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Abstract

We tackle the problem of localizing temporal intervals of
actions with only a single frame label for each action in-
stance for training. Owing to label sparsity, existing work
fails to learn action completeness, resulting in fragmentary
action predictions. In this paper, we propose a novel frame-
work, where dense pseudo-labels are generated to provide
completeness guidance for the model. Concretely, we first
select pseudo background points to supplement point-level
action labels. Then, by taking the points as seeds, we search
for the optimal sequence that is likely to contain complete
action instances while agreeing with the seeds. To learn
completeness from the obtained sequence, we introduce two
novel losses that contrast action instances with background
ones in terms of action score and feature similarity, respec-
tively. Experimental results demonstrate that our complete-
ness guidance indeed helps the model to locate complete
action instances, leading to large performance gains es-
pecially under high IoU thresholds. Moreover, we demon-
strate the superiority of our method over existing state-of-
the-art methods on four benchmarks: THUMOS’ 14, GTEA,
BEOID, and ActivityNet. Notably, our method even per-
forms comparably to recent fully-supervised methods, at
the 6x cheaper annotation cost. Our code is available at
https://github.com/Pilhyeon.

1. Introduction

The goal of temporal action localization lies in locating
starting and ending timestamps of action instances and clas-
sifying them. Thanks to the various applications [33, 45,

], it has drawn much attention from researchers, leading
to the rapid and remarkable progress in the fully-supervised
setting (i.e., frame-level labels) [27, 41, 43, 50]. Meanwhile,
there appear attempts to reduce the prohibitively expensive
cost of annotating individual frames by devising weakly-
supervised models with video-level labels [7, 32, 46, 56].
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Figure 1: Simplified illustration of our idea. We use points
as seeds to find the optimal sequence, which in turn provides
completeness guidance to the model.

However, they fall largely behind the fully-supervised coun-
terparts, mainly on account of their weak ability to distin-
guish action and background frames [17, 18, 38, 52].

To narrow the performance gap between them, another
level of weak supervision has been proposed recently,
namely the point-supervised setting. In this setting, only a
single timestamp (point) with its action category is anno-
tated for each action instance during training. In terms of
the labeling cost, point-level labels require a negligible extra
cost compared to video-level ones, while being 6 x cheaper
than frame-level ones (50s vs. 300s per 1-min video) [31].

Despite the affordable cost, it offers coarse locations as
well as the total number of action instances, thus bring-
ing a strong ability in spotting actions to the models. Con-
sequently, point-supervised methods show comparable or
even superior performances to fully-supervised counter-
parts under low intersection over union (IoU) thresholds.
However, it has been revealed that they suffer from incom-
plete predictions, resulting in highly inferior performances
in the case of high IoU thresholds. We conjecture that this
problem is attributed to the sparse nature of point-level la-
bels that induces the models to learn only a small part of ac-
tions rather than the full extent of action instances. In other
words, they fail to learn action completeness from the point
annotations. Although SF-Net [3 1] mines pseudo action and
background points to alleviate the label sparsity, they are
discontinuous and thus do not provide completeness cues.
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In this paper, we aim to allow the model to learn action
completeness under the point-supervised setting. To this
end, we introduce a new framework, where dense pseudo-
labels (i.e., sequences) are generated based on the point an-
notations to provide completeness guidance to the model.
The overall workflow is illustrated in Fig. 1.

Technically, we first select pseudo background points to
augment point-level action labels. As aforementioned, such
point annotations are discontiguous, so it is infeasible to
learn completeness from them. To that end, we propose to
search for the optimal sequence covering complete action
instances among candidates consistent with the point labels.
However, it is non-trivial to measure how complete the in-
stances in each candidate sequence are, without full super-
vision. To realize it, we borrow the outer-inner-contrast con-
cept [42] as a proxy for instance completeness. Intuitively,
a complete action instance generally shows large score con-
trast, i.e., much higher action scores for inner frames than
those for surrounding frames. In contrast, a fragmentary in-
stance probably has high action scores in its outer region
(still within the action), leading to small score contrast. This
can be generalized for background instances as well. Based
on this property, we derive the score of an input sequence by
aggregating the score contrast of action and background in-
stances constituting the sequence. By maximizing the score,
we can obtain the optimal sequence that is likely to be well-
aligned with the ground-truth we do not have. In experi-
ments, we present the accuracy of optimal sequences and
the correlation between score contrast and completeness.

From the obtained sequence, the model is supposed to
learn action completeness. To this end, we design score con-
trastive loss to maximize the agreement between the model
outputs and the optimal sequence, by enlarging the com-
pleteness of the sequence. With the loss, the model is trained
to discriminate each action (background) instance from its
surroundings in terms of action scores. Moreover, we in-
troduce feature contrastive loss to encourage feature dis-
crepancy between action and background instances. Exper-
iments validate that the proposed losses complementarily
help the model to detect complete action instances, leading
to large performance gains under high IoU thresholds.

To summarize, our contributions are three-fold.

* We introduce a new framework, where the dense op-
timal sequence is generated to provide completeness
guidance to the model in the point-supervised setting.

* We propose two novel losses that facilitate the action
completeness learning by contrasting action instances
with background ones with respect to action score and
feature similarity, respectively.

* Our model achieves a new state-of-the-art with a large
gap on four benchmarks. Furthermore, it even per-
forms favorably against fully-supervised approaches.

2. Related Work

Fully-supervised temporal action localization. In or-
der to tackle temporal action localization, fully-supervised
methods rely on precise temporal annotations, i.e., frame-
level labels. They mainly adopt the two-stage paradigm
(proposal generation and classification), and can be roughly
categorized into two groups regarding the way to generate
proposals. The first group prepares a large number of pro-
posals using the sliding window technique [4, 41, 43, 49,
, 55, 62]. On the other hand, the second group first pre-
dicts the probability of each frame being a start (end) point
of an action instance, and then uses the combinations of
probable start and end points as proposals [21, 22, 23, 61].
Meanwhile, there are graph modeling methods taking snip-
pets [1, 51] or proposals [57] as nodes. Different from fully-
supervised methods that utilize expensive frame-level labels
for action completeness learning, our method enables it with
only point-level labels by introducing a novel framework.

Weakly-supervised temporal action localization. To al-
leviate the cost issue of frame-level labels, many attempts
have been made recently to solve the same task in the
weakly-supervised setting, mainly using video-level labels.
Untrimmednets [46] tackle it by selecting segments that
contribute to video-level classification. STPN [37] puts a
constraint that key frames should be sparse. In addition,
there are background modeling approaches under the video-
supervised setting [9, 17, 18, 38]. To learn reliable atten-
tion weights, DGAM [40] designs a generative modeling,
while EM-MIL [30] adopts the Expectation-maximization
strategy. Meanwhile, metric learning is utilized for action
representation learning [10, 36, 39] or action-background
separation [34]. There are also methods that explore sub-
actions [1 1, 29] or exploit the complementarity of RGB and
flow modalities [54, 58]. Besides, several methods leverage
external information, e.g., action count [36, 52], pose [00]
or audio [16]. Moreover, some approaches aim to detect
complete action instances by aggregating multiple predic-
tions [25], erasing the most discriminative part [44, 63], or
directly regressing the action intervals [28, 42].

Most recently, point-level supervision starts to be ex-
plored, which provides rich information at an affordable
cost. Moltisanti et al. [35] first utilize the point-level labels
for action localization. SF-Net [31] adopts the pseudo label
mining strategy to acquire more labeled frames. Meanwhile,
Ju et al. [13] perform boundary regression based on key
frame prediction. However, they do not explicitly consider
action completeness, and therefore produce predictions that
cover only part of action instances. In contrast, we propose
to learn action completeness from dense pseudo-labels by
contrasting action instances with surrounding background
ones. In Sec. 4, the efficacy of our method is clearly verified
with notable performance boosts at high IoU thresholds.
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Figure 2: Overview of the proposed method. Besides the conventional objectives, i.e., video-level and point-level classifica-
tion losses, we propose to learn action completeness (the lower part). Based on the final action scores, the optimal sequence is
selected among candidates consistent with the point-level labels. It in turn provides completeness guidance with two proposed
losses that contrast action instances with background ones with respect to (a) action score and (b) feature similarity.

3. Method

In this section, we first describe the problem setting and

detail the baseline setup. Afterward, the optimal sequence
search is elaborated, followed by our action completeness
learning strategy. Lastly, we explain the joint learning and
the inference of our model. The overall architecture of our
method is illustrated in Fig. 2.
Problem setting. Following [ 13, 31], we set up the problem
of point-supervised temporal action localization. Given an
input video, a single point and the category for each action
instance is provided, i.e., Bt = {(t;,y:,)}M}, where the
i-th action instance is labeled at the ¢,-th segment (frame)
with its action label y;,, and M*® is the total number of
action instances in the input video. The points are sorted in
temporal order (i.e., t; < t;y1). The label y,, is a binary
vector with y,[¢c] = 1 if the i-th action instance contains
the c-th action class and otherwise 0 for C' action classes. It
is worth noting that the video-level label y*'¢ can be readily
acquired by aggregating the point-level ones, i.e., "4[c] =
1 [ZKT ye, [c] > O}, where 1 [-] is the indicator function.

3.1. Baseline Setup

Our baseline is shown in the upper part of Fig. 2. We first
divide the input video into 16-frame segments, which are
then fed to the pre-trained feature extractor. Following [17,

], we exploit both of RGB and flow streams with early-
fusion. The two-stream features are fused by concatenation,
resulting in X € RP*T, where D and T denote the feature
dimension and the number of segments, respectively.

The extracted features then go through a single 1D con-
volutional layer followed by ReLU activation, which pro-

duces the embedded features F'. In practice, we set the di-
mension of the embedded features to the same as that of
the extracted features X, i.e., F € RP*T . Afterward, the
embedded features are fed into a 1D convolutional layer
with the sigmoid function, to predict the segment-level class
scores P € RE*T where C indicates the number of ac-
tion classes. Meanwhile, we derive the class-agnostic back-
ground scores @ € R”', to model background frames which
do not belong to any action classes. Thereafter, we fuse the
action scores with the complement of background probabil-
ity to get the final scores P, i.e., p[c] = p¢[c](1 — q;). This
fusion strategy is similar to that of [18], although the out-
of-distribution modeling is not incorporated in our model.

The segment-level action scores are then aggregated to
build a single video-level class score. We use the temporal
top-k pooling for aggregation as in [17, 39]. Formally, the
video-level probability is calculated as follows.

1
¢ = - max

~vid
Pl k scple,

ey

m?
vYmesS

where k = [ £ ] and S denotes all possible subsets of Ple, ]
containing k segments, i.e., |S| = k.

Our baseline model includes two loss functions using
video- and point-level labels respectively. As aforemen-
tioned, the video-level class label y*'[c| can be derived by
accumulating the point-level labels. The video-level classi-
fication loss is then calculated with binary cross-entropy.

C
Luigeo = = 3 (™[] log #"™[c]

c=1

2)
+ (1= y™[c]) log (1 = p[e) ).

13650



The point-level classification loss is also computed by
binary cross-entropy but involving the background term
for effectively training @. In addition, we adopt the focal
loss [24] to facilitate the training process. Formally, the
classification loss for action points is defined as follows.

C

point = — ]\/flact > <Z (yz [c](1 = pe[c])? log pi[c]

V(ty)eB =1

=l g (1 D) + o Tow (1~ ) ),
(3)

where M* indicates the number of action instances in the
video and [ is the focusing parameter, which is set to 2
following the original paper [24].

Training only with action points would lead the network
to always produce low background scores rather than learn
to separate action and background. Therefore, we gather
some pseudo background points to supplement action ones.
Our principle for selection is that at least one background
frame must be placed between two adjacent action instances
to separate them. By the problem definition, two different
action points are sampled from different instances, so we
use the action points as surrogates for the corresponding in-
stances. Concretely, between two adjacent action points, we
find the segments whose background scores g; are larger
than the threshold . If no segment satisfies the condition in
a section, we select one with the largest background score.
Meanwhile, for the case where multiple background points
are selected in a section, we mark all points between them
as background, since it is trivial that no action exists there.
In practice, this strategy is shown to be more effective than
global mining [31] by collecting more hard points. Given
the pseudo background point set, B°%¢ = {tj};-\ib;g, the clas-
sification loss for background points is computed by:

C
1
ot =g 2 (Lnll 0w 1= k) + (1 00 lozar ).

vteBbke =1
C))

where M"*¢ denotes the number of the selected background
points and [ is the focusing factor, the same with (3). For
pseudo background points, we penalize the final scores for
all action classes, while encouraging the background scores.
The total point-level loss function is defined as the sum

of the losses for action and pseudo background points.
Looine = Lyains + Loo (5)

point*

3.2. Optimal Sequence Search

As discussed in Sec. 1, the point-level classification loss
is insufficient to learn action completeness, as point labels
cover only a small portion of action instances. Therefore,
we propose to generate dense pseudo-labels that can offer

some hints about action completeness for the model. In de-
tail, we consider all possible sequence candidates consis-
tent with the action and pseudo background points. Among
them, we find the optimal sequence that can provide good
completeness guidance to the model. However, it is non-
trivial without full supervision to measure how well a candi-
date sequence covers complete action instances. To enable
it, we re-purpose the outer-inner-contrast concept [42] as
a proxy for judging the completeness score of a sequence.
Intuitively, the contrast between inner and outer scores is
likely to be large for a complete action instance but small
for a fragmentary one. Note that our purpose is different
from the original paper [42]. It was originally designed for
parametric boundary regression. In contrast, we utilize it as
a scoring function to search for the optimal sequence, from
which the model could learn action completeness.

Before detailing the scoring function, we present the for-
mulation of candidate sequences. Due to the multi-label
nature of temporal action localization, we consider class-
specific sequences for each action class. Note that all seg-
ments belonging to other action classes are considered
background for sequences of class c. Then, a sequence
is defined as multiple action and background (including
other actions) instances that alternate consecutively. For-
mally, a sequence of class ¢ can be expressed as m, =
{(s5, eC, 26 )}Ne |, where s¢ and e€, denote the start and end
points of the n-th instance, respectively, while IV, is the to-
tal number of instances for class c. In addition, z¢ € {0,1}
indicates the type of the instance, i.e., z;, = 1 if n-th in-
stance is of the c-th action class, otherwise 0 (background).

Given an input sequence, we compute its completeness
score by averaging the contrast scores of individual ac-
tion and background instances contained in the sequence.
It would be noted that the contrast scores of background in-
stances are included in the calculation, which proves to be
effective for finding more accurate optimal sequences, as
will be shown in Sec. 4.3. Formally, the completeness score
of a sequence 7, for the c-th action class is computed by:

n=1 N t=sc
Inner score
1 sp—1 . e, +10l5 ] .
BEAREAINP N AP 50))
Outer score
Peld], if 2¢ = 1.

where us,(t) = {

1—pilc], otherwise.’

(6)
¢ = ef — sy, 4 11is the temporal length of the n-th instance
of 7, & is a hyper-parameter adjusting the outer range (set
to 0.25), and N, is the total number of action and back-
ground instances for class c. Then, the optimal sequence for
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Figure 3: Optimal sequence search for class c. Given the final scores and the point-level labels, we select pseudo background
points. Then, among all possible candidates, we search for the optimal sequence that maximizes the completeness score (6).

class c can be obtained by finding the sequence that max-
imizes the score, i.e., 7 = argmax, R(7.) using (6).
The optimal sequence search process is illustrated in Fig. 3.
By evaluating the completeness score, our method can re-
ject underestimation (Fig. 3a) and overestimation (Fig. 3b)
cases. Consequently, we obtain the optimal sequence that is
most likely to contain complete action instances.

However, the search space grows exponentially as 7" in-
creases, leading to the exorbitant cost for optimal sequence
search. To relieve the issue, we implement the search pro-
cess with a greedy algorithm under a limited budget, which
results in greatly saving the computational cost. Detailed
algorithm and cost analysis are presented in Sec. B of the
appendix. Note that optimal sequence search is performed
only for the action classes contained in the video.

3.3. Action Completeness Learning

Given the class-specific optimal sequences {7 }<_,, our
goal is to let the model learn action completeness. To this
end, we design two losses that enable completeness learning
by contrasting action instances from background ones. This
helps in complete action predictions, as validated in Sec. 4.

Firstly, we propose score contrastive loss that encour-
ages the model to separate action (background) instances
from their surroundings in terms of final scores. It can be
also interpreted as fitting the model outputs to the optimal
sequences (Fig. 2a). Formally, the loss is computed by:

c
1 3y s
Lscore = - ywd [C] 1-— R(ﬂ—;k) y @)
el yld = ( )

where we use [3-squared term to focus on the instances that
are largely inconsistent with the optimal sequence (8 = 2).
Secondly, inspired by the recent success of contrastive
learning [5, 8, 14], we design feature contrastive loss. Our
intuition is that features from different instances but with
the same action class should be closer to each other than
any other background instances in the same video (Fig. 2b).
We note that our loss differs from [5, 8, 14] in that they
pull different views of an input image, whereas ours attracts
different action instances in a given video. In addition, ours
does not need negative sampling from different images, as
background instances are obtained from the same video.

To extract the representative feature for each action (or
background) instance, we modify the segment of inter-
est (SOI) pooling [4] by replacing max-pooling with ran-
dom sampling. In detail, we evenly divide each input in-
stance into three intervals, from each of which a single seg-
ment is randomly sampled. Then, the embedded features of
the sampled segments are averaged, producing the represen-
tative feature f< for the n-th instance of the sequence 7.

Taking the normalized instance features f¢ as inputs, we
derive feature contrastive loss. The loss is computed only
for the classes whose action counts are larger than 1, i.e.,
at least two action instances exist in the video. Note that
background instances do not attract each other. Given the
optimal sequences {7} = {(s5, €, zﬁ)}ﬁ;l}il, the pro-
posed feature contrastive loss is formulated as:

1 c N.
Lrea = >o1 [Z 2 > 1] Cheats
Yo 1 [2521 Zp > 1} e=1 [n=1
Y 1 gc: SC IOg ZVO;&n dexp(f’g : fg/T)
feat — = < N. . n = 7 s
t Zi\il Zrcl n=1 ZVm;ﬁn GXp( n fm/T)
@®)
where (f,, is the partial loss for class ¢, T denotes the tem-

perature parameter, and 1 ] denotes the indicator function.
3.4. Joint Training and Inference

The overall training objective of our model is as follows.
AClotal = )\1 Evideo + )\Q»Cpoint + )\S»Cscore + >\4£feat7 (9)

where A, are weighting parameters for balancing the losses,
which are determined empirically.

During the test time, we first threshold on the video score
p"id with # to determine which action categories are to be
localized. Then, only for the remaining classes, we thresh-
old on the segment-level final scores p; with 6°¢ to select
candidate segments. Afterward, consecutive candidates are
merged into a single proposal, which becomes a localiza-
tion result. We set the confidence of each proposal to its
outer-inner-contrast score, as in [17, 25]. To augment the
proposal pool, we use multiple thresholds for §%°¢ and per-
form non-maximum suppression (NMS) to remove overlap-
ping proposals. Note that the optimal sequence search is not
performed at test time, so does not affect the inference time.
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Supervision Method mAP@IoU (%) AVG AVG
’ 0.1 02 03 04 05 06 07 | (0.1:0.5 (0.3:0.7)
BMN [22] - - 56.0 474 38.8 29.7 205 - 38.5
Frame-level P-GCN [57] 69.5 67.8 63.6 57.8 49.1 - - 61.6 -
(Full) G-TAD [51] - - 545 47.6 402 30.8 234 - 39.3
BC-GNN [1] - - 57.1 49.1 404 312 23.1 - 40.2
Zhao et al. [61] - - 53.9 50.7 454 38.0 285 - 43.3
Lee et al. [18] 67.5 612 523 434 337 229 121 51.6 329
Video-level CoLA [59] 66.2 59.5 515 419 322 220 13.1 50.3 32.1
(Weak) AUMN [29] 66.2 619 549 444 333 205 9.0 52.1 324
TS-PCA [26] 67.6 61.1 534 434 343 247 13.7 52.0 33.9
UGCT [54] 69.2 629 555 465 359 238 114 54.0 34.6
SF-Net [31] 71.0 634 532 40.7 293 184 9.6 51.5 30.2
Juetalt[13] 72.8 649 58.1 464 345 218 119 55.3 34.5
. Ours! 751 70.5 633 552 439 333 208 61.6 43.3
Point-level
(Weak) Moltisanti et al.¥ [35] | 243 19.9 159 125 9.0 - - 16.3 -
SF-Net! [31] 68.3 623 528 422 305 206 12.0 51.2 31.6
Tuetalt [13] 723 647 582 47.1 359 23.0 12.8 55.6 354
Ours? 757 714 64.6 565 453 345 218 62.7 44.5

Table 1: State-of-the-art comparison on THUMOS’ 14. We also include the methods under video-level and frame-level super-
vision for reference. The average mAPs are computed under the IoU thresholds 0.1:0.5 and 0.3:0.7 with the step size of 0.1.

While { indicates the use of manually annotated labels from [

4. Experiments
4.1. Experimental Settings

Datasets. THUMOS 14 [12] is of 20 action classes with
200 and 213 untrimmed videos for validation and test, re-
spectively. It is known to be challenging due to the diverse
length and the frequent occurrence of action instances. Fol-
lowing the convention [37], we use the validation videos
for training and test videos for test. GTEA [19] contains 28
videos of 7 fine-grained daily actions in the kitchen, among
which 21 and 7 videos are utilized for training and test, re-
spectively. BEOID [6] has 58 videos with a total of 30 ac-
tion categories. We follow the data split provided by [31].
ActivityNet [2] is a large-scale dataset with two versions.
The version 1.3 includes 10,024 training, 4,926 validation,
and 5,044 test videos with 200 action classes. The version
1.2 consists of 4,819 training, 2,383 validation, and 2,480
test videos with 100 categories. We evaluate our model on
the validation sets for both versions. It should be noted that
our model takes only point-level annotations for training.

Evaluation metrics. Following the standard protocol of
temporal action localization, we compute mean average pre-
cisions (mAPs) under several different levels of intersec-
tion over union (IoU) thresholds. We note that performances
at small IoU thresholds demonstrate the ability in finding
actions, while those under high IoU thresholds exhibit the
completeness of action predictions.

Implementation details. We employ the two-stream 13D
networks [3] pre-trained on Kinetics-400 [3] as our feature

], 1 denotes the use of labels automatically generated in [35].

extractor, which is not fine-tuned in our experiments for fair
comparison. To obtain optical flow maps, we use TV-L1 al-
gorithm [47]. Each video is split into 16-frame segments,
which are taken as inputs by the feature extractor resulting
in 1024-dim features for each modality (i.e., D = 2048).
We use the original number of segments as 1" without sam-
pling. Our model is optimized by Adam [15] with the learn-
ing rate of 10~* and the batch size of 16. Hyper-parameters
are determined by grid search: v = 0.95, 7 = 0.1. The
video-level threshold 6" is set to 0.5, while the segment-
level threshold 6°°¢ spans from O to 0.25 with a step size of
0.05. The NMS is performed with the threshold of 0.6.

4.2. Comparison with State-of-the-art Methods

In Table 1, we compare our method with state-of-the-
art models under different levels of supervision on THU-
MOS’14. We note that fully-supervised models require
far more expensive annotation costs compared to weakly-
supervised counterparts. In the comparison, our model sig-
nificantly outperforms the state-of-the-art point-supervised
approaches. We also notice the large performance margins
at high IoU thresholds, e.g., ~11% in mAP@0.6 and ~9%
in mAP@Q.7. This confirms that the proposed method aids
in locating the complete action instances. At the same time,
our model largely surpasses the video-supervised methods
with the comparable labeling cost. Further, our model even
performs favorably against the fully-supervised methods in
terms of average mAPs at the much lower annotation cost.
It is, however, also shown that ours lags behind them at high
IoU thresholds, due to the lack of boundary information.
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mAP@IoU (%)

01 03 05 07 AVG

Dataset ‘ Method ‘

SF-Net [31] | 58.0 379 193 119 | 31.0
SF-Net* [31] | 529 37.6 21.7 13.7 | 31.1
GTEA Juetal [13] | 59.7 383 219 18.1 | 33.7

Lietal [20] | 60.2 447 288 122 | 364
Ours 63.9 557 339 208 | 435

SE-Net[31] | 62.9 40.6 167 3.5 | 30.9
SE-Net* [31] | 64.6 422 273 122 365
BEOID |Jueral[13] | 632 468 209 58 | 349

Lietal. [20] | 715 403 203 55 | 344
Ours 769 614 427 251 | 518

Table 2: State-of-the-art comparison on GTEA and BEOID.
AVG denotes the average mAP at the thresholds 0.1:0.1:0.7.
* denotes the reproduced results by official implementation.

mAP@IoU (%)

Supervision Method 05 075 095 AVG
Frame-level | SSN [62] | 413 270 6.1 | 266

Leeetal [18] | 412 256 6.0 | 259
Video-level AUMN [29] 420 250 5.6 | 255

UGCT [54] 418 253 59 | 258
CoLA [59] 4277 257 5.8 | 26.1

SF-Net [31] 37.8 - - 22.8
Ours 44.0 26.0 59 | 268

Point-level

Table 3: State-of-the-art comparison on ActivityNet 1.2.
AVG is the averaged mAP at the thresholds 0.5:0.05:0.95.

We provide the experimental results on GTEA and
BEOID benchmarks in Table 2. On the both datasets, our
method beats the existing state-of-the-art methods with a
large gap. Notably, our method shows significant perfor-
mance boosts under the high thresholds of 0.5 and 0.7, ver-
ifying the efficacy of the proposed completeness learning.

Table 3 and Table 4 summarize the results on Activ-
ityNet. Our model shows the superior performances over
all the existing weakly-supervised approaches on both ver-
sions. It can be also observed that the performance gains
upon video-level labels are relatively small compared to
THUMOS’ 14, which we conjecture is due to the far less
frequent action instances (1.5 vs. 15 instances per video).

4.3. Analysis

Effect of each component. In Table 5, we conduct ablation
study to investigate the contribution of each component.
The upper section reports the baseline performances, from
which we observe a large score gain brought by the point-
level supervision, especially under low IoU thresholds. It
mainly comes from the background modeling [17, 18, 38]
and the help of point annotations in spotting action in-
stances. On the other hand, the lower section demonstrates
the results of the proposed method, where completeness
guidance is provided for the model. We observe the abso-
lute average mAP gains of 4.7% and 1.7% from the pro-

mAP@IoU (%)

05 075 095 AVG

Supervision Method

BMN [22] 50.1 348 83 | 339
P-GCN [57] 483 332 3.3 | 31.1
Frame-level | G-TAD [51] 504 346 9.0 | 34.1
BC-GNN [1] 50.6 348 94 | 342
Zhaoetal [61] | 43.5 339 9.2 | 30.1

Lee et al. [18] 37.0 239 5.7 | 237
Video-level | AUMN [29] 383 235 52 | 235
TS-PCA [54] 374 235 59 | 237

Point-level | Ours | 404 246 57 | 251

Table 4: State-of-the-art comparison on ActivityNet 1.3.
AVG is the averaged mAP at the thresholds 0.5:0.05:0.95.

mAP@IoU (%)

0.1 03 05 07 ‘ AVG

Liiceo  Lpoint  Lscore  Lieat

4 X X X 1519 371 203 6.0 | 287
v 4 X X | 707 581 407 16.1 | 473
4 4 4 X | 751 644 445 200 | 52.0
v/ 4 X v | 721 605 421 179 | 49.0
4 4 4 v | 757 64.6 453 218 | 52.8

Table 5: Ablation study on THUMOS’ 14. AVG represents
the average mAP at the IoU thresholds 0.1:0.1:0.7.

Sequence mAP@IoU (%)

Scoring method ‘ accuracy ‘ 0.1 03 05 07 ‘ AVG

Baseline | N/A | 707 581 407 161 | 473
(a) Inner scores 74.0 747 614 409 152 | 49.0
(b) Contrast-act 80.1 743 633 43.6 19.5| 50.8
(c) Contrast-both 83.9 7577 64.6 453 21.8 | 528

Table 6: Comparison of different scoring methods for op-
timal sequence search on THUMOS’14. AVG denotes the
average mAP at the IoU thresholds 0.1:0.1:0.7.

posed contrastive losses regarding score and feature similar-
ity, respectively. Moreover, with the two losses combined,
the performance is further boosted to 52.8%. This clearly
shows that the proposed two losses are complementary and
beneficial for precise action localization. Notably, the scores
at high IoU thresholds are largely improved, verifying the
efficacy of our completeness learning.

Comparison of different scoring methods. In Table 6,
we compare different sequence scoring methods regarding
frame-level accuracy of optimal sequences in the training
set as well as localization performances in the test set of
THUMOS’14. Specifically, we investigate three variants:
(a) inner scores and (b) score contrast of action instances,
and (c) contrast of both action and background ones. As a
result, compared to inner scores, the contrast methods gen-
erate more accurate optimal sequences and bring larger per-
formance gains at high IoU thresholds. Moreover, we ob-
serve that incorporating background instances for score cal-
culation helps to find highly accurate optimal sequences,
thereby improving the localization performance at test time.
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Figure 4: Qualitative comparison with SF-Net [31] on THUMOS’ 14. We provide two examples with different action classes:
(1) CleanAndJerk and (2) SoccerPenalty. For each video, we present final scores and detection results from SF-Net and our
model as well as ground truth action interval. The detection threshold is set to 0.2 for our method and set to the mean score
for SF-Net following the original paper. The red boxes indicate the frames that are misclassified by SF-Net but detected by
our method. Note that all of our detection results show high IoUs (> 0.6) with the ground-truths.

Sequence mAP@IoU (%)

Method Distribution accuracy 03 05 07 AVG
Manual N/A 533 288 9.7 | 406

SF-Net [31] Uniform N/A 52.0 302 11.8 | 405
Gaussian N/A 474 262 9.1 36.7

Manual N/A 58.1 345 119 | 443

Juetal [13] Uniform N/A 55.6 323 123 | 429
Gaussian N/A 582 359 128 | 448

Manual 83.7 633 439 208 | 51.7

Ours Uniform 76.6 60.4 42.6 202 | 493
Gaussian 83.9 64.6 453 21.8 | 52.8

Table 7: Comparison of the point-level labels from differ-
ent distributions on THUMOS’14. AVG denotes the aver-
age mAP at the IoU thresholds 0.1:0.1:0.7.

Comparison of different label distributions. In Table 7,
we explore different label distributions. “Manual” indicates
the use of human annotations from [3 1], whereas the others
denote the simulated labels from the corresponding distribu-
tions. It is shown that our method significantly outperforms
the existing methods regardless of the distribution choice,
showing its robustness. We also observe that our method
performs slightly worse in “Uniform” compared to the other
distributions. We conjecture this is because less discrimina-
tive points have more chances to be annotated. Their neigh-
bors are likely to have lower confidence, probably leading
to sub-optimal sequences by the greedy algorithm. Indeed,
the optimal sequence accuracy is shown to be the lowest in
the uniform distribution, which supports our claim.

4.4. Qualitative Comparison

We present qualitative comparisons with SF-Net [31] in
Fig. 4. It can be clearly noticed that our method locates the
action instances more precisely. Specifically, in the left ex-
ample, SF-Net produces fragmentary predictions with false
negatives, whereas our method detects the complete action
instances without splitting them. In the right sample, while

SF-Net overestimates the action instances with false posi-
tives, our method produces precise detection results by con-
trasting action frames from background ones well. The red
boxes highlight the false negatives and false positives of SF-
Net in the left and right examples, respectively. We note that
all the predictions of our model in both examples have high
IoUs larger than 0.6 with the corresponding ground-truth
instances, validating the effectiveness of our completeness
learning. Comparisons on other benchmarks and more visu-
alization results can be found in Sec. C of the appendix.

5. Conclusion

In this paper, we presented a new framework for point-
supervised temporal action localization, where dense se-
quences provide completeness guidance to the model. Con-
cretely, we find the optimal sequence consistent with point
labels based on the completeness score, which is efficiently
implemented with a greedy algorithm. To learn complete-
ness from the obtained sequence, we introduced two novel
losses which encourage contrast between action and back-
ground instances regarding action score and feature simi-
larity, respectively. Experiments validated that the optimal
sequences are accurate and the proposed losses indeed help
to detect complete action instances. Moreover, our model
achieves a new state-of-the-art with a large gap on four
benchmarks. Notably, it even outperforms fully-supervised
methods on average despite the lower supervision level.
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