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Abstract

Metric learning seeks perceptual embeddings where vi-
sually similar instances are close and dissimilar instances
are apart, but learned representations can be sub-optimal
when the distribution of intra-class samples is diverse and
distinct sub-clusters are present. Although theoretically
with optimal assumptions, margin-based losses such as the
triplet loss and margin loss have a diverse family of so-
lutions. We theoretically prove and empirically show that
under reasonable noise assumptions, margin-based losses
tend to project all samples of a class with various modes
onto a single point in the embedding space, resulting in
class collapse that usually renders the space ill-sorted for
classification or retrieval. To address this problem, we pro-
pose a simple modification to the embedding losses such
that each sample selects its nearest same-class counterpart
in a batch as the positive element in the tuple. This allows
for the presence of multiple sub-clusters within each class.
The adaptation can be integrated into a wide range of met-
ric learning losses. Our method demonstrates clear bene-
fits on various fine-grained image retrieval datasets over a
variety of existing losses; qualitative retrieval results show
that samples with similar visual patterns are indeed closer
in the embedding space.

1. Introduction

Metric learning aims to learn an embedding function
to lower dimensional space, in which semantic similar-
ity translates to neighborhood relations in the embedding
space [22]. Deep metric learning approaches achieve
promising results in a large variety of tasks such as face
identification [5, 44, 43], zero-shot learning [9], image re-
trieval [14, 10] and fine-grained recognition [47].

In this work we investigate the family of losses which
optimize for an embedding representation that enforces that
all modes of intra-class appearance variation project to a
single point in embedding space. Learning such an embed-
ding is very challenging when classes have a diverse ap-
pearance. This happens especially in real-world scenarios
where the class consists of multiple modes with diverse vi-

sual appearance. Pushing all these modes to a single point
in the embedding space requires the network to memorize
the relations between the different class modes, which could
reduce the generalization capabilities of the network and re-
sult in sub-par performance.

Recently researchers observed that this phenomena,
where all modes of class appearance “collapse” to the
same center, occurs in case of the classification SoftMax
loss [30]. They proposed a multi-center approach, where
multiple centers for each class are used with the SoftMax
loss to capture the hidden distribution of the data to solve
this issue. In the metric learning field, a positive sampling
method has been proposed [53] with respect to the N-pair
loss [41] in order to relax the constraints on the intra-class
relations. For margin-based losses such as the triplet loss [3]
and margin loss [51], it was believed that they might offer
some relief from class collapsing [47, 51]. From a theo-
retic perspective, we prove that with optimal assumptions
on the hypothesis space and the training procedure, it is in-
deed true that the margin-based losses have a minimal so-
lutions without class collapsing. However, we formulate a
noisy framework and prove that with modest noise assump-
tions on the labels, the margin-based losses yet suffer from
class collapse and the easy positive sampling method pro-
posed in [53] allow more diverse solutions. Adding noise
to the labels allow modelling both the aleatoric and the ap-
proximation uncertainties of the neural network, therefore it
batters represent the training process on real-world datasets
with fixed restricted network architecture.

We complement our theoretical study with an extensive
empirical study, which demonstrates the class-collapsing
phenomena on real-world datasets, and show that the easy
positive sampling method is able to create a more diverse
embedding which results in better generalization perfor-
mances. These findings suggest that the noisy environment
framework better fits the training dynamic of neural net-
works in real-world use cases.
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Figure 1: Given an anchor (circle with dark ring), our approach
samples the closest positive example in the embedding space as
the positive element. This results in pushing the anchor only to-
wards the closest element direction (green arrow), which allows
the embedding to have multiple clusters for each class.

2. Related Work

Sampling methods. Designing a good sampling strat-
egy is a key element in deep metric learning. Researchers
have been proposed sampling methods when sampling both
the negative examples as well as the positive pairs. For neg-
ative samples, studies have focused on sampling hard neg-
atives to make training more efficient [39, 35, 48, 28, 29].
Recently, it has been shown that increasing the negative ex-
amples in training can significantly help unsupervised rep-
resentation learning with contrastive losses [12, 52, 4]. Be-
sides negative examples, methods for sampling hard pos-
itive examples have been developed in classification and
detection tasks [21, 38, 1, 6, 40, 50]. The central idea
is to perform better augmentation to improve the general-
ization in testing [6]. In contrast, Arandjelovic et al. [1],
proposed to perform a positive sampling by assigning the
near instance from the same class as the positive instance.
As the positive training set is highly noisy in their setting,
this method leads to features invariant to different perspec-
tives. Different from this approach, we use this method in a
clean setting, where the purpose is to get the opposite result
of maintaining the inner-class modalities in the embedding
space. Using easy positive sampling has been also proposed
with respect to the N-pair loss [53] in order to relax the
constraints of the loss on the intra-class relations. From a
theoretic perspective, we prove that in a clean setting this
relaxation is redundant for other popular metric losses like
the triplet loss [3] and margin loss [51]. We formulate the
noisy-environment setting and prove that in this case the
triplet and margin losses also suffer from class-collapsing
and using an easy positive sampling method optimizes for
solutions without class-collapsing. We also provide an em-
pirical study that supports the theoretic analysis.

Model uncertainty. There are three types of sources
for uncertainty: epistemic, aleatoric and approximation [&].
The epistemic uncertainty describes the lack of knowledge
of the model, the approximation uncertainty describes the
model limitation to fit the data, and the aleatoric uncertainty
accounts for the stochastic nature of the data. While the

epistemic uncertainty is relevant only in regions of the fea-
ture space where there is a lack of data, both the approx-
imation and the aleatoric uncertainties are relevant also in
regions where there is labelled data. In this work, we model
the approximation and the aleatoric uncertainties, by adding
noise to the labels. This noise can stand for the data stochas-
ticity in the aleatoric uncertainty case, or the results of the
Bayes optimal model within the hypothesis space in case of
the approximation uncertainty. The approximation uncer-
tainty in deep neural networks is considered to be negligible
[7]. However, we prove that even a small amount of noise
results in a degeneration of the family of optimal solutions
in case of the margin-based losses.

Learning with noisy labels is a practical problem when
applied to the real world [36, 27, 37, 33, 16, 17, 23], es-
pecially when training with large-scale data [42]. One line
of work applies a data-driven curriculum learning approach
where the data that are most likely labelled correctly are
used for learning in the beginning, and then harder data is
taken into learning during a later phase [16]. Researchers
have also tried on to apply the loss only on the easiest top
k-elements in the batch, determined by the lowest current
loss [37]. Inspired by these the easy positive sampling
method focuses on selecting only the top easiest positive
relations in the batch.

Beyond memorization. Deep networks are shown to
be extremely easy to memorize and over-fit to the training
data [54, 31, 32]. For example, it is shown the network can
be trained with randomly assigned labels on the ImageNet
data, and obtain 100% training accuracy if augmentations
are not adopted. Moreover, even the CIFAR-10 classifier
performs well in the validation set, it is shown that it does
not really generalize to new collected data which is visually
similar to the training and validation set [31]. In this paper,
we show that when allowing the network the freedom not
to have to learn inner-class relation between different class
modes, we can achieve much better generalization, and the
representation can be applied in a zero-shot setting.

3. Preliminaries

Let X = {x1,..,2,} be a set of samples with labels
y; € {1,..,m}. The objective of metric learning is to learn
an embedding f(-,#) — R*, in which the neighbourhood of
each sample in the embedding space contains samples only
from the same class. One of the common approaches for
metric learning is using embedding losses in which at each
iteration, samples from the same class and samples from
different classes are chosen according to same sampling
heuristic. The objective of the loss is to push away pro-
jections of samples from different classes, and pull closer
projections of samples from a same class. In this section,
we introduce a few popular embedding losses.

Notation: Let z;, z; € X, define: DJ, , = || f(x;) —
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f(z;)| 2. In cases where there is no ambiguity we omit
[ and simply write D, .. . We also define the function
Ouy 0, = Lt g, _.yj. Lastly, for every a € R, denote

’] 0 otherwise
(a)+ = max(a,0).

The Contrastive loss [11] takes tuples of samples em-
beddings. It pushes tuples of samples from different classes
apart and pulls tuples of samples from the same class to-
gether.

‘Cgon(xia xj) = 617:-,56_;’ ‘Dii,mj + (1 75901‘,96_7‘ ) ' (af Df )+

Ti,Tj

Here « is the margin parameter which defines the desired
minimal distance between samples from different classes.

While the Contrastive loss imposes a constraint on a pair
of samples, the Triplet loss [3] functions on a triplet of sam-
ples. Given a triplet x4, zp, z, € X, let

h-f((pa’ Tp, xn) = (Dga,xp - Dip,xn + O[)+
the triplet loss is defined by

‘ctf’l“ip(xa’xp’ Tn) = 0gp,zy - (1= 0240,) - hf(xa,xp, Tn)

The Margin loss [51] aims to exploit the flexibility of
Triplet loss while maintaining the computational efficiency
of the Contrastive loss. This is done by adding a variable
(B for x € X) which determines the boundary between
positive and negative pairs; given an anchor ¢t € X, let

9(z1,22) = (21 — 22 + )4
the loss is defined by
‘Cﬁgr(t’m) = 575@ : g(D{mv Bt) + (1 - 5t7®) : g(ﬁtvDi{,z)

4. Class-collapsing

The contrastive loss objective is to pull all the samples
with the same class to a single point in the embedding space.
We call this the Class-collapsing property. Formally, an
embedding f : X — R™ has the class-collapsing prop-
erty, if there exists a label y and a point p € R™ such that

{f(@)] vi=y}={p}.
4.1. Embedding losses optimal solution

It is easy to see that an embedding function f that mini-
mizes:

1
T2

Ocon(f) Z [’{on(‘r’i"rj)

LE/L',IJ'EX

has the class-collapsing property with respect to all classes.
However, this is not necessarily true for the Triplet loss and
the Margin loss.

For simplification for the rest of this subsection we will
assume there are only two classes. Let A C X be a subset
of elements such that all the elements in A belongs to one
class and all the element in A¢ belong to the other class.

Recall some basic set definitions.

Definition 1. For all sets Y, Z C R™ define:

1. The diameter of Y is defined by:

diam(Y') = sup{ly — 2| |y, 2 € Y'}

2. The distance between Y and Z is:

1Y = Z|| = inf{[ly — 2|l [y € Y,z € Z}

It is easy to see that if f : X — R™ is an embedding,
such that diam(f(A)) < 2-a+ || f(A4) — f(B)||, then:

Otm’p(f) = i

n3

Z E{ﬁp(xi,xj,mk.) =0.

Zi,Tj,TREX

Moreover, fixing 3;, = « for every x; € X, then:

1
Omargin(.fv B) = ) Z l:{rjbgrgin(xiv 'rj) =0.

T, X eX

It can be seen that indeed, the family of embeddings
which induce the global-minimum with respect to the
Triplet loss and the Margin loss, is rich and diverse. How-
ever, as we will prove in the next subsection, this does not
remain true in a noisy environment scenario.

4.2. Noisy environment analysis

For simplicity we will also discuss in this section the bi-
nary case of two labels, however this could be extended eas-
ily to the multi-label case.

The noisy environment scenario can be formulated by
adding uncertainty to the label class. More formally, let
Y = {Y1,..,Y,} be a set of independent binary random
variables. Let A;,..,A; C X, 0.5 < p < 1 such that:
|A;j| = % and

r; € A

p
P(Yi_k)_{ /. 1-p T ¢ Ay

q =37

We can also reformulate § as a binary random variable
such that:

Oy,,y; = lyi=y,

The loss with respect to embedding f is a random vari-
able and the objective is to minimize its expectation
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EE{,.(xi,xj,a:k) = E (Syi,yj . (1 — S}fi7yk))'hf($i,$j,xk)

Therefore, we are searching for an embedding function
which minimize

1
EOuin(f) =— Y. ELL (w2

n3
T, 25, T E€EX

In Appendix A we will prove the following two theorems.

Theorem 1. Let f : X — R™ be an embedding, which
minimize EQ i, (f), then f has the class-collapsing prop-
erty with respect to all classes.

Similarly, we can define:

E‘Cfnar(xi?xj) = ESY;7Y:] ’ (D;{i,xj - ﬂ& + O‘)-‘r

+E(1=dv,v,) (Ba, = DI, + )4

Theorem 2. Let f : OX — R™ be an embedding, which
minimize

1
Eomargin(fa ﬂ) = ﬁ Z E‘C:;Largin ('r’ia 'rj)a

T, X5 eX

then f has the class-collapsing property with respect to all
classes.

In conclusion, although theoretically in clean environ-
ments the Triplet loss and Margin loss should allow more
flexible embedding solutions, this does not remain true
when noise is considered. On a real-world data, where mis-
labeling and ambiguity can be usually be found, the optimal
solution with respect to both these losses becomes degener-
ate.

4.3. Easy Positive Sampling (EPS)

Using standard embedding losses for metric learning can
result in an embedding space in which visually diverse sam-
ples from the same class are all concentrated in a single
location in the embedding space. Since the standard eval-
uation and prediction method for image retrieval tasks are
typically based on properties of the K-nearest neighbours
in the embedding space, the class-collapsing property is
a side-effect which is not necessarily in order to get opti-
mal results. In the next section, we will show experimental
results, which support the assumption that complete class-
collapsing can hurt the generalization capability of the net-
work.

To address the class-collapsing issue we propose a sim-
ple method for sampling, which results in weakening the
objective penalty on the inner-class relations, by applying
the loss only on the closest positive sample. Formally we

define the EPS sampling in the following way; given a mini-
batch with N samples, for each sample a, let C, be the set
of elements from the same class as a in the mini-batch, we
choose the positive sample p, to be

arg min (|Lf() — f(a)ll)

For negative samples n, we can choose according to var-
ious options. In this paper we use the following methods:
(a) Choosing randomly from all the elements which are not
in C,. (b) Using distance sampling [51]. (¢) semi-hard
sampling [35],(d) MS hard-mining sampling [49]. We then
apply the loss on the triplets (a, pq, ng). Using such sam-
pling changes the loss objective such that instead of pulling
all samples in the mini-batch from the same class to be close
to the anchor, it only pulls the closest sample to the anchor
(with respect to the embedding space) in the mini-batch, see
Figure 1.

In Appendix B, we formalize this method in the noisy
environment framework. We prove (Claim 1,2) that every
embedding which has the class collapsing property is not
a minimal solution with respect to both the margin and the
triplet loss with the easy positive sampling. Furthermore,
in Claim 3,4 we prove that the objective of the losses with
EPS on tuples/triplets is to push away every element (in-
cluding positive elements), that is not in the k-closest el-
ements to the anchor, where k is determined by the noise
level p. Therefore, if we apply the EPS method on a mini-
batch which has small number of positive elements from
each modality, in such case adding the EPS to the losses not
only relaxes the constraints on the embedding, allowing the
embedding to have multiple inner-clusters. It also optimizes
the embedding to have this form.

S. Experiments

We test the EPS method on image retrieval and cluster-
ing datasets. We evaluate the image retrieval quality based
on the recall@k metric [15] , and the clustering quality by
using the normalized mutual information score (NMI) [25].
The NMI measures the quality of clustering alignments be-
tween the clusters induced by the ground-truth labels and
clusters induced by applying clustering algorithm on the
embedding space. The common practice to choose the NMI
clusters is by using K-means algorithm on the embedding
space, with K equal to the number of classes. However, this
prevents from the measurement capturing more diverse so-
lutions in which homogeneous clusters appear only when
using larger amount of clusters. Regular NMI prefers so-
lutions with class-collapsing. Therefore, we increase the
number of clusters in the NMI evaluation (denote it by
NMI+) we also report the regular NMI score.
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Figure 2: Embedding examples from the MNIST validation set, after training using only even/odd labels. Different colors indicate different
digits. Left: Using Triplet-loss, class collapsing pushes all intra-class digits to overlapping clusters. Right: With EPS, different digits
form separate clusters. Retrieval or classification using the odd-vs-even task/metric is more effectively implemented using the embedding
on the right, even though the embedding on the left is learned with a loss that more strictly optimizes for the task.

MNIST Train Digits MNIST Test Digits

Triplet Trip+EPS Triplet Trip+EPS
R@1 42.0 65.8 352 42.3
R@5 87.5 93.6 80.9 83.9
R@10 96.6 97.4 93.3 93.6

Table 1: Recall@k evaluated on MNIST dataset. The train
classes are digits 0-5 and the test classes are digits 6-9

5.1. MNIST Even/Odd Example

To demonstrate the class-collapsing phenomena, we take
the MNIST dataset [20], and split the digits according to
odd and even. From a visual perspective this is an arbitrary
separation. We took the first 6 digits for training and left
the remaining 4 digits for testing. We used a simple shallow
architecture which results in an embedding function from
the image space to R? (For implementation details see Ap-
pendix C).

We train the network using the triplet loss. We compare
the EPS method to random sampling of positive examples
(the regular loss). As can be seen in Figure 2, the regular
training without EPS suffers from class-collapsing. Train-
ing with EPS creates a richer embedding in which there is a
clear separation not only between the two-classes, but also
between different digits from the same class. As expected,
the class-collapsing embedding preforms worse on the test
data with the unseen digits, see Table 1.

5.2. Fine-grained Recognition Evaluation

We compare the EPS approach to previous popular sam-
pling methods and losses. The evaluation is conducted on
standard benchmarks for zero-shot learning and image re-
trieval following the common splitting and evaluation prac-

tice [51, 26, 2]. We build our implementation on top of the
framework of [34], which allows us to have a fair compar-
ison between all the tested methods with an embedding of
fix size (128). For more implementation details and consis-
tency of the results, see Appendix C.

5.2.1 Datasets

We evaluate our model on the following datasets.

* Cars-196 [ 18], which contains 16,185 images of 196
car models. We follow the split in [51], using 98
classes for training and 98 classes for testing.

¢ CUB200-2011 [46], which contains 11,788 images of
200 bird species. We also follow [51], using 100
classes for training and 100 for testing.

e Omniglot [ 19], which contains 1623 handwritten char-
acters from 50 alphabet. In our experiments we only
use the alphabets labels during the training process, i.e,
all the characters from the same alphabet has the same
class. We follow the split in [19] using 30 alphabets
for training and 20 for testing.

5.2.2 Architecture details

We use an embedding of size 128, and an input size of
224 x 224 for the first two datasets, and 80 x 80 for the Om-
niglot dataset. For all the experiments we used the original
bounding boxes without cropping around the object box. As
a backbone for the embedding, we use ResNet50 [13] with
pretrained weights on imagenet. The backbone is followed
by a global average pooling and a linear layer which reduces
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model Cars-196 CUB-200
R@1 R@2 R@4 NMI NMI+ | R@l R@2 R@4 NMI  NMI+
Trip. + SH [35] 51.5 63.8 73.5 534 - 42.6 55.0 66.4 55.4 -
Trip. + SHT 76.1 84.4 90.0 65.1 68.5 61.5 73.4 82.5 66.2 68.1
ProxyNCA [26] 732 82.4 86.4 64.9 - 49.2 61.9 67.9 64.9 -
ProxyNCAT 717.1 85.2 91.2 65.6 68.9 63.1 74.8 83.8 67.2 68.7
Dist-Margin [51] 79.6 86.5 91.9 69.1 70.4 63.6 74.4 83.1 69.0 68.7
MS [49] 71.3 85.3 90.5 - - 574 69.8 80.0 - -
mst 81.2 89.1 93.5 60.5 71.1 62.3 733 82.1 59.8 68.0
EPS + Trip. + SH 783 85.9 91.4 59.8 69.8 61.8 73.6 82.4 62.4 68.0
EPS + Dist-Margin | 83.6 89.5 93.6 67.3 724 64.7 75.2 84.3 68.2 69.4
EPS + MS 82.9 89.4 93.2 60.0 72.0 63.3 742 82.5 61.2 68.2

Table 2: Recall@k and NMI performance on Cars196 and CUB200- 2011.

NMI+ indicate the NMI measurement when

using 10 (number of classes) clusters. The EPS method improves in all cases. : Our re-implemented version with the same

embedding dimension.

model Omniglot-letters Omniglot-languages
R@l R@2 R@4 R@8 NMI | R@l R@2 R@4 R@§ | NMI+
Trip. + SH [35] 494 60.0 69.2 76.9 66.2 71.0 80.2 87.6 92.4 38.7
ProxyNCA [26] 49.1 60.4 70.9 78.9 69.0 73.0 82.1 88.8 93.5 433
Dist-Margin [51] 494 61.1 70.1 79.2 68.9 732 82.3 89.1 94.0 435
MS [49] 57.7 68.5 77.3 83.8 69.2 78.8 86.4 92.0 95.4 46.0
EPS + Trip. + SH 68.4 79.3 86.9 92.1 79.6 85.2 91.1 94.9 97.3 52.6
EPS + Dist-Margin | 66.2 76.7 84.8 90.3 77.9 83.0 89.4 93.6 96.4 50.7
EPS + MS 68.7 79.1 86.9 922 77.3 86.2 91.7 94.9 97.2 53.8

Table 3: Recall@k and NMI performance on Omniglot dataset. In both cases the training was done with only language
labels. Right: evaluation on language labels. Left: evaluation on letter labels. NMI+ indicate the NMI measurement when
using 30*(number of classes) clusters. The EPS method improves in both cases.

the dimension to the embedding size. Optimization is per-
formed using Adam with a learning rate of 1075, and the
other parameters set to default values from

5.2.3 Results

We tested the EPS method with 3 different losses:
Triplet [3], Margin [51] and Multi-Similarity (MS) [49].
For the Margin loss experiment, we combine the EPS with
distance sampling [51]; this could be done because the dis-
tance sampling only constrains on the negative samples,
where our method only constrains on the positive samples.
We set the margin o« = 0.2 and initialized § = 1.2 as
in [51]. For the Triplet we combine EPS with semi-hard
sampling [35] by fixing the positive according to EPS and
then using semi-hard sampling for choosing the negative
examples. For the MS loss we replace the positive hard-
mining method with EPS and use the same hard-negative
method. We use the same hyper-paremeters as in [49]
a=2,X=1,5=50.

Results are summarized in Tables 2 and 3. We can see
that EPS achieves the best performances. It is important
to note that in the baseline models, when using Semi-hard
sampling, the sampling strategy was done also on the pos-

itive part as suggest in the original papers. We see that re-
placing the semi-hard positive sampling with easy-positive
sampling, improve results in all the experiments. The im-
provement gain becomes larger as the dataset classes can be
partitioned more naturally to a small number of sub-clusters
which are visually homogeneous. In Cars196 dataset it is
the car viewpoint, where in Omniglot it is the letters in each
language. As can be seen in Table 3, using EPS on the
Omniglot dataset result in creating an embedding in which
in most cases the nearest neighbor in the embedding con-
sists of element of the same letter, although the network was
trained without these labels. In Figure 3 we can see a quali-
tatively comparison of CARS16 models results. EPS seems
to create more homogeneous neighbourhood relationships
with respect to the the viewpoint of the car. More results
and comparisons can be find in Appendix C.

5.2.4 Positive batch size effect

An important hyperparameter in our sampling method is the
number of positive batch samples, from which we select the
closest one in the embedding space to the anchor. If the
class is visually diverse and the number of positive samples
in batch is low, than with high probability the set of all the
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Figure 3: Retrieval results for randomly chosen query images in Cars196 dataset. Using EPS creates more homogeneous

neighbourhood relationships with respect to the car viewpoint.

Omniglot-letter results with trimmed loss
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Figure 4: Recall@1 performance with Trimmed loss across
varying trimming percentage. Except for small improve-
ment in the Distance-margin case, there is no significant
improvement when applying the Trimmed loss.

positive samples will not contain any visually similar image
to the anchor. In case of the Omniglot experiment, the effect
of this hyperparameter is clear; It determines the probability
that the set of positive samples will include a sample from
the same letter as the anchor letter. As can be seen in Figure
5(b), the performance of the model increases as the proba-
bility of having another sample with the same letter as the
anchor increases.

5.2.5 Trimmed Loss comparison

The situation where a class consists of multiple modes can
also be seen as a noisy data scenario with respect to the em-
bedding loss, where positive tuples consisting of examples
from different modes are considered as ‘bad‘ labelling. One
approach to address noisy labels is by back-propagating the
loss only on the k-elements in the batch with the lowest cur-
rent loss [37]. Although this approach resembles [24], the

Language Letters
Semi-hard Semi- Semi-hard Semi-
hard+EPS hard+EPS
NMI 93.6 67.3 78.4 87.1
R@1 99.9 94.5 70.3 71.5
R@2 100 96.8 80.4 86.3
R@4 100 98.1 87.9 92.4
R@3 100 99.2 93.3 96.0

Table 4: Results of semi-hard with/without EPS on the Om-
niglot training dataset. Without EPS the network feet almost
perfectly to the training set. However, using EPS results in
batter performances on the letters fine-grained task.

difference is that in [24] they apply the trimming only on
the positive tuples. We test the effect of using Trimmed
Loss on random sampled triplets with different level of trim-
ming percentage. As can be seen in Figure 4, there is only
a minor improvement when applying the loss on top of the
distance-margin loss on the Omniglot-letters dataset. This
emphasizes the importance of constraining the trimming to
the positive sampling only.

5.2.6 Embedding behavior on training sets

The class-collapsing phenomena also occur in the training
process of the image retrieval datasets. Figure 6 visualise
the t-SNE embedding [45] of Cars196 training classes. As
can be seen, when training without EPS each class fits well
to a bivariate normal-distribution with small variance and
different means. Training with EPS result in more diverse
distributions and in some of the classes fits batter to a mix-
ture of multiple different distributions.

This can also be measured qualitatively on the Omniglod
detest; although training without the EPS results in batter
overfitting to training samples, the results on the letters fine-
grained task are significantly inferior comparing to train-
ing with the EPS (Table 4). It is also important to note the
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Figure 6: t-SNE visualization of Cars196 training classes (each class has a different color). Training with EPS results in more

diverse classes appearance.

low NMI score when using EPS with the number of clusters
equal to the number of languages, and the increment of this
score when increasing the number of clusters to the number
of letters. This indicates that training with EPS results in
more homogeneous small clusters, which are more blended
in the embedding space comparing to training without EPS.

6. Conclusion

In this work we we investigate the class collapsing phe-
nomena with respect to popular embedding losses such as
the Triplet loss and the Margin loss. While in clean envi-

ronments there is a diverse and rich family of optimal solu-
tions, when noise is present, the optimal solution collapses
to a degenerate embedding. We propose a simple solution
to this issue based on ’easy’ positive sampling, and prove
that indeed adding this sampling results in non-degenerate
embeddings. We also compare and evaluate our method on
standard image retrieval datasets and demonstrate a consis-
tent performance boost on all of them. While our analy-
sis and results have been limited to metric learning frame-
works, we believe that this type of noisy analysis might be
useful in other settings, and can better reflect the training
dynamic of neural-networks on real-world datasets.
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