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Abstract

Recently, Cross-Modal Hamming space Retrieval
(CMHR) regains ever-increasing attention, mainly benefit-
ing from the excellent representation capability of deep neu-
ral networks. On the other hand, the vulnerability of deep
networks exposes a deep cross-modal retrieval system to
various safety risks (e.g., adversarial attack). However, at-
tacking deep cross-modal Hamming retrieval remains un-
derexplored. In this paper, we propose an effective Ad-
versarial Attack on Deep Cross-Modal Hamming Retrieval,
dubbed AACH, which fools a target deep CMHR model in
a black-box setting. Specifically, given a target model, we
first construct its substitute model to exploit cross-modal
correlations within hamming space, with which we create
adversarial examples by limitedly querying from a target
model. Furthermore, to enhance the efficiency of adver-
sarial attacks, we design a triplet construction module to
exploit cross-modal positive and negative instances. In this
way, perturbations can be learned to fool the target model
through pulling perturbed examples far away from the pos-
itive instances whereas pushing them close to the negative
ones. Extensive experiments on three widely used cross-
modal (image and text) retrieval benchmarks demonstrate
the superiority of the proposed AACH. We find that AACH
can successfully attack a given target deep CMHR model
with fewer interactions, and that its performance is on par
with previous state-of-the-art attacks.

1. Introduction
Deep Neural Networks (DNNs) have been widely

adopted to improve the retrieval performance in CMHR,

where the early network layers capture the implicit struc-

ture of cross-modal data, and binary codes are derived from

a deeper network layer. Generally, the DNN architecture

is trained to build the cross-modal correlations by detect-

ing the semantic similarity or dissimilarity between differ-

ent modalities. Inspired by such superior representation ca-

*Equal contribution.
†Corresponding author.

(a) Cross-Modal Hamming Retrieval

(b) Attack on Cross-Modal Hamming Retrieval

Figure 1: Regular cross-modal Hamming retrieval and our

triplet-based cross-modal Hamming attack.

pability of DNN, many efforts have been focused on em-

ploying deep networks to enhance the correlations between

modalities through learning a common representation in

shared space. However, the robustness and stability of DNN

structures have been largely overlooked: even the most ac-

curate deep learning models can be easily deceived by a

well-designed perturbation which is visually imperceptible

to the human eye. Therefore, the growing costs and risks of

the potential model failures have led to the study of adver-

sarial attacks. In this paper we focus on a practical cross-

modal Hamming adversarial attack that fulfills two criteria:

1) the attack is designed for a black-box setting, where the

target cross-modal network is normally unavailable, and the

attacker can only interact with the target model by querying

it; 2) the query efficiency should be highly prioritized con-

sidering the practical case, that is, frequent and high volume

queries will be easily discovered by defenders.

Despite plenty of adversarial attacks proposed in the lit-

erature, the main attention only focuses on the problem of

adversarial examples learning for image-based classifica-

tion or retrieval within a single modality. Little effort has

been devoted to investigating how adversarial examples af-

fect deep Hamming learning in cross-modal retrieval. There

exist great differences in learning adversaries between the
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existing classification task and CMHR. As shown in Fig. 1a,

given a query instance from one modality (e.g., image),

CMHR is applied to map original data into binary codes,

and then execute bit-wise XOR operation to return semanti-

cally related instances from another modality (e.g., text). In

contrast, the attack on CMHR devotes to fooling a well-

trained model to return semantically unrelated instances.

Therefore, the traditional classification-oriented adversar-

ial attacks are not suitable in CMHR. The pioneering work

CMLA [17] is the first attempt to design adversarial sam-

ples to deceive a target deep CMHR model. But, CMLA

is not applicable to the practical cases in two main aspects.

First, CMLA is constructed for a white-box setting, where

attackers need full knowledge of the target model, includ-

ing model architectures and parameters. Second, the label

information of query instances is required in CMLA, which

is also not available in reality. Therefore, practical adver-

sary example learning in CMHR is still an open problem.

Actually, considering the nature of CMHR is to explore and

preserve the similar semantic structure among instances, we

can design the triplet-based cross-modal Hamming attack

as shown in Fig. 1b. The adversarial perturbation is learned

and added into the query instance to manipulate the original

similarity structure, reducing the distance of the query to the

negative instance and enlarging its distance to the positive

instance.

In this paper, we propose an effective Adversarial At-

tack on Deep Cross-Modal Hamming Retrieval (AACH).

To be specific, AACH mainly focuses on attacking a deep

cross-modal Hamming retrieval model in a black-box set-

ting, which thus is more applicable to practical cases. In

addition, to reduce the cost and risk during querying a tar-

get model, we propose the cross-modal triplet construction

module, where cross-modal positive and negative instances

of the query are exploited to boost the learning of adver-

sarial perturbations. We highlight the contributions of this

work as follows:

• An adversarial example learning method for cross-

modal Hamming retrieval is proposed under the black-

box setting. Through constructing a surrogate model

of the target networks, the proposed AACH learns

cross-modal adversarial examples only by limitedly

querying the target model, without any prior knowl-

edge about the target model.

• To fully take advantage of the limited information ac-

quired from target model, a simple yet effective cross-

modal triplet construction module is designed, with

which our surrogate model learns adversarial examples

by mining cross-modal positive and negative instances

in Hamming space.

• We evaluate the proposed AACH by attacking several

state-of-the-art cross-modal retrieval models on three

popular benchmarks, MIRFlickr-25K, NUS-WIDE,

and MS COCO. Extensive results demonstrate the ef-

fectiveness of the proposed triplet construction mod-

ule and the capacity of our AACH in attacking a target

deep CMHR model.

2. Related Works
Deep Cross-Modal Hamming Retrieval. Different

from the traditional “learn to hash” for CMHR [19, 7, 25,

39]. Deep CMHR [12, 37, 3, 32, 6, 15, 2, 35, 11, 4] learns

binary codes by constructing deep networks to build the

correlations across modalities. Existing approaches can be

divided into unsupervised and supervised settings accord-

ing to whether label information is used. For unsupervised

setting, efforts are devoted to studying the semantic sim-

ilarity exploration and preservation. Matrix factorization

and graph Laplacian are proposed to preserve neighborhood

structures of original data in [33]. Su et al. [29] explored

the joint-semantics similarity matrix from different modali-

ties to integrate multiple modality similarity information. In

[40] and [16], the generative adversarial networks (GAN)

are constructed to bridge the semantic modality gap. On

the contrary, methods in a supervised setting generally build

cross-modal correlations from the label information, where

pairwise [12, 37, 2], triplet [6], and ranking [20] semantic

constraints are respectively adopted to achieve high retrieval

performance. Li et al. [15] constructed self-supervised

learning model to guide deep cross-modal network training.

To enhance the semantic similarities, an attention mech-

anism is integrated into one GAN-based cross-modal net-

work [41] to extract the shared semantic components across

modalities.

Cross-Modal Hamming Attacking. The successes

achieved in deep learning areas have made great improve-

ments for CMHR. Nevertheless, the vulnerability of DNN,

which has caused wide concern from all walks of life,

places the DNN-based retrieval model at the risk of being

attacked as well. In [31], it is the first time showing that

a deep network with good performance can be fooled by

a well-designed perturbation which is imperceptible to hu-

man eyes. Follow this, many white-box attacking methods

are presented [23, 24, 36, 22, 8, 30, 28], where [28] can suc-

cessfully attack a target deep model in an extremely limited

scenario because only one pixel can be modified. Simul-

taneously, the transferability of the adversarial examples

among deep networks is discovered to propose the black-

box setting attacks [21, 34, 26, 9, 5, 10], which are shar-

ing a common idea that using an approximate gradient to

create adversarial examples. Most of these methods are de-

signed to solve the problem of image-based classification or

retrieval within single a modality [38, 13]. For CMHR task,

the risk of malicious users disrupting the retrieval system

always exists. However, few efforts focus on the security
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Figure 2: The pipeline of our proposed AACH for cross-modal Hamming learning.

of the DNN-based CMHR system. The learning of cross-

modal adversarial example is first presented in CMLA [17],

where the intra- and inter- modality similarity are explored

to learn the adversarial examples preserving the intra-modal

similarity but manipulating inter-modal correlations. As

mentioned above, CMLA is designed for a white-box attack

setting and requires label information about query instance,

making it not applicable in reality.

3. Adversarial Attack on Deep CMHR
3.1. Problem Formulation

Generally, the CMHR can be cast as a metric learning

problem. Given a cross-modal dataset O = {oi}Mi=1 with

M instances, oi = {ovi , oti}, where ov and ot respectively

represent two data modalities (e.g., image-text pairs). The

goal of deep cross-modal Hamming retrieval is to learn two

functions F∗
tar(o

∗; θ∗) by different networks, ∗ ∈ {v, t}
projecting the original modality instances onto Hamming

space, where θ∗ denotes parameter to be learned. As such

the original cross-modal instances are represented with bi-

nary codes B∗ ∈ {−1, 1}K , K denotes the required code

length. This can be formulated as follows:

B∗ = sign(H∗), H∗ = F∗
tar(o

∗; θ∗), ∗ ∈ {v, t}, (1)

where H∗ are binary-like representations (H∗ ∈ [−1, 1]K)

produced by the output layer of a target deep cross-modal

network.

A well-trained F∗
tar(o

∗) can always preserve accurate

similar semantic structure. To be specific, assuming that

an image query instance ovA is more similar with positive

instance otP than negative instance otN , it encourages F∗
tar

to satisfy the inequality as follow:

D(Fv
tar(o

v
A),F t

tar(o
t
P )) < D(Fv

tar(o
v
A),F t

tar(o
t
N )), (2)

where D denotes the Hamming distance between two

codes:

D(X,Y ) =
1

2
(K − 〈X,Y 〉) , (3)

X and Y are the input codes. For cross-modal Hamming

attacking, on the contrary, which aims to learn cross-modal

adversarial perturbation δv to fool the target deep network

to output binary codes with a contrary inequality as follows:

D(Fv
tar(o

v
A+δv),F t

tar(o
t
P ))>D(Fv

tar(o
v
A+δv),F t

tar(o
t
N )).
(4)

Formally, given an image-text triplet {ovA, otP , otN}, where

ovA and otP share similar semantic correlation, we rewrite

the cross-modal Hamming attacking as follows:

min
δv

D
(Fv

tar(o
v
A + δv),F t

tar(o
t
N )

)
−D

(Fv
tar(o

v
A + δv),F t

tar(o
t
P )

)
, s.t. ‖δv‖p ≤ εv,

(5)

where ‖·‖p denotes Lp norm (p = ∞ in this work). εv

denotes the attack strength, where the constraint ‖δv‖p ≤
εv limits the perturbation δv being visually imperceptible.

The same goes for learning the text perturbation δt to query

image:

min
δt

D
(F t

tar(o
t
A + δt),Fv

tar(o
v
N )

)
−D

(F t
tar(o

t
A + δt),Fv

tar(o
v
P )

)
, s.t. ‖δt‖p ≤ εt.

(6)

3.2. Proposed AACH

Fig. 2 shows the full flowchart of our AACH, which

mainly consists of three parts: target deep cross-modal net-

works (ImgNet and TxtNet), triplet construction module,

and cross-modal adversarial example learning.
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The target deep cross-modal networks are always sup-

posed to be well-trained and thus can produce reliable bi-

nary codes. Under a black-box attack, we can only make

interaction with the target networks by inputting M cross-

modal data pairs {ov, ot}M as queries to the target net-

works. Generally, the number of M is highly limited.

In this way, their corresponding binary codes {Bv, Bt}
are obtained, and then we calculate the Hamming distance

D(Bv, Bt).

Next, we take each instance ovA (otA) in individual modal-

ity as anchor to respectively select its positive cross-

modal instances otP (ovP ) with shorter Hamming distance

and negative ones otN (ovN ) with longer Hamming distance.

We can assign multiple positive instances or negative in-

stances to an anchor. In doing so, the cross-modal triplets

{ovA, otP , otN} ({otA, ovP , ovN}) are created, which will be

used to train the surrogate deep cross-modal networks and

learn cross-modal adversarial examples.

We construct the surrogate deep cross-modal networks

with commonly used convolutional neural networks (θvsur)

for image modality and fully connected network (θtsur) for

text modality, respectively. More details about network

structures are provided in the implementation details (Sec-

tion 4.3). Taking the image-query-text task as an example,

to train the surrogate deep cross-modal networks, we design

the triplet loss as follows:

Lv
tri =

M∑
max

(
D(Hv

A, H
t
P )−D(Hv

A, H
t
N ) + β, 0

)
,

(7)

where D denotes Hamming distance calculated by Eq. 3,

and β is a manually defined constant margin. Considering

the binary-like presentations of Hv
A, Ht

P , and Hv
N , to de-

crease the quantization error between binary-like presenta-

tions and binary codes, we design the quantization loss as

follows:

Lv
qua =

M∑(
‖Hv

A −Bv
A‖22 + ‖Hv

P −Bv
P ‖22

+‖Hv
N −Bv

N‖22
)
.

(8)

Therefore, the total loss to train the surrogate image net-

work is the sum of the triplet loss and the quantization loss,

Lv = Lv
tri + Lv

qua. Similarly, we can obtain the triplet loss

for text network Lt = Lt
tri + Lt

qua.

After the surrogate deep cross-modal networks have

been trained, we begin to create the cross-modal adversar-

ial examples. Similarly, taking image-query-text task as an

example, we hope to design the adversarial image example

ôvA by learning a perturbation δv added to the original image

query ôvA = ovA + δv . An effective adversarial image exam-

ple should be pushed away from the positive text instance

but pulled close to the negative text instance. This can be

Algorithm 1 Adversarial Attack on Cross-Modal Hamming

Retrieval (AACH).

Input: A black-box cross-modal target network: F∗
tar(o

∗), data

O = {ovi , oti}Mi=1, iteration T , ∗ ∈ {v, t}
Output: The best recommended cross-modal adversarial exam-

ples: ô∗ = o∗ + δ∗, ∗ ∈ {v, t}
1 initialize iter = 0
2 Compute Bv = sign (Fv

tar(o
v)) and Bt = sign

(F t
tar(o

t)
)

3 Compute Hamming distance matrix D according to Eq. 3

4 Create cross-modal triplets {ovA, otP , otN} and {otA, ovP , ovN}
5 Train the surrogate model: if not converged then

6

θvsur = argmin
θvsur

Lv(ovA, o
t
P , o

t
N ; θvsur);

θtsur = argmin
θtsur

Lt(otA, o
v
P , o

v
N ; θtsur).

7 end
8 Select δv and δt: while iter ≤ T do

9

δv = argmin
δv

J v(δv, ovA, o
t
P , o

t
N ; θvsur);

δt = argmin
δt

J t(δt, otA, o
v
P , o

v
N ; θtsur).

10 end

written as follows:

J v
tri =

M∑
max

(
D(Ĥv

A, H
t
N )−D(Ĥv

A, H
t
P ) + β, 0

)
,

(9)

where Ĥv
A = Fv

sur(ô
v
A; θ

v
sur). Besides, the quantization

loss mentioned above is applied:

J v
qua =

M∑(∥∥∥Ĥv
A − B̂v

A

∥∥∥2
2

)
, (10)

where B̂v
A = sign(Ĥv

A). Combining J v
tri with J v

qua, the

total loss to learn image adversarial example is written as

follows:

J v = J v
tri + J v

qua. (11)

For attacking in text-query-image task, the loss can be de-

signed as J t = J t
tri + J t

qua.

To optimize AACH, we first obtain the binary codes of

the queries from the target model and construct the cross-

modal triplets. Then, we optimize the surrogate deep net-

works as follows:

θvsur = argmin
θv
sur

Lv(ovA, o
t
P , o

t
N ; θvsur);

θtsur = argmin
θt
sur

Lt(otA, o
v
P , o

v
N ; θtsur).

(12)

Finally, we keep the θvsur and θtsur fixed, and learn cross-

modal adversarial perturbations as follows:

δv =argmin
δv

J v(δv, ovA, o
t
P , o

t
N ; θvsur), s.t.‖δv‖∞ ≤ εv;

δt =argmin
δt

J t(δt, otA, o
v
P , o

v
N ; θtsur), s.t.‖δt‖∞ ≤ εt.

(13)
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The learning procedure of AACH is summarized in Algo-

rithm 1.

4. Experiments
4.1. Datasets

MIRFlickr-25K consists 25,000 images collected from

the Flickr website. Each image is assigned with a related

text description to formulate image-text pair. Following the

previous method [12], totally 20,015 image-text pairs with

24 most frequent labels are used in our experiment.

NUS-WIDE consists of more than 260,000 image-text

pairs. After pruning the data that has no label or text infor-

mation, We use 190,421 pairs with 21 most frequent labels

as our benchmark.

MS COCO [18] contains about 120,000 images. Each

image is described with five semantically related sentences.

We recast the MS COCO dataset to image-text pairs, and

each image-text data pair is annotated with at least one label

in 80 categories.

For the image modality of all benchmarks, each image

is resized to 224 × 224 × 3. While for the text modality of

MIRFlickr-25K and NUS-WIDE, we represent texts by the

bag-of-words vectors with dimensions of 1380 and 1000,

respectively. Different from MIRFlickr-25K and NUS-

WIDE, we extract the word embedding for the text modality

of MS COCO based on Bert for studying the word-level at-

tacking. Thus, each text data is represented with a L ∗ 768
matrix, where L is the word number of text, and 768 is the

dimension of embedding features. The statistics of three

datasets used in our experiments are summarised in Table 1.

Notably, due to the training data of the target network are

generally unavailable when learning a surrogate network,

we only use a part (1000) of the test data to interact with the

target model and create adversarial examples. The lower

number of the required training data needed for the surro-

gate network means lower query cost to the target model.

4.2. Baselines and Evaluations

Focusing on CMHR, we adopt four popular cross-

modal binary code learning methods including DCMH [12],

PRDH [37], SSAH [15], and CMHH [2]. For image modal-

ity, DCMH and PRDH use vgg-f [27] as ImgNet, while

CMHH adopts AlexNet [14]. For text modality, DCMH,

PRDH, and CMHH construct the TxtNet with three fully

connected layers. Different from these methods, SSAH de-

vises the TxtNet by integrating a five-layer fully connected

network into a multi-scale fusion module and further con-

structs LabNet as an assist to ImgNet and TxtNet. Consid-

ering that the text representation of MS COCO is a feature

matrix, which is different from MIRFlickr-25K and NUS-

WIDE, thus we replace the original input layer with a full-

convolutional layer when evaluating on MS COCO. All the

Table 1: Statistics of three datasets used in our experiments.

Dataset

Network Target

(train/test/database)

Surrogate

(train)

MIRFlickr-25K 10000 / 2000 / 18015 1000

NUS-WIDE 10500 / 2100 / 188321 1000

MS COCO 10000 / 5000 / 117218 1000

networks, of course, are assumed to be unknown in our

black-box setting attacking. Therefore, selecting baselines

with different kinds of networks can also demonstrate the

generalization of the learned adversarial examples across

deep models. In addition, to evaluate the attack transferabil-

ity across different code lengths, pre-trained models of these

baselines in producing binary codes of different lengths are

also used in our experiments. For target models, the source

codes of DCMH, PRDH, and SSAH are provided by the

authors. While for CMHH whose code is not available, we

implement it carefully by ourselves.

To evaluate our AACH, two commonly used protocols

in CMHR are adopted in this work, namely MAP that mea-

sures the accuracy of the Hamming ranking procedure and

precision recall curve (PR curve) that measures the accu-

racy of binary code lookups. Following previous methods,

we show the imperceptibility of the adversarial examples

by introducing another indicator of distortion

√∑
(ô∗−o∗)2

|O∗| ,

where ∗ ∈ {v, t}, and |O∗| denotes the total pixel number

of the original data.

4.3. Implementations

The surrogate ImgNet is constructed with the vgg-f,

we just replace the last layer with a tanh layer, followed

by a sign function to output binary codes. The surrogate

TxtNet is built with three fully connected network layers

(text input → 512 → code length). To train the sur-

rogate deep networks and learn adversarial examples, the

Adam optimizer with an initial learning rate of 0.01 is used.

The margin value of β is empirically set as K/2. To con-

struct the cross-modal triplets for each anchor, samples with

the top 10 shortest and longest Hamming distance from the

training set of the surrogate model are selected as positive

instances and negative instances, respectively. For the at-

tack strengths of different modalities, εv is set as 8 for the

image, εt is set as 0.05 for text, and the adversarial pertur-

bations {δv, δt} are both initialized with zeros. After the

adversarial examples are generated, we clip the image into

[0, 255] and clip text into [0, 1]. We implement all the net-

works including the proposed AACH and the baselines via

TensorFlow [1] and run on a server with one NVIDIA Tesla

P40 GPU. In the experiments, we run all the methods 10

times and report their average results.
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Table 2: Attack comparison with different iterations in terms of MAP scores of two retrieval tasks on three benchmarks. The

code length is set as 32 bits. The performance of regular (Reg) retrieval is shown with shading.

Tasks Iterations
MIRFlickr-25K NUS-WIDE MS COCO

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

I → T

Reg 0.792 0.783 0.805 0.756 0.625 0.642 0.651 0.596 0.617 0.621 0.628 0.591

Ours

100 0.654 0.676 0.631 0.693 0.475 0.516 0.462 0.577 0.544 0.548 0.523 0.537

200 0.633 0.630 0.580 0.687 0.457 0.503 0.413 0.571 0.502 0.514 0.479 0.416

500 0.631 0.616 0.564 0.645 0.439 0.497 0.395 0.413 0.461 0.497 0.453 0.411

T → I

Reg 0.779 0.773 0.787 0.772 0.632 0.638 0.664 0.615 0.593 0.610 0.646 0.603

Ours

100 0.698 0.674 0.689 0.599 0.579 0.536 0.603 0.520 0.481 0.479 0.472 0.478

200 0.688 0.668 0.678 0.595 0.571 0.531 0.596 0.512 0.479 0.473 0.476 0.407

500 0.641 0.634 0.647 0.592 0.543 0.524 0.554 0.502 0.475 0.457 0.451 0.405

Figure 3: Variation of DCMH in terms of MAP value and distortion with increasing iterations.

4.4. Results

To evaluate the cross-modal adversarial examples with

increasing learning iterations, we randomly select 500
cross-modal instance pairs and learn to create the cross-

modal adversarial examples in 500 iterations. The results in

terms of MAP scores of two retrieval tasks on three bench-

marks are shown in Table 2. “I→T” denotes retrieval text

using an adversarial image query, while “T→I” denotes re-

trieval image using a text query. The lower performance

means better attack capability. From Table 2, some con-

clusions can be obtained as follows: (1) it is obvious that

with an increase of the learning iteration, the attacking ca-

pability is significantly improved. (2) comparing the results

of two retrieval tasks on MIRFlickr-25K and NUS-WIDE,

adversarial image queries are more powerful than the adver-

sarial text ones. One possible reason is that the raw text is

represented with bag-of-words where only two values “0”

and “1” are used. (3) as mentioned above, for MS COCO,

we represent text with word embedding based on Bert to

study the word-level attacking. Likewise, it can be seen that

our AACH achieves high attacking performance, which also

demonstrates the good generalization performance of our

method. In addition, the distortion variation and MAP val-

ues of DCMH with increased learning iterations are shown

in Fig. 3. As we initialize the adversarial perturbations to

zeros, it can be seen that along with the increasing iter-

ations the distortion gradually gets larger while the MAP

score gets lower. This process demonstrates that our AACH

is learning how to fool the target model.

We also evaluate the effectiveness of our AACH with

different query budgets. We vary the number of adversar-

ial queries M , and each adversarial example is learned with

500 iterations. The attack comparisons in terms of MAP

scores on MIRFlickr-25K, NUS-WIDE, and MS COCO are

shown in Table 3. Obviously, the MAP scores uniformly

decrease with an increasing number of adversarial exam-

ples from 200 to 500. For example, taking 500 queries

interacting with the target networks only once, we can re-

spectively achieve an average over 15% and 10% decrease

of “I→T” and “T→I” on MIRFlickr-25K benchmark. No-

tably, we also see that the attacking performance slightly de-

creases when boosting the number of query data from 500 to

1000, which means some inaccurate information has been

obtained during the interaction with target models. There-

fore, using high-quality query data would be beneficial to

improve the learning efficiency of adversarial examples. PR

curves of different methods under AACH are also provided

in Fig. 4, where 500 adversarial examples learned with 500
iterations are used to test. The bigger area under the curve,

the more semantically similar to the returned instances with

the query. It can be seen our proposed AACH can effec-

tively fool the target models. We attribute this to the cross-

modal triplets construction designed to best take advantage

of the information acquired from target models. As such,

AACH learns to create the cross-modal adversarial exam-

ples close to the instances with different semantics while

far away from the ones with similar semantics. Therefore,
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Table 3: Attack comparison with different numbers of adversarial examples in terms of MAP scores of two retrieval tasks on

three benchmarks. The code length is set as 32 bits.The performance of regular (Reg) retrieval is shown with shading.

Tasks
Adversarial

Queries

MIRFlickr-25K NUS-WIDE MS COCO

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

I → T

Reg 0.792 0.783 0.805 0.756 0.625 0.642 0.651 0.596 0.617 0.621 0.628 0.591

Ours

200 0.655 0.630 0.599 0.694 0.456 0.495 0.441 0.549 0.522 0.550 0.501 0.453

300 0.646 0.628 0.570 0.685 0.441 0.474 0.426 0.451 0.470 0.522 0.488 0.418

500 0.631 0.616 0.564 0.645 0.439 0.497 0.395 0.413 0.461 0.497 0.453 0.411

1000 0.632 0.622 0.583 0.631 0.462 0.463 0.376 0.409 0.519 0.532 0.455 0.414

T → I

Reg 0.779 0.773 0.787 0.772 0.632 0.638 0.664 0.615 0.593 0.610 0.646 0.603

Ours

200 0.748 0.721 0.742 0.655 0.579 0.555 0.612 0.520 0.540 0.534 0.532 0.454

300 0.715 0.691 0.698 0.609 0.556 0.552 0.586 0.512 0.501 0.497 0.479 0.420

500 0.641 0.634 0.647 0.592 0.543 0.524 0.554 0.502 0.475 0.457 0.451 0.405

1000 0.639 0.618 0.648 0.575 0.519 0.525 0.557 0.475 0.487 0.426 0.364 0.417
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Figure 4: PR curves evaluated on MIRFlickr-25K and NUS-WID with 32-bit binary codes. ‘*-A’ means that the target model

is attacked by the proposed AACH.

Table 4: Attack transferability comparison in terms of MAP scores of two retrieval tasks on MIRFlickr-25K and NUS-WIDE.

The adversarial examples are learned from the target model designed for 32-bit binary codes, aiming to attack target models

of other bits.“R” denotes regular retrieval, and “A” denotes attacking retrieval using our proposed AACH.

Tasks Bits

MIRFlickr-25K NUS-WIDE

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

R A R A R A R A R A R A R A R A

I → T

16 0.752 0.623 0.753 0.610 0.788 0.595 0.733 0.611 0.632 0.446 0.638 0.474 0.664 0.372 0.615 0.560

32 0.792 0.631 0.783 0.616 0.805 0.564 0.756 0.645 0.625 0.439 0.642 0.497 0.651 0.395 0.596 0.413

64 0.777 0.638 0.768 0.618 0.801 0.599 0.758 0.641 0.621 0.473 0.648 0.486 0.659 0.388 0.593 0.502

T → I

16 0.768 0.644 0.759 0.654 0.780 0.671 0.765 0.657 0.643 0.565 0.629 0.499 0.646 0.593 0.600 0.514

32 0.779 0.641 0.773 0.634 0.787 0.647 0.772 0.592 0.632 0.543 0.638 0.524 0.664 0.554 0.615 0.502

64 0.781 0.658 0.776 0.688 0.783 0.683 0.779 0.659 0.624 0.552 0.641 0.527 0.657 0.567 0.605 0.506

the number of queries from the target model can be signif-

icantly decreased, which means AACH is more applicable

to the case that the query budget will be highly limited.

Furthermore, the transferability of the created adversar-

ial examples across different code lengths is also evaluated,

as shown in Table 4. We create adversarial examples based

on the surrogate cross-modal networks with 32 bits. With

the learned adversarial examples, we attack the target cross-

modal networks in different code lengths. From Table 4, we

can find that the adversarial examples can be well transfer-

able among different code lengths.

Compared with CMLA. CMLA is a pioneer work in the

cross-modal Hamming attacking area. However, the CMLA

is designed for a white-box setting. We show the compari-

son between CMLA and ours on three different benchmarks

in Table 5. Taking retrieval on MS COCO as an example,

CMLA achieves higher attacking performance, which con-

siderably decreases the retrieval accuracy, particularly in the

text modality achieve. This is mainly attributed to CMLA

has all prior knowledge including both target network struc-

tures and label information. Comparing with CMLA, our

proposed AACH does not depend on any prior knowledge,

which creates adversarial examples by limitedly interacting

with target models. Even so, our proposed AACH achieves

2224



Table 5: Attack comparison with CMLA in terms of MAP scores on different datasets. The code length is set as 32 bits.The

performance of regular (Reg) retrieval is shown with shading.

Tasks Methods
MIRFlickr-25K NUS-WIDE MS COCO

DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH DCMH PRDH SSAH CMHH

I → T

Reg 0.792 0.783 0.805 0.756 0.625 0.642 0.651 0.606 0.617 0.621 0.628 0.591

CMLA 0.521 0.598 0.600 0.563 0.457 0.404 0.357 0.331 0.442 0.396 0.420 0.402

Ours 0.631 0.616 0.564 0.645 0.439 0.497 0.395 0.413 0.461 0.497 0.453 0.411

T → I

Reg 0.779 0.773 0.787 0.772 0.632 0.638 0.664 0.625 0.593 0.610 0.646 0.603

CMLA 0.561 0.501 0.575 0.564 0.371 0.439 0.320 0.325 0.247 0.256 0.297 0.370

Ours 0.641 0.634 0.647 0.592 0.543 0.524 0.554 0.502 0.475 0.457 0.451 0.405

(a) Visualization of both the raw image instance (left) and adversarial image query (right)

(b) Visualization of adversarial text query

Figure 5: Cross-modal adversarial examples learned by the proposed AACH.

comparable performance with CMLA on the “I→T” task,

demonstrating the efficiency of our method. Comparing the

attacking results of “T→I” between different benchmarks,

we can find that methods uniformly achieve higher attack-

ing performances on MS COCO than that on MIRFlickr-

25K and NUS-WIDE. This is because that the real fea-

ture representation (feature embedding) of text has high-

dimensional feature space, which can provide rich seman-

tics for regular retrieval task, but at the same time, increase

the risk of being attacked.

Finally, some visualization results of the learned cross-

modal adversarial examples on NUS-WIDE benchmark are

provided in Fig 5. For image, we show both the raw queries

and the created adversarial examples, where the difference

between raw queries and adversarial ones is nearly invisi-

ble. While for text, we directly show the adversarial exam-

ples. Minor perturbation can be seen in text queries because

of the bag-of-words vector representations used in raw text

modality.

5. Conclusions

This paper proposes a novel adversarial example learn-

ing method, dubbed AACH, for cross-modal Hamming re-

trieval, which aims to attack a target deep cross-modal

Hamming model in a black-box setting. Our proposed

AACH constructs a surrogate model to interact with the

target networks by querying it, without requiring any prior

knowledge about the target networks. Therefore, to some

extent, AACH is more practical for real-world applications

compared with state-of-the-art methods. Besides, a novel

triplet construction module is proposed to formulate cross-

modal triplets, with which we significantly enhance the

learning efficiency of adversarial examples. In this way,

AACH can be applied in extreme conditions where the

query budget is highly limited. Finally, the effectiveness

of AACH is well demonstrated by the comprehensive ex-

periments conducted on three representative benchmarks.
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