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Abstract

Most supervised image segmentation methods require
delicate and time-consuming pixel-level labeling of build-
ing or objects, especially for small objects. In this paper,
we present a weakly supervised segmentation network for
aerial/satellite images, separately considering small and
large objects. First, we propose a simple point labeling
method for small objects, while large objects are fully la-
beled. Then, we present a segmentation network trained
with a small object mask to separate small and large objects
in the loss function. During training, we employ a memory
bank to cope with the limited number of point labels. Ex-
periments results with three public datasets demonstrate the
feasibility of our approach.

1. Introduction
Recently, a variety of image segmentation methods

based on deep learning have shown remarkable perfor-
mance. However, most of them require vast amounts of
pixel-level labels, which are quite expensive [3, 6, 29]. Fur-
ther, labeling of small objects requires more attention than
that of larger objects. As in MS COCO [17], some eval-
uation criteria of object segmentation consider the size of
objects(small/medium/large). In this paper, we focus on the
segmentation of objects or buildings, especially for small
objects given their weak labels that do not require precise
labeling.

One of the popular methods for labeling an object is
based on manual contour following, or drawing of a tight
polygon by placing multiple points around the object [12].
The pixels enclosed by the contour or polygon are labeled
as objects. This manual labeling seems doable for a large
object. But, for a small object, it results in larger portion
of mislabeled pixels than that of a large object. The precise
labeling of a small object requires time-consuming delicate
effort.

Detection result of small objects is not usually satisfac-
tory compared with that of large ones, probably due to in-
sufficient labels for small objects. However, detection of

Figure 1. Point labeling of a small object. (a) Input image. (b) Full
labels for both a small and a large object. (c) Point labels for the
small object and a full label for the large object. In the gray circle
which indicates unknown region, a small object point is shown in
white, and its corresponding background point is shown in black.

small buildings could be useful to some specific tasks. For
example, considering a task of locating the position of an
input satellite/aerial image when its position information
is not available, the spatial relationship between detected
small and large buildings can give useful clues to its posi-
tion. In this paper, we propose a new easier point labeling
scheme for small objects as well as a segmentation network
which can be trained by using the point labels for small ob-
jects and traditional contour labels for large objects.

Instead of trying to accurately label the contour of a
small object, we label it using two points inside and out-
side the small object, respectively, as shown in Figure 1.
Although the point label is less informative than the full la-
bel, the point labeling work requires less delicacy than the
full label, reducing the annotation time as mentioned in [2].
Instead of clicking precisely on the corner points of the ob-
ject, you can roughly click on arbitrary points inside and
outside the object. In this paper, an object is called as small
object if its area is smaller than the small object threshold
Ts. Otherwise, it is treated as a large object. It is noted that
a regular contour-based labeling is used for large objects. It
is motivated by the map data in which a building is simply
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Figure 2. Point labeling of small objects. (a) Input image. (b) Full label for all objects. Object labels are shown in white, and background
is shown in black. (c) Point labels in white for small objects with the corresponding black background points and gray unknown region.
(d) Small object masked region Ms in gray contains unknown region, small object points and corresponding background points. (e) The
region other than Ms is denoted as Mr in light grey.

labeled as a point without full labels, especially for small,
school, or church buildings, and the point label is intended
to indicate its location rather than its exact shape.

Contrary to existing segmentation methods employing a
single same type of labels such as contours and scribbles,
we use both point labels for small objects and full labels for
large objects. Thus, it is important to properly process the
different types of labels. As shown in Figure 1, large objects
with full labels and small objects with white point labels are
labeled as foreground. Labeling the remainder area as back-
ground results in mislabeling of small objects except their
labeled small object points, whereas labeling it as unknown
results in lack of information about background. Consider-
ing these, we propose a small object mask as illustrated in
Figure 2.

In the case of pixel-level loss of semantic segmentation
rather than object-level loss of instance segmentation, if we
don’t consider the size of an object during training, it can
cause a bias in favor of large objects because the total area
for small objects is usually much less than that of large ob-
jects. In other words, considering the point-wise loss and its
average over whole points, small objects occupy small por-
tion in the loss function compared to large object. Several
methods attempted to give weights to small objects accord-
ing to class [5, 14]. In particular, Jakub et al. [4] consider
the size weight of an object during building detection of an
aerial image. But, for our small-point label and large-full
label dataset, it did not work well because the simple ad-
dition of weights caused circular artifact around the small
object prediction. To extract information from small objects
as much as possible and incorporate it into a network during
training, there is a need for enabling the network to accumu-
latively remember the features of small object points from
previous training iterations.

In this paper, we propose a weakly supervised segmen-
tation network, assuming that small and large object labels
are given as points and contours, respectively. Our proposed
network employs the sampling of uncertain points and false
positive small object points as well as a memory bank. We

adopt a method of sampling points and classifying them,
which can be applied to both point and full labels. We em-
ploy separate losses of small and large objects using a small
object mask shown in Figure 2. In the small object masked
region Ms containing only point labels, a memory bank
is used to compensate for the insufficient information pro-
vided by the limited number of point labels. Additionally,
to learn the contours of small objects, the image gradient is
matched to the prediction gradient during training. In the
remainder region Mr, the points are sampled by focusing
on false positive small object points and uncertain predic-
tion points. Our approach increases small object detection
performance at the expense of slight decrease in large object
detection performance.

Our contribution is as follows. First, we propose an eas-
ier labeling method for small objects. Second, to cope with
the problem that model ignore small objects during training,
we sample uncertain points and false positive small object
points and consider small and large objects separately in
the loss function. Third, to cope with the limited number
of point labels, our network remembers and updates feature
vectors of small object points based on a memory bank dur-
ing training.

2. Related work
Weakly supervised segmentation means the methods

to train segmentation networks by using the labels such as
scribble, point and image-tag. Mai et al. [18] learn their seg-
mentation network using image-tag labels. One of the point
labeling methods [2] uses objectness prior [1] to alleviate
local minima, where only the point portion of the target ob-
ject is predicted as foreground class. In instance segmenta-
tion, point labels are used for object localization [16]. Wang
et al. [28] adopt a point labeling for remote sensing imagery.
ScribbleNet [30] is trained by scribble labels. To learn the
contour of an object, it reflects the edge information in an
image when computing the gradient of its prediction. These
method uses a label-based loss only on point labels. For the
rest of the regions, it utilizes pseudo-labels or loss function
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Figure 3. Overall architecture. In the small object masked region Ms, feature vectors are trained by utilizing a memory bank. Feature
vectors and labels of the small object points and corresponding background points are feed to the memory bank, and updated with similarity
score. In the remainder region Mr , we sample uncertain points using the entropy of class prediction probability. And, we sample false
positive small objects using false positive score, which is defined by binary cross entropy of small object vs all other classes. The D-
dimension point feature vectors from the point samples and the memory bank are input to the prediction head, which consists of three
point-wise convolutional layers and outputs C-class prediction.

without labels. In this paper, labeled data is refined using a
memory and point sampling.

Point feature refers D-dimensional feature vectors cal-
culated from point sets, or sampled from the image feature
map with H×W×D. Qui et al. [22] uses it for the semantic
segmentation of point cloud data. Among the image seg-
mentation methods, PointRend [15] samples point features
as input to the multi-layer perceptron.

Memory bank is used for storing and reading features
without updating stored data. For image synthesis, the style
of a scene and object can be synthesized differently using
a style code bank [26]. Class-specific real patches can be
stored to compare real and generated images patch [27].
The memory bank can also be used for video segmenta-
tion [23], by storing feature maps and segmentation labels
to train a sub-network. MoCo [10] uses a queue-based
memory bank for self-supervised learning, and current data
and old data as input to different encoders, having feature
of stored data different from feature of current data. In con-
trast, we update stored feature similar to current feature.

Memory network usually reads and writes its item ac-
cording to the similarity score [21, 25, 32]. They use the
weighted sum of input and similarity score, and apply non-
linear functions afterwards. But some of the memory net-
works are similar to long short-term memory (LSTM) [7,

31] with trainable weights. Gong et al. [8] read a memory
item according to the similarity score, but the memory itself
is updated by minimizing the entropy of the score.

3. Our approach

In this section, we present our approach on the segmen-
tation of objects, especially for small objects. As stated be-
fore, we assume that we are given point labels for small
objects and full labels for large objects. First, we describe
the small object mask which is used to separate small and
large objects in the loss function (Section 3.1). And we de-
scribe how to strengthen the training of small objects by
using point sampling (Section 3.2). We build a memory
bank of feature vectors by sampling of labeled small object
points (Section 3.3), and sample false positive small object
points using false positive scores (Section 3.4). The total
loss is shown in Section 3.5. Figure 3 shows the overall
architecture of the proposed network.

3.1. Small object mask

For segmentation of an image, we use a loss for a whole
image as follows:

L =

∑
i L

i

N
, (1)
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Figure 4. Memory bank update. We select all small object points and corresponding background points from small object masked region
Ms. The update process consists of writing and replacing, which are performed separately for objects and background. For writing, all
input point features with ground truth labels are queried to memory bank, and the memory bank items are updated by similarity scores.
For replacing, NK -oldest items are replaced with the random input points features. All items stored in memory bank are used for loss
calculation.

where N is the total number of pixel points, and Li is the
loss from the i-th point. Alternatively, a set of sampled
points can be considered as follows:

L =

∑
i∈R Li

NR
, (2)

where R and NR denote a set of all points in the sampled
region and its cardinality, respectively. Note that we can use
multiple R, which makes it possible to consider each region
differently in the loss function.

L =

∑
i∈R1

Li

NR1

+

∑
i∈R2

Li

NR2

+ . . . +

∑
i∈Rr

Li

NRr

. (3)

As stated in introduction, to appropriately balance the
background and unknown, we separate the regions of small
and large objects. Thus, for each small object, we con-
sider a circled region centered at a point inside the small
object. The union of all circles forms a small object mask
Ms. Also, since we have a full label for the large object, the
pixels corresponding to the large object is excluded from
Ms. A remainder region Mr is defined as the whole im-
age pixels excluding Ms. Ms or Mr correspond to R in
equation (3). The small object mask Ms and the remainder
region Mr are shown in Figure 2.

3.2. Point sampling

If the class probability entropy of the i-th point is high,
this point can be seen as a uncertain point. PointRend [15]
selects uncertain point samples during training, instead of
using whole points. But it can omit points corresponding to
small objects because it samples points sparsely, which af-
fect detection performance on small objects. To overcome
this weakness, we sample points of labeled small objects in
Ms, and points predicted as small objects in Mr. The typ-
ical portions of uncertain points, points predicted as small

objects, and points of labeled small objects are 50%, 25%
and 25%, respectively.

By considering all point labels in Ms, all true small ob-
ject points and their corresponding background points can
be selected. However, the use of all points is not enough
because the number of point labels in small objects is in-
sufficient. Existing methods use larger weights to solve this
problem [4, 5, 14]. In other words, they sample the same
point repeatedly. Thus, it would be better to remember and
correlate feature vectors of the limited number of true small
object points we have seen during training. It is described
in Section 3.3.

Contrary to small object points in Ms, the large number
of points with labeled large objects is available in Mr. In
this case, we sample only a portion, which includes uncer-
tain points. Since all points in Mr do not have ground truth
label of small object class, we select or sample false pos-
itive small object points. However, if we use two classes
of object and background rather three classes of small ob-
ject, large object and background used in this paper, the
process of sampling can be time-consuming because of the
difficulty of sampling false positive points. It is described
in Section 3.4.

3.3. Labeled small object point samples

The problem due to the small number of point labels for
small objects is alleviated by using a memory bank shown
in Figure 4. We would like to fully utilize data we have
seen during training, and we construct a module for stor-
ing features of previous inputs. For this purpose, we utilize
the queue-based memory bank proposed in MoCo [10]. We
modified the memory bank in the form of a NB×D matrix,
storing the NB number of D dimensional feature vectors.
In MoCo, the memory bank is used for negative data sam-
pling in terms of contrastive learning, with its slowly up-
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Figure 5. False positive small object samples with/without labeled
small objects. (a) Input image. (b) Ground truth full labels for
all objects. Large objects are shown in green, small objects are
shown in red. (c) Ground truth point labels for small objects and
full labels for large objects. Unknown region is shown in gray
and the background points are shown in blue. (d) Prediction result
during training. (e) 1024 yellow uncertain point samples obtained
by using PointRend [15]. (f) 512 yellow uncertain point samples
and 512 orange false positive small object point samples.

dated sub-network. However, because we use the memory
bank for the diversity of labeled small object point samples,
we need to consider the update of memory data features
that are consistent with current mini-batch features from the
latest-updated network.

We update the memory bank through two steps of writ-
ing and replacing. The writing step is building items in the
bank using the weighted sum of the input query data, and
the replacing step is replacing the oldest Nk items with ran-
dom samples from the input query data. The queries for
the memory bank consist of the features of small object
points and corresponding background points. The num-
ber of query features NQ are varied according to number
of small objects in the image.

The query features qcj (j=1,...,NQ) are written into the
memory items pci (i=1,...,NB) using the equation:

pci ← gip
c
i + (1− gi)

∑
j

vi,jq
c
j (4)

where gi is a parameter to control the gating value of writ-
ing. The similarity scores vci,j between the query features
and memory items are calculated as follows:

vi,j = softmax
j

(pci · qcj) (5)

which are summed to 1 over the query dimension j. Note
that the query features and memory items are L2 normal-
ized.

The read policy of memory bank is different from those
used in memory networks [7, 8, 21, 25, 31, 32]. While the
memory network selectively reads memory based on the
similarity or trained weight, we take all NB items during
training in order to prevent the memory bank from retriev-
ing only similar features to the query features. Because
the purpose of memory bank is retaining various features
as much as possible, all items including dissimilar items
should be read.

There are also various strategies for determining gi. For
the memory network with trainable weights [7, 31], they
also learn the gating value gi. But for the memory net-
work using the similarity scores as weights [21, 25, 32],
gi is set to constant. Our memory bank can be seen as the
similarity-based memory network in terms of write policy.
But it would be better to use the gating values, gi, which are
determined by the queries and bank items.

Suppose there are multiple clusters for query features.
If a bank item is far from all query features, the similarity
scores are similar. The bank item is updated with the av-
erage value of all the queries with different clusters, which
can be a non-interesting feature. It means that it is better not
to trust the weighted sum

∑
j vi,jq

c
j . In this case, gi should

be high. On the other hand, if an item is close to a certain
query cluster, the similarity score for the query will be high.
Then the weighted sum of queries can represent the query
cluster, and it is good to trust the weighted sum, making the
value of gi low.

So, we set the entropy of similarity score to gi. If the dis-
tribution of the scores is uniform, the entropy will be high.
Conversely, if only certain score values are high, the en-
tropy will be low. It implies that the entropy satisfies the
properties needed for gi. As a result, gi is set to the entropy
of similarity score:

gi = −
∑

j vi,j log vi,j

logNB
, (6)

where the entropy of similarity score is normalized to 1 us-
ing the entropy of the uniform distribution.

We maintain two different memory banks for small ob-
ject points and their corresponding background points, and
process them separately. For small object points, we denote
the query features as qsj and memory items as psi . For back-
ground points, we denote the query features as qbj and mem-

7410



ory items as pbi . Note that the memory bank is used only in
training process because it only affects the loss calculation.

3.4. False positive small object point samples

As described earlier, if we use two classes of objects and
background, sampling of false positive small objects be-
comes time-consuming because we need to identify small
objects from the class probability map. In other words, we
need to binarize the probability map into object class and
background class, check the area of each predicted instance,
compare it with its ground truth, select prediction-ground
truth pairs with maximum intersection-over-union (IoU).
Finally, we select the predicted instance without matched
ground truth instance. Note that this instance is false posi-
tive small object.

But we found that the false positive small object points
can be obtained easily by predicting three classes of small
object, large object and background. When we find false
positive small object points, large object class and back-
ground class are combined as non-small object class. We
calculate the false positive score with its ground truth value
using binary cross entropy of small object class and non-
small object class, and then NS number of points with high
false positive scores are selected.

As proposed in [9], detection of small and large objects
can be trained in separate branches and combined later.
They define different classes for small and large objects in
ground-truth level, but not in prediction level. The sum of
the probability of the small objects, large objects and back-
ground can be larger than 1. It requires the time-consuming
prediction fusion process, which lead to time-consuming
point sampling process. So instead of following the multi
branch method in [9], we decided to use a single branch
multi class approach for small objects and large objects,
as shown in Figure 5. Large objects are shown in green
whereas small objects are presented in red. Yellow uncer-
tain points and orange false positive small object points are
also shown in Figure 5. While the points in the uncertain
samples [15] do not capture false positive small objects, our
method captures false positive small object points well.

3.5. Loss function

Considering the small object masked region Ms and the
remainder region Mr, the total loss function can be ex-
pressed as follows:

L = Ls + Lr. (7)

The loss Ls for Ms is:

Ls =

∑
i∈IB

Li
ce

NB
+

∑
i∈Ms

(Li
e + Li

b)

Area(Ms)
, (8)

where IB is a set of indices of the memory bank, Lce is the
cross entropy for the point samples from the memory bank.

To precisely predict the regions or contours of small objects,
we use the edge detection loss Le and the smoothness loss
Lb, as in ScribbleNet [30].

The loss Lr for Mr is:

Lr =

∑
i∈RS

Li
ce

NS
+

∑
i∈RU

Li
ce

NU
, (9)

where we use the cross entropy of point samples obtained
using the prediction uncertainty and the false positive score.
The sampling locations and the number of the uncertain
points are denoted as RU and NU , respectively, and the
sample locations and the number of false positive small ob-
ject points are denoted as RS and NS , respectively.

Segmentation can be seen as point-wise object detection.
As suggested by PointRend [15], the uncertain point sam-
pling can replace the use of whole points in training. If it
is used without separation of small objects and large ob-
jects, it can miss the point predicted as a small object, thus
causing false positive small object to be also missed, result-
ing in over-detection of small objects. Our proposed false
positive small object point sampling and proposed memory
bank for labeled small object point sample can solve this
weakness of PointRend. The uncertain point sampling is
the only supervision for labeled large object, which is the
same as PointRend.

4. Experimental results

In this section, we first explain three public datasets
used in our experiments: CrowdAI Mapping Challenge
dataset [20], WHU building dataset [13] and Massachusetts
buildings dataset [19]. Second, we describe a point labeling
process for a given dataset. Finally, we present our experi-
mental results. Implementation details and ablation studies
(about point sampling rules, memory bank, network archi-
tecture, small object prediction method and the various val-
ues of NK and r) are given in the supplementary material.

4.1. Dataset

We experiment with CrowdAI Mapping Challenge
dataset [20] providing satellite images and labels for several
small and large objects or buildings. The size of original im-
ages is 300×300, and the images are resized to 256×256.
The number of training images is 280,741, and the number
of validation images is 60,317. All objects are fully labeled.

The threshold for small objects Ts is set to 196 which
was used to evaluate the detection of small and large ob-
jects separately in [4]. It might be possible to set the thresh-
old adaptively if an object size histogram is available. But
knowing the object size histogram means we have fully la-
beled objects, implying we don’t need a point dataset. Thus,
the threshold is set to a fixed value for all experiments.
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Method Small P Large P All P Small R Large R All R All F-1
ScribbleNet [30] 0.0020 0.5650 0.4758 0.0074 0.6221 0.5041 0.4895
RU+wsize [4] 0.2593 0.9145 0.7941 0.3251 0.9338 0.8169 0.8053
Ours-I 0.3132 0.9188 0.8143 0.4551 0.9379 0.8452 0.8295
Ours-P-U 0.2702 0.8933 0.8111 0.6068 0.9124 0.8537 0.8319
Ours-P-USB 0.3607 0.9025 0.8310 0.6161 0.9286 0.8686 0.8494

Table 1. Main results. Average precision and recall for small objects, large objects, and all objects are reported. All F-1, average F-1
score for all objects are calculated by harmonic average of All P and All R. The original ScribbleNet [30] shows poor result because of
the shallow back-bone network. We use ResNet-101 U-net for back-bone network. Addition of size weight used in building detection of
an aerial image [4] increases the performance, but small objects are predicted as circular area (RU+wsize). Our method with the whole
image and without point sampling shows better results (Ours-I). Considering uncertainty sampling only [15] increases detection rate, but
also increases false positive rate (Ours-P-U). Our method with new point sampling rules shows better results (Ours-P-USB).

Method Small P Large P All P Small R Large R All R All F-1
RU+wsize [4] (WHU) 0.4495 0.9094 0.8050 0.5503 0.9338 0.8373 0.8208
Ours-P-USB (WHU) 0.4589 0.9318 0.8291 0.6277 0.9512 0.8698 0.8490
RU+wsize [4] (Mass) 0.5256 0.3932 0.4816 0.6185 0.6083 0.6178 0.5413
Ours-P-USB (Mass) 0.5470 0.4956 0.5149 0.6284 0.6633 0.6306 0.5669

Table 2. Experimental results on WHU building dataset [13] and Massachusetts buildings dataset [19].

Figure 6. Imperfect point-labeled image with small radius (r = 7).
(a) Input image. (b) Point label. (c) Full label. (d) Overlap of point
label and full label. There occur 3 types of label change. The first
one (yellow) and the second one (cyan) is changed from small ob-
ject to unknown region and from background to unknown region,
respectively. The third one (magenta) is erroneously changed from
small object to background.

We also experiment with WHU building dataset [13]
and Massachusetts buildings dataset [19]. WHU build-
ing dataset has 4,736 training images and 1,036 test im-
ages. The size of original images is 512×512. The im-
ages are randomly cropped to 300×300 and resized to
256×256. Massachusetts buildings dataset has 137 train-
ing images and 4 test images. The size of original images
is 1500×1500. These images are cropped to 300×300 with
regular interval of 150×150, which results in 11,097 train-
ing images and 324 test images. Cropped images are resized
to 256×256. We use the same threshold Ts = 196.

4.2. Point dataset

To check the performance of our approach for the image
with small-point and large-full labels that we are interested

in, we first explain how human labeling is performed. Re-
ferring to Figure 1 (c) and Figure 2 (c), given the thresh-
old Ts, human annotators visually distinguish small build-
ings approximately using their eyes. Then, they sample one
point randomly inside a small building with a double-click,
and a circle at the sampled point with pre-defined radius is
automatically generated. Then, they sample another point,
inside the circle, which is in the background outside the
small building. This point labeling is much easier than the
full contour labeling.

In our experiments, we generate a simulated point-label
dataset from each of three datasets with full pixel labels as
follows:

1) For a small building which is determined using a
threshold Ts and full labels, one point is randomly selected
from its inside.

2) For the selected small object point, we generate a cir-
cle with a radius r containing the small object.

3) An appropriate background point which is not inside
large buildings is randomly sampled from each of the circle.

4) The pixels corresponding to large objects are excluded
from each circle generated above.

In this way, we can build a ground truth label map which
consists of the regions of large objects, the points and circles
of small objects, and their remainders. These correspond to
large object class, small object class, unknown region and
background class, respectively as shown in Figure 6.

In our implementation, instead of single 1×1-size point,
we use a 3×3-size blob by considering morphological ero-
sion and dilation with a 3×3 mask.

We use the value of r=21 for the radius of the small ob-
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Figure 7. Prediction results of Table 1. (a) Input image. (b) Scrib-
bleNet [30]. (c) RU+wsize [4]. (d) Ours-I. (e) Ours-P-U. (f) Ours-
P-USB. (g) Ground truth.

Figure 8. Prediction results of Table 2. (a) Input image. (b)
RU+wsize. (c) Ours-P-USB. (d) Point label. (e) Full label.

ject mask. As shown in Figure 6, according to the value
of radius r, some portion of a small object and background
are labeled as unknown region. Also, some portion of small
object can be mislabeled as background. Area of the label
change in Figure 6(d) differs according to the value of r, and
our point labeling scheme cannot be performed perfectly.
From the ablation experiment on r, we can see that some
reasonable range of r provides satisfactory performance al-
though smaller values of r yield poor performance. Thus,
there seems to be some degree of freedom in setting r, im-
plying that background points can be selected easily and
thus less time-consuming labeling is possible.

4.3. Main results

Table 1 compares our approach with two existing meth-
ods. ScribbleNet [30] is trained using the contours of large
objects and the points of small objects as foreground scrib-
ble, and the remainder as background scribble. We can see
that ScribbleNet does not work well for hybrid labeling.

We also compare U-net [24] based on ResNet-101 [11]
with the size weight [4] (RU+wsize), which is used in build-
ing detection of aerial images, resulting the significantly im-
proved performance. But it still does not well compared to
our proposed model with whole image and without point
sampling (Ours-I). The region separation used in the pro-

posed model serves to emphasize small objects in the loss
function, similarly to the size weight, and it also refines the
shape of small objects.

The addition of uncertainty sampling (Ours-P-U) in a
way similar to PointRend [15] increases detection rate, but
it is vulnerable to false positive small objects, increasing
the recall of small objects at the expense of decreased pre-
cision. However, our proposed method with new sampling
rules (Ours-P-USB) reduces false positive rates, improving
overall performance. Both the memory bank and the false
positive sampling contribute to performance improvement.
Detailed performance change according to point sampling
rules, network architecture, memory architecture and small
object prediction is shown in the supplementary material
which shows robustness of our method to hyperparameter
change.

We also compared RU+wsize with Ours-P-USB for
WHU building dataset [13] and Massachusetts buildings
dataset [19] in Table 2 and Figure 8, respectively. In WHU
building dataset, the size of the small buildings tends to
close to the threshold value, contrary to CrowdAI dataset.
The performance improvement due to the proposed algo-
rithm was similarly reflected into both small and large
buildings because they are similar in size. In Massachusetts
building dataset, there are many densely packed small build-
ings. So the cluster of small buildings can be misrecog-
nized as a large building, which leads to poor performance
on large buildings by the baseline method (RU+wsize).

It is noted that our approach yields performance similar
to existing segmentation methods when it is trained with
fully labeled data without using point labels.

5. Conclusion

We have proposed a weakly supervised segmentation
network for small and large objects. Small buildings are
labeled by using our new simple point labeling process
whereas large buildings are fully labeled like other methods.
We also proposed a small object mask to separate losses of
small objects and large objects. To solve the problem of us-
ing small number of point labels, we use a memory bank to
remember and update feature vectors of small object points
during training, with sampling of uncertain and false posi-
tive data. Experimental results show the effectiveness of our
approach. In future work, we plan to enable point labeling
of large objects with adaptive unknown regions.
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