results of various methods on ImageNet. Notably, LFI-CAM always highlights the true class object correctly
and in a more focused manner. For instance, LFI-CAM’s tiger cat, streetcar, and toilet seat attention maps are tighter and focused on the
salient features of the true class than any other methods. Additional results are provided in the supplementary material.

attention map generated from the attention branch (FIN) is
overlapped onto the feature maps from intermediate convo-
lutional layer by the attention mechanism. Unlike ABN, the
LFI-CAM attention map is always generated using feature
maps from the last convolutional layer, instead of the feature
extractor. However, the attention mechanism can be applied
to the feature map from any convolutional layer. We use the
following attention mechanism formula from ABN [4].

F́ k
l = (1 + LLFI−CAM )⊗ F k

l
(10)

where F k
l is the feature map at the l-th convolutional layer

and F́ k
l is the output of the attention mechanism. Note that

k is the index of the channel and that LLFI−CAM is nor-

malized to range [0,1] before being used in the attention
mechanism. The attention mechanism helps the attention
map improve the classification performance by highlight-
ing the feature map at the location with a higher value of
attention map while preventing the lower value region of
the attention map from degrading to zero.

3.4. Training

LFI-CAM is trained in an end-to-end manner using train-
ing loss calculated as the combination of the Softmax func-
tion and cross-entropy at the perception branch in image
classification task. The FIN is optimized by the attention
mechanism of the perception branch to improve the classi-
fication accuracy without any additional loss function.
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Figure 4. Visual explanation results of various methods for multi-target on ImageNet. More results are provided in supplementary material.

4. Experiments

In this section, we evaluate LFI-CAM’s classification
performance and show its effectiveness. First, we describe
experiment settings on image classification in Sec 4.1. Sec-
ond, we qualitatively evaluate our approach via visualiza-
tion on ImageNet in Sec 4.2. In Sec 4.3, we quantitatively
evaluate LFI-CAM’s image classification performance by
comparing it with various baseline models. Finally, we mea-
sure the stability of LFI-CAM’s visual explanation and
compare it with the stability of ABN’s visual explanation.

4.1. Experimental Settings on Image Classification

Datasets: We evaluate LFI-CAM using 5 different pub-
lic datasets- CIFAR10, CIFAR100, STL10, Cat&Dog (Kag-
gle Cats and Dogs), and ImageNet [3]. Cat&Dog dataset has
2 classes, CIFAR10 and STL10 have 10 classes each, CI-
FAR100 has 100 classes, and ImageNet has 1,000 classes.
Training and testing dataset sizes are as follows: CIFAR10
and CIFAR100 has 50,000 training images and 10,000 test-
ing images, and ImageNet consists of 1,281,167 training
images and 50,000 testing images. STL10 consists of 5,000
training images and 8,000 testing images. The Cat&Dog
dataset has 8,007 training images and 2,025 testing images.
The input image size of CIFAR10 and CIFAR100 is 32 x
32 pixels, for STL10 it is 96 x 96, for Cat&Dog dataset and
ImageNet it is 224 x 224 pixels.

Base Models: In this experiment, CIFAR10 and CI-
FAR100 are evaluated via the CIFAR ResNet backbone
(ResNet 20, 32, 44, 56, 110). STL10, Cat&Dog, and Im-
ageNet is evaluated via the ImageNet ResNet backbone

(ResNet 18, 34, 50, 101, 152). The CIFAR ResNet back-
bone is more lightweight than the ImageNet ResNet back-
bone, with fewer layers and parameters, which is suitable
for relatively smaller sized input image. The CIFAR ResNet
backbone uses standard data augmentation of zero-padding
images with 4 pixels on each side and then randomly crop-
ping to produce 32 x 32 pixels images. Subsequently, hori-
zontal flip is applied at random. For ImageNet ResNet back-
bone, training images are randomly resized and cropped to
224 x 224 pixels and then horizontally mirrored at random.
The validation images are resized to 256 x 256 and then cen-
ter cropped to produce 224 x 224 sized images. LFI-CAM
models are composed of perception branch (backbone) and
attention branch (FIN), where the FIN is constructed with
multiple convolutional layers. Further details on LFI-CAM
architecture can be found in the supplementary material.

Optimizer and Hyper-parameters: We use the most
standard optimizer which is stochastic gradient descent
(SGD) with momentum. We set the total epoch hyper-
parameter as follows: CIFAR10, CIFAR100, STL10, and
Cat&Dog are 300 epochs, and ImageNet is 90 epochs. The
learning rate is initialized with 0.1, and later on divided by
10 at 50 % and 75 % of the total number of training epochs.
We used training batch size of 128 for CIFAR ResNet back-
bone and 256 for ImageNet ResNet backbone.

4.2. Visual Explanation Evaluation

We qualitatively compare the visual explanation gen-
erated by 5 state-of-the-art methods, namely CAM [21],
Grad-CAM [15], Grad-CAM++ [2], ScoreCAM [18] and
ABN [4]. While CAM, Grad-CAM, Grad-CAM++ and
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Figure 5. Visualization of the Feature Importance Network Effec-
tiveness on ImageNet dataset. (a) Input image, (b) Pixel-wise mean
feature map from the last convolutional layer of the LFI-CAM
model trained without FIN, (c) Pixel-wise mean feature map from
the last convolutional layer of the LFI-CAM model trained with
FIN, (d) CAM generated from the LFI-CAM model.

Score-CAM can generate class activation map for each tar-
get class, ABN and LFI-CAM always generate a single
class activation map for the class with the highest predic-
tion probability. To make the comparison as fair as possible,
we used the predicted output class of LFI-CAM as the tar-
get class for CAM, Grad-CAM, Grad-CAM++, and Score-
CAM and selected examples with the same prediction re-
sult for both LFI-CAM and ABN. For CAM, Grad-CAM,
Grad-CAM++, and ScoreCAM, we used ResNet18 model
pretrained on ImageNet. For ABN and LFI-CAM, we used
ResNet18 backbone trained on ImageNet.

4.2.1 Class Discriminative Visualization

As shown in Fig. 3, our method shows high-quality results
beyond equivalence compared to CAM-variant methods, es-
pecially demonstrating less noisy and more focused results
on target object area. Our approach can also generate more
reliable visual explanation compared to ABN. More exam-
ples are provided in the supplementary material.

LFI-CAM shows better performance on locating multi-
ple target objects than previous works as shown in Fig. 4.
ABN often shows unreliable results where attention maps
are generated improperly or in unrelated areas. Compared
to other CAM-variants, LFI-CAM yields more focused and
less noisy results as shown in single object experiments.

4.2.2 Effectiveness of Feature Importance Network

To evaluate the effectiveness of the proposed Feature Im-
portance Network, we visualize the pixel-wise mean fea-
ture map from the last convolutional layer of the LFI-CAM
model trained without and with the FIN. Then we compare
them against the CAM generated from LFI-CAM model
trained with FIN. Although we initially expected that the

Table 1. Comparison of LFI-CAM and ABN’s top-1 errors on CI-
FAR10 and CIFAR100 for ResNet110 and ResNeXt.

Model CIFAR10 CIFAR100
ResNet110 6.43 24.14

ResNeXt [19] 3.84 18.32
ResNet110+ABN 4.91(−1.52) 22.82(−1.32)

ResNeXt+ABN 3.8(−0.04) 17.7(−0.62)

ResNet110+LFI-CAM 5.73(−0.7) 23.33(−0.81)

ResNeXt+LFI-CAM 4.27(+0.43) 18.23(−0.09)

Table 2. Comparison of LFI-CAM and ABN’s top-1 errors on
STL10 and Cat&Dog for ResNet18.

Model STL10 Cat&Dog
ResNet18 +ABN 18.75 3.07

ResNet18+LFI-CAM 18.16(−0.59) 2.72(−0.35)

Table 3. Comparison of LFI-CAM and ABN’ top-1 errors and
model parameter size on ImageNet for ResNet18,34,50,101,152.

Model Model Size ImageNet
ResNet18 11.17M 30.24
ResNet34 21.28M 26.69
ResNet50 23.25M 23.87

ResNet101 42.51M 22.63
ResNet152 58.16M 21.69

ResNet18+ABN 21.61M(+10.44) 28.98(−1.26)

ResNet34+ABN 36.44M(+15.16) 25.78(−0.91)

ResNet50+ABN 43.58M(+20.33) 23.1(−0.77)

ResNet101+ABN 62.58M(+20.07) 21.8(−0.83)

ResNet152+ABN 78.22M(+20.06) 21.4(−0.29)

ResNet18+LFI-CAM 17.47M(+6.3) 27.75(−2.49)

ResNet34+LFI-CAM 29.94M(+8.66) 25.68(−1.01)

ResNet50+LFI-CAM 43.05M(+19.8) 22.71(−1.16)

ResNet101+LFI-CAM 62.04M(+19.53) 21.84(−0.79)

ResNet152+LFI-CAM 77.68M(+19.52) 21.95(+0.26)

feature importance learned by the FIN plays an important
role in generating reliable CAM, an interesting discovery
is that the backbone network, FIN, and attention mecha-
nism interact with each other during training. Therefore,
we confirmed that LFI-CAM model is optimized not only
by learning the feature importance but also by enhancing
the backbone feature representation to focus more on im-
portant features to make decision for the input image. As
shown in Fig. 5, after the FIN’s feature importance is incor-
porated, our LLFI−CAM successfully focuses on the most
distinguishable region of the target object. For example, as
shown in the second row, the steel structure is highlighted
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prominently after applying the FIN because the LFI-CAM
model classifies the input image as ‘pole’.

4.3. Accuracy on Image Classification

For all tables, numbers in parentheses indicate difference
in top-1 error and model parameter size from the baseline.
Boldface indicates best performance among ABN and LFI.

Accuracy on CIFAR10 and CIFAR100: Table 1 shows
top-1 errors on CIFAR10/100 using ResNet110, ResNeXt,
ABN and LFI-CAM. Although LFI-CAM outperforms
baseline models, ABN’s top-1 errors tend to be slightly
smaller than LFI-CAM’s top-1 errors. However, we con-
firmed that LFI-CAM’s CAM is much more reliable than
ABN’s CAM. The attention maps of ABN and LFI-CAM
are provided in the supplementary material.

Accuracy on STL10 and Cat&Dog: We evaluate the
image classification accuracy on STL10 and Cat&Dog as
shown in Table 2 with the same method used for CI-
FAR10/100. We evaluate the top-1 errors for ResNet18 with
ABN and LFI-CAM. On STL10, ResNet with LFI-CAM
decreases the top-1 errors by 0.59 compared to ResNet18
with ABN. On Cat&Dog, LFI-CAM also decreases the top-
1 errors by 0.35 compared to ResNet18 with ABN.

Accuracy on ImageNet: We evaluate image classifica-
tion accuracy on ImageNet as shown in Table 3. We tested
ResNet18, 34, 50, 101, 152 models with ABN and LFI-
CAM. The table shows LFI-CAM is on par with ABN in
terms of classification accuracy for each backbone model,
even with less parameters. Also, LFI-CAM generates much
more reliable CAM than ABN as shown in Sec 4.2.1.

4.4. Stability Evaluation of Visual Explanation

The stability of visual explanation is an important mea-
sure of CAM-related algorithm’s performance and real
world applicability. Researchers have observed instability
of visual explanation from several previous works [15, 18],
and one recent work, Attention Branch Network [4], shows
significant instability for datasets with fewer number of
classes, such as Cat&Dog, CIFAR10, STL10. Hence, we
evaluated stability of visual explanation of LFI-CAM and
other relevant models with those datasets. As shown in
Fig. 1, we observed that LFI-CAM shows stable visual ex-
planations unlike previous works such as ABN. To measure
stability, we used IoU (Intersection of Union) between vi-
sual explanations on all the test data generated by 6 mod-
els, which were trained fully and individually on the same
dataset using slightly different learning rate sampled from
[0.07, 0.08, 0.09, 0.1, 0.11, 0.12]. First, we select one model
with the highest classification accuracy from the 6 models
as baseline. Then, we compare IoU between the visual ex-
planation generated from the other 5 models with the base-
line. Since the image area where the model gives more at-
tention will have higher temperature, we used visual ex-

Figure 6. Stability evaluation of visual explanation. (a) IoU be-
tween models per dataset, (b) Average IoU per dataset.

planations with reasonably high temperature (≥127, value
range [0, 256]) for IoU calculation. As seen in Fig. 6, when
comparing areas with high attention, LFI-CAM shows 60%
or more overlap on average, but ABN shows 30%. The
backbone used for stability evaluation was ResNet18 for
Cat&Dog and STL10, and ResNet110 for Cifar10.

5. Conclusion and Future Work
In this paper, we proposed LFI-CAM, which is trainable

for image classification and produces better visual explana-
tion in an end-to-end manner. We replaced ABN’s attention
branch with a new network architecture called “Feature Im-
portance Network (FIN)” which helps our model focus on
learning the feature importance to generate more stable and
reliable attention map. In other words, LFI-CAM’s atten-
tion map is generated by the weighted sum of the feature
map from the last convolutional layer and the learned fea-
ture importance, while ABN learns the attention map itself
without taking the feature importance into consideration.
Throughout the paper, we evaluated the classification per-
formance and visual explanation quality of LFI-CAM, and
we concluded that LFI-CAM is on par with ABN in terms
of classification accuracy and outmatches ABN in terms of
attention map quality. Future work is planned to apply LFI-
CAM’s FIN to other tasks such as object detection, semantic
segmentation and multi-task learning.
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[11] Grégoire Montavon, Wojciech Samek, and Klaus-Robert
Müller. Methods for interpreting and understanding deep
neural networks. Digital Signal Processing, 73:1–15, 2018.
1

[12] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Random-
ized input sampling for explanation of black-box models.
arXiv preprint arXiv:1806.07421, 2018. 1, 2

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. arXiv preprint arXiv:1506.01497, 2015.
1

[14] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”
why should i trust you?” explaining the predictions of any

classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
pages 1135–1144, 2016. 1, 2

[15] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 1, 2, 3, 4, 6, 8

[16] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017. 1

[17] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3156–3164, 2015. 1

[18] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian
Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-cam:
Score-weighted visual explanations for convolutional neural
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
24–25, 2020. 1, 2, 3, 4, 6, 8

[19] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 2, 7

[20] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, pages 818–833. Springer, 2014. 1

[21] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929,
2016. 1, 2, 6

1363


