
Adaptive Hierarchical Graph Reasoning with Semantic Coherence for
Video-and-Language Inference

Juncheng Li1 Siliang Tang1∗ Linchao Zhu2 Haochen Shi3 Xuanwen Huang1

Fei Wu1 Yi Yang1 Yueting Zhuang1

1Zhejiang University 2ReLER, University of Technology Sydney 3Université de Montréal
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Abstract

Video-and-Language Inference is a recently proposed
task for joint video-and-language understanding. This new
task requires a model to draw inference on whether a natu-
ral language statement entails or contradicts a given video
clip. In this paper, we study how to address three crit-
ical challenges for this task: judging the global correct-
ness of the statement involved multiple semantic meanings,
joint reasoning over video and subtitles, and modeling long-
range relationships and complex social interactions. First,
we propose an adaptive hierarchical graph network that
achieves in-depth understanding of the video over complex
interactions. Specifically, it performs joint reasoning over
video and subtitles in three hierarchies, where the graph
structure is adaptively adjusted according to the semantic
structures of the statement. Secondly, we introduce seman-
tic coherence learning to explicitly encourage the semantic
coherence of the adaptive hierarchical graph network from
three hierarchies. The semantic coherence learning can fur-
ther improve the alignment between vision and linguistics,
and the coherence across a sequence of video segments. Ex-
perimental results show that our method significantly out-
performs the baseline by a large margin.

1. Introduction

Understanding video story involves analyzing and sim-
ulating human vision, language, thinking, and behavior,
which is a significant challenge to current machine learning
technology [21]. Recently, with the advances of large-scale
video datasets [1, 5, 8, 24, 49], joint video-and-language un-
derstanding has received increased attention. Several video-
and-language tasks have been proposed, such as video cap-

∗Siliang Tang is the corresponding author.

Statement:
The woman becomes upset when the man answers the phone because he pretends it is 
his own office.

Central meaning Temporal meaning Causal meaning

00:03 --> 00:05
(man) Gavin 
Mitchell's office. 
(woman) Rachel 
Green's office.

00:05 --> 00:07
(woman) Give 
me that phone.

00:08 --> 00:12
(woman) Hello, 
this is Rachel 
Green. How 
can I help you?

00:12 --> 00:17
(woman) Uh-
huh. Okay, 
then. I'll pass 
you back to 
your son.

00:18 --> 00:21
(man) Hey, 
Mom. No, 
that's just my 
secretary.

Figure 1: The first two rows show a video clip paired with
its aligned subtitles. The third row shows a statement with
multiple semantic meanings.

tioning [16, 48, 61, 14, 27, 13, 41, 50], text-to-video tempo-
ral grounding [15, 3, 6, 29, 36, 59, 63], and video question
answering [28, 60, 47, 23, 25, 37]. In particular, Video-and-
Language Inference (VLI) [33] is a recently proposed task
to foster deeper investigations in video-and-language under-
standing. Given a video clip with aligned subtitles and a nat-
ural language statement based on the video content, a model
needs to infer whether the statement entails or contradicts
the given video clip. To support the study of this new task, a
large-scale dataset, named VIOLIN (VIdeO-and-Language
INference), is introduced.

Compared with TVQA/video captioning where most QA
pairs/captions focus on identifying explicit visual cues (e.g.,
objects, actions, persons), VLI is more challenging and re-
quires more sophisticated reasoning skills, such as inter-
preting human emotions and relations, understanding the
events, and inferring causal relations of events throughout
the video. First, a single statement may involve multiple se-
mantic meanings, making it harder to judge the global cor-
rectness. As demonstrated in Figure 1, the statement con-
sists of three semantic phrases. If the model recognizes the
central meaning and the temporal meaning but ignores the
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causal meaning, it may make a wrong prediction. Secondly,
VLI requires jointly reasoning over video and subtitles to
achieve in-depth understanding of complex plots. To infer
the causal meaning that the man pretends it is his own office,
the model needs to jointly understand information from the
video part and subtitle part. From the video part, the man
and the woman are in the same office, and the man takes the
phone from the woman. From the subtitle part, the man lies
that the woman is his secretary. Only by combining the con-
text from both the video and subtitle can the model further
draw the inference. Thirdly, VLI requires reasoning for di-
verse interactions among characters and complex event dy-
namics over diverse scenarios. The VIOLIN dataset is col-
lected from diverse sources to cover realistic visual scenes,
including 5885 movie clips in addition to TV shows used in
TVQA. The average clip length is 35.20s, while the length
of most clips in TVQA is less than 15s.

In this paper, we propose a novel adaptive hierarchical
graph reasoning with semantic coherence approach to over-
come the aforementioned challenges. First, we introduce
an adaptive graph construction mechanism to identify the
multiple semantic meanings of the statement. This enables
our approach to adaptively adjust the graph structure ac-
cording to the semantic structures of the statement for the
global correctness. Then, we present an adaptive hierarchi-
cal graph network (AHGN) to jointly reason over video and
subtitles and model the complex social interactions. Specif-
ically, we perform adaptive graph reasoning in three hierar-
chies: 1) segment-level reasoning, which achieves in-depth
understanding of the video segments via utilizing the in-
herent alignment and complementary nature between visual
frames and subtitles; 2) temporal-level reasoning, which
models the long-range dependencies and diverse interac-
tions between different segments to draw a global video
understanding; 3) global-level reasoning, which judges the
global correctness of the statement by incorporating the in-
ferences from different reasoning steps.

Furthermore, the semantic coherence throughout AHGN
is crucial to achieving global understanding of the video.
Therefore, we introduce a novel semantic coherence learn-
ing (SCL) method to encourage the cross-modal semantic
coherence at the segment level and the cross-level semantic
coherence between temporal level and global level. Specif-
ically, the semantic coherence learning contains two reg-
ularization terms: an optimal transport distance term that
measures the cross-modality alignment between the visual
nodes and subtitle nodes, and a mutual information term
that evaluates the semantic coherence between the temporal
nodes and global nodes.

The experiments show that our approach significantly
outperforms the baselines by a large margin, and further ab-
lation study demonstrates the effectiveness of each compo-
nent. In summary, our contributions are mainly three folds:

• We propose a novel adaptive hierarchical graph net-
work (AHGN) that performs joint reasoning over
video and subtitles in three hierarchies, where the
graph reasoning structure is adaptively adjusted ac-
cording to the semantic structures of the statement.

• Our semantic coherence learning (SCL) method im-
proves the alignment between video and subtitles, and
the coherence across a sequence of video segments.

• Extensive experiments show that our method signifi-
cantly outperforms the baseline by a large margin.

2. Related Work
Visual Entailment Given a natural image premise and
a natural language hypothesis, the goal of visual entail-
ment (VE) [51] is to predict whether the image semantically
entails the text. To realize this task, the SNLI-VE dataset
is built based on the Stanford Natural Language Inference
corpus and Flickr30k dataset [54]. Also, Suhr et al. [46]
propose a similar task to determine whether a natural lan-
guage caption is true about a photograph. In contrast to the
visual entailment, which is limited to a static image, video-
and-language inference involves complex temporal dynam-
ics and requires the model to understand the relationship be-
tween different visual scenes to draw the inference. In this
paper, we propose an approach to model the complex inter-
and intra- modality interactions and further infer in-depth
rationale in three hierarchies.
Video-and-Language Research Recent years have wit-
nessed the flourishing development in vision-and-language
research [4, 15, 56, 31, 30, 17]. Several large-scale video
datasets [1, 5, 8, 24, 49] and video-and-language tasks
have been proposed, such as video captioning [16, 44,
57, 58, 48, 52, 27, 13, 41, 50], text-based video moment
retrieval [15, 3, 6, 29, 36], and video question answer-
ing [28, 62, 47, 43, 25, 37]. Video caption is the task of
generating text descriptions from video input, text-based
video moment retrieval requires localizing video segments
from natural language queries, and video question answer-
ing is aimed to predict answers to natural language ques-
tions given a video as context. These tasks mainly focus on
explicit factual descriptions or explicit information of the
video, which hardly incorporate story-level understanding.
In contrast, video-and-language inference [33] requires not
only explicit visual cues but also more sophisticated reason-
ing skills, such as inferring reasons and interpreting human
emotions. These abilities can be used to detect anomalous
intent from surveillance and discriminatory or antisocial
contents from online videos, which are usually expressed
implicitly. Similar to [28] for TVQA, the baseline model for
VLI [33] utilizes multi-stream neural network [33, 28] with
bidirectional attention [28, 42, 55] to interact the statement
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Figure 2: Overview of the proposed framework. Each sub-graph Gi is constructed with subtitle word nodes {si} and time-
aligned visual frame nodes {vi}. Our AHGN performs joint reasoning over video and subtitles in three hierarchies. T (i)

represents a temporal-level sub-graph, which is adaptively constructed according to the semantic structures of the statement.
The semantic coherence learning explicitly promotes the cross-modal and cross-level semantic coherence of AHGN.

with subtitles and visual frames separately, and then fuse
the independent attention representations to draw the final
inference. However, in our view, there are two main limi-
tations of this type of approaches: 1) it fails to leverage the
temporal alignment and complementary nature between vi-
sual frames and subtitles, which is a crucial step to achieve
in-depth understanding of the video; and 2) it equally uses
each word in the statement to attend every visual frame and
subtitle word, and then do single-step classification, without
considering explicit semantic structures. Our work instead
models the semantic alignment between visual frames and
subtitles, and the graph structure is adaptively adjusted ac-
cording to the semantics of the statement.

3. Method

As described in Figure 2, the adaptive hierarchical graph
reasoning framework mainly consists of two components:
1) adaptive hierarchical graph network (Sec 3.1), and 2) se-
mantic coherence learning (Sec 3.2). Given a video clip,
paired with its aligned subtitles, and a natural language
statement, the adaptive hierarchical graph network (AHGN)
performs reasoning in three hierarchies, of which the graph
structure is adaptively adjusted according to the semantics
of the statement. Finally, the prediction layer performs clas-
sification using the global graph representation. The seman-
tic coherence learning (SCL) is further introduced to ex-
plicitly promote the cross-modal and cross-level semantic
coherence of the adaptive hierarchical graph network.

3.1. Adaptive Hierarchical Graph Network
3.1.1 Graph Construction

For the given video clip, we extract the visual features us-
ing ResNet101 [20] trained on ImageNet [11] and apply a
single-layer MLP to obtain the visual node representations
V = {vi}lvi=1. For its associated subtitles, we tokenize them
into a word sequence and employ a pre-trained BERT [12]
encoder, followed by a single-layer MLP, to obtain the sub-
title word node representations S = {si}lsi=1. Each node
vi corresponds to a visual frame, and each node si corre-
sponds to a subtitle word. We then align each subtitle sen-
tence Si = {si}ssti+L

i=ssti
with a sequence of visual frames

Vi = {vi}vsti+K
i=vsti

whose timestamps overlap with the subti-
tle timestamp (ssti is the start index of subtitle nodes in Si,
L is the number of subtitle nodes in Si, similar denotation
for Vi). The frame-subtitle pair < Si, Vi > corresponds to a
semantic segment of the video and makes up a cross-modal
sub-graph Gi, where we perform segment-level reasoning.
Thus, we split the original video-level graph into a sequence
of sub-graphs (i.e. G = {Gi}Mi=1).

3.1.2 Segment-level Reasoning

To utilize the inherent alignment and complementary na-
ture between visual frames and subtitles, for each segment-
level sub-graph, our adaptive hierarchical graph network
first models the inter- and intra- modality interactions, using
the gated inter-modal message passing (GER) and the gated
intra-modal message passing (GRA). Then, we summarize
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the semantic information of each sub-graph into a temporal-
level node representation by semantics-guided graph pool-
ing under the guidance of the semantic query.
Gated Inter-modal Message Passing Here we take the
message passing from subtitle nodes to visual nodes as an il-
lustration. Given segment-level sub-graph Gi =< Si, Vi >,
we first learn the cross-modal adjacency correlation matrix
A ∈ RK×L by calculating the similarity of each pair of
visual node vi and subtitle node sj as:

A = V T
i · Si, aij = vTi · sj (1)

Then we compute the message mv
i that denotes the message

from subtitle nodes to visual node vi: mv
i =

∑L
j aij · sj .

Next, we get the visual guidance gv and subtitle guidance
gs by performing average pooling on the visual nodes and
subtitle nodes respectively. The context gate cvi is further
determined as:

cvi = σ(W1[gv, vi, gs] + b1) (2)

where W1 ∈ Rd×3d, b1 ∈ Rd×1, and σ(·) denotes the sig-
moid function. The context gate cvi controls the flow of lin-
guistic information from subtitles to vision:

ṽi = (1− cvi )⊙ vi + cvi ⊙mv
i (3)

where ⊙ denotes the Hadamard product. As a consequence,
ṽi ∈ Rd×1 represents the linguistic-refined visual node, and
we can obtain the visual-refined subtitle node s̃i ∈ Rd×1 in
a similar manner but reversed order, and G̃i =< S̃i, Ṽi >
represents the sub-graph after GER.
Gated Intra-modal Message Passing For Ṽi and S̃i, we
further refine them with intra-modal local context informa-
tion using GRA. GRA is similar to the GER but models the
intra-modal relations.

The GRA first computes the intra-modal adjacency cor-
relation matrixes Av ∈ RK×K and As ∈ RL×L by calculat-
ing node-wise similarity, and then get the aggregated mes-
sages nv

i and ns
i according to the weight matrixes. Next, the

GRA computes the context gates for visual/subtitle nodes
based on the visual/subtitle guidance and corresponding
visual/subtitle node representations respectively. Finally,
GRA updates the visual nodes and subtitle nodes respec-
tively, controlled by the context gates. As a consequence, V̂i

and Ŝi represent refined nodes of Gi after inter- and intra-
modality reasoning.
Semantics-guided Graph Pooling After obtaining
segment-level refined node representations V̂i ∈ Rd×K and
Ŝi ∈ Rd×L using inter- and intra- modality local context,
we further aggregate Gi =< V̂i, Ŝi > to a temporal-level
node representation by semantics-guided graph pooling.
We first extract a semantic query q(n) ∈ Rd×1 from the
statement using attentive aggregation. Then, we employ
the semantic query to attend each visual node and subtitle

node independently, and then use the attention weights to
aggregate V̂i and Ŝi:

C
(n)
i = softmax(V̂i

T
(W2q

(n))), v
(n)
i = V̂iC

(n)
i (4)

And we can obtain s
(n)
i ∈ Rd×1 in a similar manner. Then,

we compute the context gate γ
(n)
i based on the visual guid-

ance, subtitle guidance, and the semantic query, which con-
trols the fusion of visual and linguistic information:

γ
(n)
i = σ(W3[gv, q

(n), gs] + b3) (5)

t
(n)
i = (1− γ

(n)
i )⊙ v

(n)
i + γ

(n)
i ⊙ s

(n)
i (6)

where W3 ∈ Rd×3d and b3 ∈ Rd×1. As a consequence,
we pool each segment-level sub-graph Gi to a temporal-
level node t(n)i ∈ Rd×1 and obtain temporal-level sub-graph
T (n) ∈ Rd×M , guided by the semantic query q(n).

3.1.3 Temporal-level Reasoning

The video clips are collected from TV shows and movies,
which contain complex event dynamics and diverse char-
acter interactions across multiple segments. Therefore,
segment-level reasoning is not sufficient, and we present
temporal-level reasoning to model long-range relationships
among multiple video segments to draw a global under-
standing. In this section, we first introduce how to con-
struct multiple temporal-level sub-graphs adaptively, and
then present how to perform reasoning on them.
Adaptive Temporal-level Sub-graph Construction Dif-
ferent statements may have semantic structures of varying
complexity. For more complex statements, it is reason-
able to construct more temporal-level sub-graphs, which fo-
cus on different semantic parts of the statement. Thus, we
introduce the adaptive temporal-level sub-graph construc-
tion to adaptively adjust the number of temporal-level sub-
graphs. Concretely, we extract a variable number of seman-
tic queries from the statement, and use them to perform
semantics-guided graph pooling respectively to construct
multiple temporal-level sub-graphs. The semantic queries
provide guidance to their corresponding temporal-level sub-
graphs about which semantic parts they should focus on.

Given lh-word statement H = {hi}lhi=1, we extracts N
semantic queries {q(n)}Nn=1. At each step n, we first com-
pute the attention weights R(n) ∈ Rlh×1 based on the pre-
vious semantic query q(n−1) and the sentence-level embed-
ding of the statement gh ∈ Rd×1 obtained by performing
average pooling on the statement words H , given by:

R(n) = softmax(HT (Wr[gh, q
(n−1)])) (7)

Then, we obtain the semantic query q(n) using the attention
weights to summarize the statement words: q(n) = HR(n).
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To adaptively determine how many temporal-level sub-
graphs are supposed to be constructed, we introduce a self-
halting mechanism that outputs the probability of stop-
ping generating more queries: h(n) = σ(Whq

(n) + bh)
where Wh ∈ Rd×d, bh ∈ Rd×1, and the accumula-
tive halting probability is further determined as: P (n) =∑n

i=1 h
(i). When the accumulative halting probability ex-

ceeds a threshold 1 − ϵ or n reaches the pre-defined max-
imum value Nmax, the process will stop. To promote the
generation efficiency, we define a loss term based on the
final number of queries:

Lqe = τN (8)

where τ is the query efficiency hyper-parameter.
The message passing at temporal-level graph is similar to

the GRA. Given T (n), we first compute the adjacency cor-
relation matrix E(n) ∈ RM×M , then sum up the incoming
messages, and finally update the node representations using
gate mechanism. After obtaining refined T̃ (n), we further
use semantic query q(n) to pool T̃ (n) to a global semantic
representation on:

U (n)=softmax((T̃ (n))T (W4q
(n))), on= T̃ (n)U (n) (9)

where W4 ∈ Rd×d , U (n) ∈ RK×1 is the attention weight
vector, and on ∈ Rd×1 is the global node representation
based on semantic query q(n).

3.1.4 Global-level Reasoning

After temporal-level reasoning, we obtain a set of N global
semantic representations {oi}Ni=1. We perform average
pooling on the set of global semantic representations to gen-
erate a d-dimensional global graph representation capturing
whole semantics of video and statement. Finally, the global
graph representation is passed through the MLP with a sig-
moid activation to predict the probability of the input state-
ment being positive.

3.2. Semantic Coherence Learning

We specify the semantic coherence learning of AHGN
as the cross-modal semantic coherence among segment-
level nodes and the cross-level semantic coherence across
temporal-level nodes and global-level nodes.

3.2.1 Cross-modal Semantic Coherence

To achieve in-depth understanding of the semantics in video
and subtitles, a model needs to align the inter-modality se-
mantics between visual nodes and subtitle nodes. How-
ever, most of the previous methods seek advanced atten-
tion mechanisms to simulate soft alignment, with no train-
ing signals to explicitly encourage alignment. Differently,
we leverage recent advances in Optimal Transport (OT) [7]

to encourage the cross-modal semantic coherence of each
sub-graph, which can further refine the segment-level rea-
soning on every sub-graph Gi.

Optimal transport evaluates the correspondence between
two distributions. OT-based learning aims to optimize dis-
tribution matching via minimizing the cost of transporting
one distribution to another, which provides explicit signals
to minimizing the embedding distance between the modal-
ities. Recently, it has been explored in some fields. Liu et
al. [34] model semantic correspondence as an optimal trans-
port problem. Su et al. [45] apply optimal transport to 3D
shape matching and comparison. Chen et al. [7] solve cross-
domain alignment by minimizing the optimal transport plan
between domains. Here, we adopt OT to refine the segment-
level reasoning on sub-graph Gi. By optimizing the node
distance and edge distance between visual nodes and subti-
tle nodes, we further foster the semantic coherence learning
of gated inter- and intra- modal message passing.

Specifically, we adapt Wasserstein distance (WD) [35]
for node matching and Gromov-Wasserstein dis-
tance (GWD) [40, 9] for edge matching. We define two
distributions µs ∈ P (S), µv ∈ P (V ) as: µs =

∑n
i=1 p

s
i δsi

and µv =
∑m

j=1 p
v
j δvi where δsi denotes the Dirac

function centered on si. Without ambiguity, we reuse
m and n to represent the number of visual nodes and
subtitle nodes for simplicity. Π(µs, µv) denotes all the
joint distributions, with marginals µs(s) and µv(v).
Let ps = {psi}ni=1 ∈ ∆n and pv = {pvj}mj=1 ∈ ∆m

denote the n− and m− dimensional weight vec-
tors respectively, where

∑n
i=1 p

s
i =

∑m
j=1 p

v
j = 1,

and both ps and pv are probability distributions.
Π(ps, pv) = {T ∈ Rn×m|T1m = ps, TT 1n = pv},
where T denotes the transport plan and Tij represents
the amount of mass shifted from psi to pvj . Formally, the
optimal transport distance is defined as:

D(µs, µv)= inf
γ∈Π(µs,µv)

E(s,v)∼γ,(s′,v′)∼γ [c(s, v)+L(s, v, s′, v′)]

(10)

= min
T∈Π(ps,pv)

∑
i,i′,j,j′

Tij [λc(si, vi)+Ti′,j′L(si, vj , si′ , vj′)]

(11)

where λ is the weight hyper-parameter, c(si, vj) is the
cost function that evaluates the node similarity between
si and vj using cosine distance, and L(si, vj , si′ , vj′) =
||c1(si, si′)−c2(vj , vj′)|| is the cost function evaluating the
similarity between two pairs of nodes (si, si′) and (vj , vj′).

We apply the Sinkhorn algorithm [10, 39] to obtain the
optimal transport distance D(µ, ν), following [7, 2]. Then,
the calculated optimal transport distance is used as the
cross-modal semantic coherence loss:

Lcm = αD(µ, ν) (12)
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where α is the weight hyper-parameter. Lcm provides an
explicit training objective to encourage semantic alignment
of each sub-graph.

3.2.2 Cross-level Semantic Coherence

Every video clip is composed of a sequence of segments,
which follow a consistent theme intrinsically and narrate
the event coherently. Motivated by this fact, we present
the cross-level semantic coherence to promote the seman-
tic coherence across temporal-level nodes and global-level
nodes. By keeping the cross-level semantic coherence, we
can greatly improve the graph representation’s quality for
story-level understanding.

Mutual information have been widely utilized for repre-
sentation learning (e.g. variational autoencoder [26], beta-
VAE [22]), while we are the first to exploit mutual informa-
tion to learn semantic coherence of the video. For temporal-
level nodes {t(n)i }Mi=1 and its corresponding global node on,
we maximize the average mutual information between them
as: 1

M×N

∑N
n=1

∑M
i=1 I(t

(n)
i ; on). The mutual information

maximization procedure can encourage segment-level rea-
soning and temporal-level reasoning to encode more under-
lying semantic information that is coherent in the video. To
compute the mutual information, we use Noise-Contrastive
Estimation (NCE) [19, 18, 38] to estimate it as follows:

Î(t(n)i ; on) := EP[Tφ(t
(n)
i , on)− EP̃[log

∑
t
(n)′
i

eTφ(t
(n)′
i ,on)]]

(13)
where Tφ is a discriminator modeled by a neural network
with parameters φ, P and P̃ are the distribution of t(n)i . Then
the cross-level semantic coherence can be formulated as:

Lcl = −β
1

M ×N

N∑
n=1

M∑
i=1

Î(t(n)i ; on) (14)

where β is weight hyper-parameter. We add this term to the
loss function and optimize θ and φ simultaneously. Thus,
the total loss is given by:

L = Lent + Lqe + Lcm + Lcl (15)

where Lent is the original cross-entropy loss.

4. Experiments
4.1. Experimental Setup

Dataset The VIOLIN dataset contains 15887 video clips
collected from 4 popular TV shows and movie clips from
YouTube channels covering thousands of movies. The av-
erage length of each video clip is 35.20s with 3 frames per
second and each statement has 18 words on average. Each

Method Vision Text Accuracy

1 MTS Img GloVe 60.33
2 MTS Img BERT 67.60
3 MTS C3D BERT 67.23
4 MTS Det BERT 67.84

5 DIFFPOOL-Split Img BERT 59.46
6 DIFFPOOL-Whole Img BERT 56.43

7 XML Img BERT 66.32
8 HERO (pre-trained) Img BERT 68.59

9 Ours- AHGN + SCL Img BERT 71.38

Table 1: Quantitative results on the VIOLIN dataset.

video clip is annotated with 3 pairs of positive/negative
statements, resulting in 95322 (V, S,H) triplets in total. It
is divided into 76122, 9600, and 9600 triplets for training,
validation, and testing, respectively. Model performance is
evaluated via binary classification accuracy.
Implementation Details The dimension of the node em-
bedding is set to 512. For the visual frames that are not
paired with any subtitles, we assign it to the neighboring
frame-subtitle pair. We set the halting threshold ϵ to 0.1,
the maximum query number Nmax to 5, and the query ef-
ficiency τ to 0.05. In the training stage, the learning rate is
1e−4 and the batch size is 128.
Baselines 1-4) MTS: these baselines are based on the
multi-stream architecture (please refer to Sec 2 for de-
tails). We also compare our model with the state-of-the-
art hierarchical graph representation learning method and
hierarchical transformer-based models for video model-
ing: 5,6) DIFFPOOL: a differentiable graph pooling mod-
ule [53] that learns soft cluster assignment matrix for nodes
in each layer. We try two versions: DIFFPOOL-whole that
uniformly regards each video frame and subtitle word as the
node, and DIFFPOOL-split that constructs a video frame
graph and a subtitle word graph respectively. 7) XML:
Cross-modal Moment Localization (XML) modular net-
work [29] is a recently proposed transformer-based method
for TV show retrieval. 8) HERO: a transformer-based
framework [32] for video-and-language pre-training. It has
two standard hierarchies with fixed structures for local and
global context computation.

4.2. Results

We summarize the results in Table 1, where our method
significantly outperforms all baselines. Compared with the
original baseline presented in [33], our method surpasses
it by 6.69% relatively on accuracy. The comparison with
DIFFPOOL indicates the effectiveness of our semantics-
guided graph pooling scheme. The semantics-guided graph
pooling can better control the complementary information
fusion of subtitles and visual frames. Furthermore, XML
models the relationships directly on the whole sequences of
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Method Vision Text Accuracy

1 MTS Img BERT 67.60

2 AHGN Img BERT 69.76
3 AHGN + Lcm Img BERT 70.19
4 AHGN + Lcl Img BERT 70.47
5 AHGN + Lcm + Lcl Img BERT 71.38

Table 2: Main ablation results.

Figure 3: Ablation across with respect to τ and Nmax.

frames and subtitles, while we model the interaction in three
hierarchies, leveraging the temporal alignment and comple-
mentary nature. The results show the efficiency of our hi-
erarchical strategy. HERO first fuses every frame-subtitle
pairs using a cross-modal transformer and then applies tem-
poral transformer on the merged sequence of them. Our
method differs as it represents the context at three different
levels of granularity with adapative graph structure, which
outperforms the pre-trained HERO by 2.79%.

4.3. In-Depth Analysis

Effectiveness of Individual Components We conduct an
ablation study to illustrate the effectiveness of each com-
ponent in Table 2. Comparing MTS and AHGN (Row 1
vs Row 2), AHGN significantly contributes 2.16% to the
improvement on accuracy. The results of Row 3 and Row
4 validate the superiority of the cross-modal and cross-
level semantic coherence, respectively. Meanwhile, the re-
sults indicate that the introduced two losses can promote
the cross-modal and cross-level semantic coherence of the
AHGN in a mutually rewarding way. Finally, the semantic
coherence learning (Row 5) takes up 2.32% of the relative
gain on accuracy.
Analysis on AHGN We further perform in-depth analy-
sis for the adaptive hierarchical graph network. We investi-
gate the contribution of the proposed three graph operations
and the adaptive graph structure. We start with the back-
bone model, which keeps the adaptive hierarchical structure
but removes the proposed graph operations. For the abla-
tion model with fixed graph structure, we set the number
of temporal-level sub-graphs as a hyper-parameter. Specif-
ically, we extract fixed number of semantic queries from
the statement and use them to construct temporal-level sub-
graphs respectively. We test different number of temporal-
level sub-graphs and report the best performance when the

Method Graph Operation Graph Structure AccuracyGER GRA Temp fixed adaptive
1 Backbone (fixed) ! 64.65
2 Backbone ! 65.32
3 + GER ! ! 67.07
4 + GRA ! ! 66.74
5 + Temporal ! ! 66.93
6 + GER + GRA ! ! ! 68.03
7 + GER + Temp ! ! ! 68.64
8 + GRA + Temp ! ! ! 68.15
9 AHGN ! ! ! ! 69.76
10 AHGN (fixed) ! ! ! ! 68.91

Table 3: We conduct comparison by varying the individual
components of the AHGN.

number of temporal-level sub-graph is 3. Note that the
detailed results are provided in the supplementary mate-
rial. For the ablation model without temporal-level reason-
ing, we directly perform attentive pooling using semantic
queries on the nodes after segment-level reasoning.

Table 3 summarizes the results, which indicate the fol-
lowing. First, the adaptive graph structure is more effective
than the fixed graph structure, which enables our AHGN
to dynamically adjust the graph structure according to the
statement. Second, the inter- and intra- modality reasoning
at segment-level significantly improve the performance by
modeling the inherent alignment and complementary nature
between visual frames and subtitles. Third, the temporal-
level reasoning is a crucial step to achieve in-depth under-
standing of the video.
Ablation of the Adaptive Graph Construction We ex-
plore the impact of the query efficiency hyper-parameter
τ and the maximum query number Nmax for the adaptive
graph construction (AGC). The higher τ means that the tol-
erance for more queries is lower. As illustrated in Figure 3,
the performance keeps increasing when the τ is increased
from 0.02 to 0.05. When we continue to increase the τ , the
performance decreases because too large τ limits the num-
ber of semantic queries to one or two. Further, the maxi-
mum query number Nmax of 5 and 6 are enough and can
generally provide good performance while higher Nmax

does harm to the performance and reduces the efficiency.

4.4. Qualitative Analysis

For a more intuitive view of how our model works for
the VLI task, we visualize two qualitative examples in
Figure 4. The attention weights of semantic queries re-
flect the semantic parts which their corresponding temporal-
level sub-graphs focused on. As shown in Figure 4, differ-
ent temporal-level sub-graphs focus on different semantic
phrases of the statement and pay attention to the video seg-
ments that are most related to their semantics.
Visualization Fig 5 visualizes the inter- and intra- modal-
ity gate values (top row). Some key frames are in the bot-
tom row. The t = 1 ∼ 3 frames show that a man talks
to someone angrily, and the inter-modality gates are acti-
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00:07,760--> 00:13,999
(older lady) Look who's here.
(older lady) Come in both of you.

00:16,500--> 00:21,349
(older lady) Thank you. 
(woman) How are you?
(older lady) Wow I'm grand, but

00:21,359--> 00:24,140
(older lady) How are the two of you? 
You, you look rather sallow.
(woman) No, no, we're fine.

00:14,009--> 00:16,490
(woman) Hi, Mrs. Conlon.
(man) Happy Thanksgiving. �

��	��

Statement
A man and a woman are at an apartment door 
when an older lady opens the door and says 
looks who's here and invites both of them in.

Statement
A man and a woman are at an apartment door 
when an older lady opens the door and says
looks who's here and invites both of them in.

Statement
A man and a woman are at an apartment door 
when an older lady opens the door and says 
looks who's here and invites both of them in.

��	�� ��	�� ��	�� ��	��

00:00,030--> 00:11,060
shish kebobs

00:11,070--> 00:17,009
(Amy:) Wally, it's Amy Squirrel.
(Wally:) Amy? you don't... 

00:17,019--> 00:25,170
(Wally:) Get out of here!
(Amy:) This will just take a sec. Um I happen to be pedaling past the seventh 
grade car wash this Saturday.

00:25,180--> 00:36,799
(Wally:) Can we talk about this later.
(Amy:) Later we'll all die set the Gator to the fly.

00:36,809--> 00:40,000
(Amy:) Now, I don't wanna speak out of school, 
but from where I was sitting I think it

Statement
The woman with red hair becomes impatient 
for waiting for the man in the bathroom and 
so she enters the bathroom to speak to him.

Statement
The woman with red hair becomes impatient 
for waiting for the man in the bathroom and 
so she enters the bathroom to speak to him.

Statement
The woman with red hair becomes impatient 
for waiting for the man in the bathroom and 
so she enters the bathroom to speak to him.

��	�� ��	�� ��	�� ��	�� ��	�� ��	��

Figure 4: Qualitative Examples. The attention weights of different semantic queries are illustrated by the depth of color, and
their corresponding video moments with high attention weights during semantics-guided graph pooling are also shown.

frame id
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Visual Nodes
inter
intra

inter
intra

Subtitle Nodest =1~3
t =7~10

1 2 3 4 5 6 7 8 9 10 11 1213 14 15161718 19 20 212223 24 word
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Figure 5: Visualization of the GER and GRA.

vated to combine linguistic context from subtitles. This
helps the model to understand what he says and why he
is angry. For the t = 7 ∼ 10 frames, the intra-modality
gates are well activated to combine temporal information
from local visual context. Thereby, the model can infer that
the woman is coming in instead of standing still. Also, gate
values of words “get” and “here” are both high. It indicates
that GER and GRA cooperate with each other to infer the
complete semantics and visual context. Some words like
“a” and “um” receive low gate values. Fig 6 provides visu-
alization on temporal-level node feature space and learned
cross-modality alignment matrices between visual and sub-
title nodes. We observe that with Lcl (Fig 6.b), the nodes
from the same temporal-level sub-graph (nodes of the same
color) tend to be more tightly related, compared with the
features trained without Lcl (Fig 6.a). Without Lcm (Fig
6.c), the learned alignment matrix is much denser and nois-
ier than the alignment matrix learned with Lcm (Fig 6.d).

5. Conclusions
In this paper, we introduce an adaptive hierarchical graph

reasoning with semantic coherence approach for Video-
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Figure 6: (a)(b): t-SNE visualization of temporal-level
nodes without/with Lcl. (c)(d): alignment matrixes with-
out/with Lcm.

and-Language Inference. Our adaptive hierarchical graph
network performs in-depth reasoning over video frames and
subtitles in three hierarchies, where the graph reasoning
structure is adaptively determined by the semantic struc-
tures of the statement. Further, we present a semantic co-
herence learning algorithm to encourage the cross-modal
and cross-level semantic coherence of the adaptive hierar-
chical graph network. The experimental results show that
our method outperforms the baselines by a large margin.
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