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assume one-to-one mapping, and thus tend to predict
the average of all possible target motions, resulting in
plain/boring motions during inference. In order to over-
come this problem, we propose a novel conditional vari-
ational autoencoder (VAE) that explicitly models one-to-
many audio-to-motion mapping by splitting the cross-modal
latent code into shared code and motion-specific code. The
shared code mainly models the strong correlation between
audio and motion (such as the synchronized audio and mo-
tion beats), while the motion-specific code captures diverse
motion information independent of the audio. However,
splitting the latent code into two parts poses training dif-
ficulties for the VAE model. A mapping network facilitat-
ing random sampling along with other techniques includ-
ing relaxed motion loss, bicycle constraint, and diversity
loss are designed to better train the VAE. Experiments on
both 3D and 2D motion datasets verify that our method
generates more realistic and diverse motions than state-of-
the-art methods, quantitatively and qualitatively. Finally,
we demonstrate that our method can be readily used to
generate motion sequences with user-specified motion clips
on the timeline. Code and more results are at https:
//jingli513.github.io/audio2gestures.

1. Introduction

In the real world, co-speech gestures help express one-
self better, and in the virtual world, it makes a talking avatar
act more vividly. Attracted by these merits, there has been
a growing demand for generating realistic human motions
for given audio clips recently. This problem is very chal-
lenging because of the complicated one-to-many relation-
ship between audio and motion. A speaker may act differ-
ent gestures when speaking the same words due to different
mental and physical states.

*Corresponding author: zhenyuhe @hit.edu.cn

Figure 1. Illustration of the existence of one-to-many mapping be-
tween audio and motion in Trinity dataset [10]. Different gestures
are performed when the subject says “completely”.Similar phe-
nomena broadly exist in co-speech gestures. The character used
for demonstration is from Mixamo [1].

Existing algorithms developed for audio to body dynam-
ics have some obvious limitations. For example, [12] adapts
a fully convolutional neural network to co-speech gesture
synthesis tasks. Nevertheless, their model tends to predict
averaged motion and thus generates motions lacking diver-
sity. This is due to the underlying one-to-one mapping as-
sumption of their model, which ignores that the relation-
ship between speech and co-speech gesture is one-to-many
in nature. Under such an overly simplified assumption, the
model has no choice but to learn the averaged motion when
several motions match almost the same audio clips in order
to minimize the error. The above evidence inspires us to
study whether or not explicitly modeling this multimodality
improves the overall motion quality. To enhance the regres-
sion capability, we introduce an extra motion-specific latent
code. With this varying full latent code, which contains the
same shared code and varying motion-specific code, the de-
coder can regress different motion targets well for the same
audio, achieving one-to-many mapping results. Under this
formulation, the shared code extracted from audio input
serves as part of the control signal. The motion-specific
code further modulates the audio-controlled motion, en-
abling multimodal motion generation.

Although this formulation is straightforward, it is not
trivial to make it work as expected. Firstly, there exists an
easy degenerated solution since the motion decoder could
utilize only the motion-specific code to reconstruct the mo-
tion. Secondly, we need to generate the motion-specific
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code since we do not have access to the target motion dur-
ing inference. Our solution to the aforementioned problems
is providing random noise to the motion-specific code so
that the decoder has to utilize the deterministic information
contained in the shared code to reconstruct the target.

But under this circumstance, it is unsuitable for forcing
the motion decoder to reconstruct the exact original target
motion anymore. So a relaxed motion loss is proposed
to apply to the motions generated with random motion-
specific code. Specifically, it only penalizes the joints de-
viating from their targets larger than a threshold. This loss
encourages the motion-specific code to tune the final motion
while respecting the shared code’s control.

Our contributions can be summarized as:

* We present a co-speech gesture generation model
whose latent space is split into shared code and
motion-specific code to better regress the training data
and generate diverse motions.

* We utilize random sampling and a relaxed motion loss
to avoid degeneration of the proposed network and en-
able the model to generate multimodal motions.

* The effectiveness of the proposed method has been
verified on 3D and 2D gesture generation tasks by
comparing it with several state-of-the-art methods.

* The proposed method is suitable for motion synthe-
sis from annotations since it can well respect the pre-
defined actions in the timeline by simply using their
corresponding motion-specific code.

2. Related Work

Audio to body dynamics. Early methods generate hu-
man motion for specified audio input by blending motion
clips chosen from a motion database according to hidden
Markov model [28] or conditional random fields [27]. Al-
gorithms focusing on selecting motion candidates from a
pre-processed database usually cannot generate motions out
of the database and does not scale to large databases.
Recently, deep generative models, such as VAEs [23]
and GANSs [14], have achieved great success in generating
realistic images, as well as human motions [39, 17, 29]. For
example, [36] utilizes a classic LSTM to predict the body
movements of a person playing the piano or violin given the
sound of the instruments. However, the body movements of
a person playing the piano or violin show regular cyclic pat-
tern and are usually constrained within a small pose space.
In contrast, generating co-speech gestures is more chal-
lenging in the following two aspects — the motion to gen-
erate is more complicated and the relationship between
the speech and motion is more complicated. As a result,
Speech2Gesture [12] proposes a more powerful fully con-
volutional network, consisting of a 8-layer CNN audio en-
coder and a 16-layer 1D U-Net decoder, to translate log-mel
audio feature to gestures. And this network is trained with

14.4 hours of data per individual on average in compari-
son to 3 hours data in [36]. Other than greatly enlarged
network capacity, this fully convolutional network better
avoids the error accumulation problem often faced by RNN-
based methods. However, it still suffers from predicting the
averaged motion due to the existence of one-to-many map-
ping in the training data. The authors further introduce ad-
versarial loss and notice that the loss helps to improve diver-
sity but degenerates the realism of the outputs. In contrast,
our method avoids learning the averaged motion by explic-
itly modeling the one-to-many mapping between audio and
motion with the help of the extra motion-specific code.
Due to lack of 3D human pose data, the above deep
learning based methods [36, 12] have only tested 2D hu-
man pose data, which are 2D key point locations estimated
from videos. Recently, [10] collects a 3D co-speech gesture
dataset named Trinity Speech-Gesture Dataset, containing
244 minutes motion capture (MoCap) data with paired au-
dio, and thus enables deep network-based study on mod-
eling the correlation between audio and 3D motion. This
dataset has been tested by StyleGestures [16], which is a
flow-based algorithm [22, 16]. StyleGestures generates 3D
gestures by sampling poses from a pose distribution pre-
dicted from previous motions and control signals. However,
samples generated by flow-based methods [22, 16] are of-
ten not as good as VAEs and GANS. In contrast, our method
learns the mapping between audio and motion with a cus-
tomized VAE. Diverse results can be sampled since VAE is
a probabilistic generation model.
Human motion prediction. There exist many works
focus on predicting future motion given previous mo-
tion [17, 35, 39]. It is natural to model sequence data
with RNNs [11, 19, 31, 39]. But [17] has pointed out the
RNN-based methods often suffer from error accumulation
and thus are not good at predicting long-term human mo-
tion. So they proposes to use a fully convolutional gener-
ative adversarial network and achieves better performance
at long-term human motion prediction. Similarly, we also
adopt a fully convolutional neural network since we need
to generate long-term human motion. Specific to 3D hu-
man motion prediction, another type of error accumulation
happens along the kinematic chain [35] because any small
joint rotation error propagates to all its descendant joints,
e.g. hands and fingers, resulting in considerable position
error especially for the end-effectors (wrists, fingers). So
QuaterNet [35] optimizes the joint position which is calcu-
lated from forward kinematics when predicting long-term
motion. Differently, we optimize the joint rotation and po-
sition losses at the same time to help the model learn the
joint limitation at the same time.
Multimodal generation tasks. Generating data with mul-
timodality has received increasing interests in various tasks,
such as image generation [18, 42], motion generation [38,
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43]. For image generation, MUNIT [18] disentangles the
embedding of images into content feature and style fea-
ture. BicycleGAN [42] combined cVAE-GAN [26] and
cLR-GAN [6, 9] to encourage the bijective consistency be-
tween the latent code and the output so that the model
could generate different output by sampling different codes.
For video generation, MoCoGAN [38] and S3VAE [43]
disentangle the motion from the object to generate videos
in which different objects perform similar motions. Dif-
ferent from [38, 43], our method disentangle the motion
representation into the audio-motion shared information
and motion-specific information to model the one-to-many
mapping between audio and motion.

3. Preliminaries

In this section, we first briefly introduce the variational
autoencoder (VAE) [23], which is a widely used genera-
tive model. Then we describe 3D motion data and the most
commonly used motion losses.

3.1. Variational autoencoder

Compared to autoencoder, VAE additionally imposes
constraints on the latent code to enable sampling outputs
from the latent space. Specifically, during training, the dis-
tribution P of the latent code is constrained to match a target
distribution ) with KL divergence as follows:

D(Q(2) | P(2X)) = Eznq[log Q(2) —log P(2|X)], (1)

where the X represents the input of the corresponding en-
coder (audio or motion in our case), and z represents its
corresponding latent code. The above goal can be achieved
by minimizing the Evidence Lower Bound (ELBO) [8]:

log P(X|2) — D[Q(2|X) || P(2)]- 2

The second term of Eq. 2 is a KL-divergence between
two Gaussian distributions (with a diagonal covariance ma-
trix). The prior distribution P is set to Gaussian distribution
(with a diagonal covariance matrix in our model, thus, the
KL-divergence can be computed as:

D=4 (tr (S(X) + u(X) p(X) — k — logdet (2(X)) ), (3)

where k is the dimension of the distribution [8].

3.2. Motion reconstruction loss

In our method, the generated motion is supervised with
motion reconstruction loss, consisting of rotation loss, posi-
tion loss, and speed loss. Formally, it is defined as follows:

Lmot == )\rot X Lrot + )\pos X Lpos + )\speed X Lspeed7 (4)

where Arot, Apos» Aspeed are weights. We detail each term in
the following.

Angular distance, i.e., geodesic distance, between the
predicted rotation and the GT is adopted as the rotation loss.
Mathematically,

Tr (RI(RI)~') -1
Lot = 72 Z}le ZtT:l Cos—l%_ 5)

Position loss is the L, distance between the predicted
and target joint positions as follows:

J T y )
LPOS = ﬁ Z]‘:l Zt:l Hp{ —pg Hl (6)

Speed loss is introduced to help the model learn the com-
plicated motion dynamics. In our work, the joint speed v}
is defined as v = p],, — p;. We optimize the predicted
and target joint speed as follows:

J T—1 ~7 j
Lspeed = ﬁ Zj:l Zt:l |U1z - /U}Z ”1 (7)

Our model can be trained with 2D motion data or 3D
motion data. When modeling the 2D human motion, our
method directly predicts the joint position. When modeling
the 3D human motion, our method predicts the joint rotation
and calculates the 3D joint positions with forward kinemat-
ics (FK). Concretely, the FK equation takes in as input the
joint rotation matrix about its parent joint and the relative
translation to its parent joint (i.e. bone length) and outputs
joint positions as follows:

=" + RS, ®

where R{ represents the rotation matrix of joint j in frame ¢,
p7 represents the position of joint j in frame ¢, s7 represents
the relative translation of joint j to its parent, and parent(j)
represents the parent joint index of the joint j. We will al-
ways use j and ¢ to index joints and frames in the following.
Our model predicts joint rotation in 6D representation [41],
which is a continuous representation that help the optimiza-
tion of the model. The representation is then converted to
rotation matrix R} by Gram-Schmidt-like process, where
RY is the rotation matrix of joint j in frame ¢.

4. Audio2Gestures

The proposed Audio2Gestures algorithm is detailed in
this section. We first present our Audio2Gestures network
by formulating the multimodal motion generation problem
in Sec. 4.1, then we detail the training process in Sec. 4.2.

4.1. Network structure

We use a conditional encoder-decoder network to model
the correlation between audio A and motion M =
[p1, D2, .., pT], Where p; represents the joint positions of
frame ¢. In Fig. 2, our proposed model is made up of an au-
dio encoder f 4, a motion encoder 3/, a mapping net fr to
produce motion-specific code during inference, and a com-
mon decoder g to generate motions from latent codes. The
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Figure 2. Our method explicitly models the audio-motion mapping by splitting the latent code into shared and motion-specific codes. The
decoder generates different motions by recombining the shared and motion-specific codes extracted from different sources. The data flow
in blue is only used at the training stage because we do not have motion data during inference.

latent code has been explicitly split into two parts (code S
and 1) to account for the frequently occurred one-to-many
mapping between the same (technically, very similar) audio
and many different possible motions. The mapping network
is introduced to facilitate sampling motion-specific codes.
Under this formulation, given the same audio input (result-
ing in the same shared code S,), varied motions produce
different motion-specific code Iy through motion encoder
fm, resulting in different full latent codes (Sa & Iy) so
that the network can better model the one-to-many mapping
(M = g(Sa, Im))-

During inference, shared feature Sy is extracted with fa
from the given audio A. Motion-specific feature Iy is gen-
erated with fr from a randomly sampled signal . Both Sy
and Iy are fed into the decoder g to produce the final motion
M,ie M = g(Sa, Ir).

During training, given a paired audio-motion data A and
M, their features Sa, Sum, Ivm are firstly extracted by the en-
coders. Concretely, Sy = fa(A) and (Sum, Im) = fm(M).
The decoder learns to reconstruct the input motion from
the extracted features. To be specific, the decoder mod-
els the motion space by reconstructing the input motion by
M = 9(Sm, Im) The model is expected to learn the joint
embedding of audio and motion by guiding the decoder gen-
erate the same target motion from shared codes extracted
from different source. But in practice, we notice the de-
coder will ignore the shared codes S and reconstruct the
motion only from Ij;. This is unwanted since the final mo-
tion is solely determined by the motion-specific features,
being completely not correlated with the control signal (au-
dio). Thus, another data flow (Mg, 7, = g(Sa, Ir)) is in-
troduced so that the decoder has to utilize the information
contained in the shared code extracted from audio to recon-
struct the target. The Iy is generated from the mapping net
fr, whose input is a random signal from a Gaussian distri-
bution. The mean and variance of the distribution is cal-

culated from the Iy of the target motion per channel. We
experimentally find using a mapping network f is helpful
to improve the realism of the generated motions, which is
mainly caused by the mapping network helps align the sam-
pled feature with the motion-specific feature.

4.2. Latent code learning

To better learn the split audio-motion shared and motion-
specific latent codes, five types of losses are introduced
(Fig. 3). Alignment constraint and relaxed motion loss are
introduced to learn the joint embedding (i.e., shared code)
of the audio and motion. Bicycle constraints and diversity
loss are introduced to model the multimodality of the mo-
tions. KL divergence has been described in Sec. 3 and thus
omitted. The details are as follows.

Shared code alignment. The shared code of paired audio
and motion is expected to be the same so that we can safely
use audio-extracted shared code during inference and gener-
ate realistic and audio-related motions. We align the shared
code of audio and motion by the alignment constraint:

Lac = || Sa — Sm |- €))

Degeneration avoidance. As we described in Sec. 4.1,
the model easily results in the degenerated network, which
means the shared code is completely ignored and has no
effect on the generated motion. Our solution to alleviat-
ing such degeneration is introducing an extra motion re-
construction with audio extracted shared code S, and ran-
dom motion-specific code Ir. Ideally, the generated mo-
tion M s, I, Tesembles its GT from some aspects but is not
the same as its GT. In our case, We assume the generated
poses are similar in the 3D world space. Thus we propose
relaxed motion loss, which calculates the position loss and
penalizes the model only when the distance is larger than a
certain threshold p:

Ls = 5 o, max (|| pi = pi 1 = p,0). (10)
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Figure 3. The training details of our model. Our model is trained
with alignment constraint, motion reconstruction losses, relaxed
motion loss, bicycle constraint, diversity loss and KL divergence.
The alignment constraints and motion reconstruction loss help the
model learn the audio-motion joint embedding. The relaxed mo-
tion loss avoids the degeneration of the shared code. The bicycle
constraints and the diversity loss help reduce the mode-collapse
problem and guide the model to generate multimodal motions. The
KL divergence is omitted in the figure for the sake of brevity.

Motion-specific code alignment. Although the motion-
specific code could be sampled from Gaussian distribution
directly, we noticed that the realism and diversity of the gen-
erated motions are not good. The problem is caused by the
misalignment of the Gaussian distribution and the motion-
specific code distribution. Thus, the mapping net is intro-
duced to map the signal sampled from Gaussian space to
the motion-specific embedding. At the training stage, we
calculate the mean and variance for every channel and every
sample of the Iy;. The sampled features will be fed into a
mapping network, which is also a variational autoencoder,
before concatenating them with different shared codes to
generate motions.

Motion-specific code reconstruction. Although the model
could model the multimodal distribution of audio-motion
pair by splitting the motion code into audio-motion shared

one and motion-specific ones, it is not guaranteed the de-
coder can sample multimodal motions. For example, sup-
pose the mapping net only maps the sampled signal to a
single mode of the multimodal distribution. In that case, the
decoder still could only generate unimodal motions, which
is also known as the mode-collapse problem. The bicycle
constraint [42] (M — I — M and I — M — I)is
introduced to avoid the mode-collapse problem, which en-
courages a bijection between the motion and the motion-
specific code. Since the motion reconstruction loss has al-
ready been introduced, an extra reconstruction loss of the
motion-specific code is added as supplement:

Lcyc = HjR_[R ”1 (11)

Motion diversification. To further encourage multimodal-
ity of the generated motion, diversity loss [30, 7] is intro-
duced. Maximizing the multimodality loss encourages the
mapping network to explore the meaningful motion-specific
code space. We follow the setting in [7] and directly max-
imize the joint position distance between two sampled mo-
tions since it is more stable than the original one [30]:

Lps = —Lyos(Msy 1y, , M). (12)

5. Experiments

In this section, we first introduce the datasets, evaluation
metrics and implementation details separately in Sec. 5.1-
5.3. Then we show the performance of our algorithm and
compare it with three state-of-the-art methods 5.4. Finally,
we analyze the influence of each module of our model on
the performance by ablation studies 5.5. More results are
presented in our project page'.

5.1. Datasets

Trinity dataset. Trinity Gesture Dataset [10] is a large-
scale speech to gesture synthesis dataset. This dataset
records a male native English speaker talking many dif-
ferent topics, such as movies and daily activities. The
dataset contains 23 sequences of paired audio-motion data,
244 minutes in total. The audio of the dataset is recorded
at 44kHz. The motion data, consisting of 56 joints, are
recorded at 60 frame per second (FPS) or 120 FPS using
Vicon motion capture system.

S2G-Ellen dataset. The S2G-Ellen dataset, which is a sub-
set of the Speech2Gesture dataset [12], contains positions
of 49 2D upper body joint estimated from 504 YouTube
videos, including 406 training sequences (469513 frames),
46 validation sequences (46027 frames), and 52 test se-
quences (59922 frames). The joints, which is estimated us-
ing OpenPose [5], include neck, shoulders, elbows, wrists,
and hands.

https://jingli513.github.io/audio2gestures
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5.2. Evaluation metrics

5.2.1 Quantitative metrics

Realism. Following Ginosar et al.’s [12] suggestion, the
L, distance of joint position in Eq. 13 and the percentage of
correct 3D keypoints (PCK) in Eq. 14 are adopted to eval-
uate the realism of the generated motion. Specifically, L
distance is calculated by averaging the corresponding joint’s
position error of all joints between prediction M and GT
M:

Ly = 755 3 S0y I — M. (13)

The PCK metric calculates the percentage of correctly pre-
dicted keypoints, where a predicted keypoint is thought as
correct if its distance to its target is smaller than a threshold
d:

PCK = 715 Y0, S 1l — pllle <], (14)

where 1 is the indicator function and p{ indicates joint j’s
position of frame ¢. As in [12], the § is set to 0.2 in our
experiments.

Diversity. Diversity measures how many different
poses/motions have been generated within a long motion.
For example, RNN-based methods easily get stuck to some
static motion as the generated motion becomes longer and
longer. And static motions, which are undesired apparently,
should get low diversity scores. We first split the generated
motions into equal-lengthed non-overlapping motion clips
(50 frames per clip in our experiments) and we calculate
diversity as the averaged L, distance of the motion clips.
Formally, it is defined as:

. . N N ~ ~
Diversity = x5 w77 2oar =1 oasmar+1 1Moy = May 1, (15)

where the Ma] and M@ represent clips from the same mo-
tion sequence, N represents the count of the motion clips,
which is % in our experiments. Please note that jitter mo-
tion and invalid poses can also result in high diversity score.
So higher diversity is preferred only if the generated motion

is natural.

Multimodality. Multimodality measures how many differ-
ent motions could be sampled (through multiple runs) for
a given audio clip. Note that multimodality calculates mo-
tion difference across different motions while diversity cal-
culates (short) motion clip difference within the same (long)
motion. We measure the multimodality by generating mo-
tions for an audio N times, which is 20 in our experiments,
and then calculate the average L, distance of the motions.

Multimodality = W Zflv:l Z{;V:(H»l H]‘:/[a, - Ni’th (16)

where the M, and M, represent sampled motions gener-
ated through different runs for the given audio. Similar to
diversity, invalid motion will also result in abnormally high
multimodality score.
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Figure 4. User study results comparing our method against the
state-of-the-art methods. “S2G” is short for Speech2Gesture [12].
The horizontal axis represents the number of samples rated by the
participants. In total, 160 comparisons have been rated (40 par-
ticipants, 4 comparisons each questionnaire). The average score
(higher is better) for each method is listed on the right. Bars with
different colors indicate the count of the corresponding ranking of
each algorithm. The video results are in our project page.

5.2.2 User studies

To evaluate the results qualitatively, we conduct user stud-
ies to analyze the visual quality of the generated motions.
Our questionnaire contains four 20-second long videos. The
motion clips shown in one video is generated by various
methods from the same audio clip. The participants are
asked to rate the motion clips from the following three as-
pects respectively:

1. Realism: which one is more realistic?

2. Diversity: which motion has more details?

3. Matching degree: which motion matches the audio

better?

The results of the questionnaires are shown in Fig. 4. We
show the count of different ranking in the figure. The av-
erage score of different metrics for each algorithm is listed
after the corresponding bar. The scores assigned to each
ratings are {5,4,3,2,1} for {best, fine, not bad, bad, worst}
respectively.

5.3. Implementation details

Data processing. We detail the data processing of Trinity
dataset and S2G-Ellen dataset here.

(1) Trinity dataset. The audio data are resampled to
16kHz for extracting log-mel spectrogram [37] feature us-
ing librosa [32]. More concretely, the hop size is set to
SR/FR where SR is the sample rate of the audio and FR
is the frame rate of the motion so that the resulting audio
feature have the same length as the input motion. In our
case, the resulting hop size is 533 since SR is 16000 and FR
is 30. The dimension of the log-mel spectrogram is 64.

The motion data are downsampled to 30 FPS and then
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Dataset Method | Ll PCK 1 Diverisity 1 Multimodality 1
S2G w/o GAN [12] 7.71 0.82 5.99 -
Trinit S2G [12] 24.68 0.39 2.46 -
Nty StyleGestures [3] 18.97 (18.07) 0.34 (0.34) 2.34 (3.79) 7.55
Ours 7.84 (7.65) 0.82 (0.83) 6.32 (6.52) 4.11
S2G w/o GAN [12] 0.74 0.37 0.61 -
S2G-Ellen S2G [12] 1.08 0.23 0.89 -
Ours 0.94 (0.92) 0.33 (0.34) 0.84 (0.85) 0.77

Table 1. Quantitative results on Trinity dataset and S2G-Ellen dataset. 1 means the higher is better and | means the lower is better. For
methods supporting sampling, we run 20 tests and report their average score and the best score (in parentheses). Speech2Gesture (“S2G”

in the table) could not generate multimodality motions.

Method | L1l PCK 1 Diversity 1 Multimodality 1
baseline 8.22 0.80 6.20 -

+ split 8.69 (8.30) 0.77 (0.78) 5.83 (6.02) 5.90

+ mapping net 8.06 (7.91) 0.80 (0.81) 5.86 (6.05) 344

+ bicycle constraint 7.94 (7.63) 0.80 (0.82) 6.31 (6.46) 3.68

+ diversity loss 7.84 (7.65) 0.82 (0.83) 6.32 (6.52) 4.11

Table 2. Ablation study results on the Trinity dataset. Note that every line adds a new component compared to its previous line. For
methods supporting sampling, we run 20 tests and report their average score and the best score (in parentheses).

retargeted to the SMPL-X [34] model. SMPL-X is an ex-
pressive articulated human model consisting of 54 joints
(21 body joints, 30 hand joints, 3 face joints, respectively) ,
which has been widely used in 3D pose estimation and pre-
diction [20, 34, 40, 25]. The joint rotation is in 6D rotation
representation [41] in our experiments, which is a smooth
representation and could help the model approximate the
target easier. Note that the finger motions are removed due
to unignorable noise.

(2) S2G-Ellen dataset. Following [12], the data are split

into 64-frame long clips (4.2 seconds). Audio features are
extracted in the same way as the Trinity dataset. The body
joints are represented in a local coordinate frame relative
to its root. Namely, the origin of the coordinate is the root
joint.
Network. Every encoder, decoder and mapping net con-
sists of four residual blocks [15], including 1D convolution
and ReLU non-linearity [2]. The residual block is similar
to [4] except several modifications. To be specific, the ca-
sual convolutions whose kernels see only the history are re-
placed with normal symmetric 1D convolutions seeing both
the history and the future. Both the shared code and motion-
specific code are set to 16 dimensions.

Training. At the training stage, we randomly crop a 4.2-
second segment of the audio and motion data, which is 64
frames for the S2G dataset (15 FPS) and 128 frames for
the Trinity dataset (30 FPS). The model weights are initial-
ized with the Xavier method [13] and trained 180K steps
using the Adam [21] optimizer. The batch size is 32 and the
learning rate is 10~%. The Ao, Aposs Aspeed are setas 1,1,5
respectively, and p is set as 0.02 in our experiments. Our
model is implemented with PyTorch [33].

5.4. Comparison with state-of-the-art methods

We compare our method with two recent representa-
tive state-of-the-art methods, including one LSTM-based
method named StyleGestures [3] and one CNN-based
method named Speech2Gesture [12] on Trinity dataset.
StyleGestures adapts normalizing flows [24, 22, 16] to
speech-driven gesture synthesis. We train StyleGestures
using the code released by the authors. The training data
of the StyleGestures are processed in the same way as the
authors indicate>. Speech2Gesture, originally designed to
map speech to 2D human keypoints, consists of an audio
encoder and a motion decoder. Its final output layer has
been adjusted to predict 3D joint rotations and is trained
with the same losses as our method.

Quantitative experimental results are listed in Tab. 1 and
user study results in Fig. 4. Both results show that our
method outperforms previous state-of-the-art algorithms on
the realism and diversity metrics, demonstrating that it is
beneficial to explicitly model the one-to-many mapping be-
tween audio and motion in the network structure.

While StyleGestures supports generating different mo-
tions for the same audio by sampling, the quality of its
generated motions is not very appealing. Also, its diver-
sity score is the lowest, because LSTM output easily gets
stuck into some poses, resulting in long static motion af-
terwards. The algorithm is not good at generating long-
term sequences due to the error accumulation problem of
the LSTM. The authors test their algorithm on 400 frames
(13 seconds) length sequences. However, obviously dete-
riorated motions are generated when evaluating their algo-
rithm to generate 5000-frame (166 seconds) long motions.

As for Speech2Gesture, the generated motions show

2The motions generated by StyleGestures are 20 FPS and have a dif-
ferent skeleton from our method. We upsample the predicted motion to 30
FPS and retarget it to SMPL-X skeleton with MotionBuilder.
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similar realism with ours but obtain lower diversity score
(Tab. 1) than our method. But Speech2Gesture does not
support generating multimodal motions. Also note that
Speech2Gesture with GAN generates many invalid poses
and gets the worst performance. We have trained the model
several times changing the learning rate range from 0.0001
to 0.01, and report the best performance here. The bad per-
formance may be caused by the unstable of the training pro-
cess of the generative adversarial network.

5.5. Ablation study

To gain more insights into the proposed components of
our model, we test some variants of our model on the 3D
Trinity dataset (Tab. 2). We run every variant 20 times and
report the averaged performance and the best performance
to avoid the influence of randomness. Note that the ran-
domness of our model comes from two different parts, the
randomness introduced by the variational autoencoder and
by the motion-specific feature sampling.

We start with a “baseline” model, which excludes the
mapping net and the split code. It is trained only with the
motion reconstruction losses (Eq. 4) and shared code con-
straint (Eq. 9). The averaged scores “avg L, “avg PCK”
and “avg Diversity” of the model equal to the best scores
“min L;”, “max PCK” and “max Diversity” on L, which
indicates that the randomness of the VAE model have al-
most no affect on generating multimodal motions.

The next setting is termed as “+split”, which splits
the output of the motion encoder into shared and motion-
specific codes and introduces the relaxed motion loss (Eq.
10). This modification explicitly enables the network to
handle the one-to-many mapping, but it harms the realism
(see “avg L1”, “min L;”, “avg PCK” and “max PCK”) and
diversity. As we can see, both the L; and the PCK metrics
are worse than “baseline”. The abnormal results is mainly
caused by the misalignment between the sampled signal and
the motion-specific feature. We analyze the difference be-
tween the sampled signals with the motion-specific feature,
and find that there is a big difference in their statistical char-
acteristics, such as the mean and variance of derivatives.

Thus, a mapping network (“+mapping net”) is intro-
duced to align the sampled signal with the motion-specific
feature automatically. Although the multimodality drops
compare to “+split”’, this modification helps to improve
other metrics of the generated motions a lot. Note that
a higher multimodality score only makes sense when the
generated motions is natural, as described in Sec. 5.2. The
“+mapping net” model also outperforms the baseline model
in the L; metrics and gets a similar PCK metrics, but the
model could generate multimodal motions. We notice that
the diversity of the motions generated by “+mapping net”
model is not as good as the baseline model. The realism
score of the “+mapping net” model is also worse than the
baseline model, which may be due to the users prefer the

motions with more dynamics. We think the problem may
be caused by the mode collapse problem suffered by many
generative methods.

To overcome this problem, two simple yet effective
losses — Bicycle constraints and diversity loss — are intro-
duced. Bicycle constraint improves the multimodality of
the motions from 3.44 to 3.68. The avg diversity of the mo-
tions also increase from 5.86 to 6.31. The diversity loss fur-
ther improves the motion diversity and multimodality but
have little influence on the realism. The final model out-
performs the baseline model in all quantitative indicators,
which shows that the audio-motion mapping could be better
modeled by explicit modeling the one-to-many correlation.

5.6. Application

We notice that motion-specific code extracted from a
motion strongly controls the final motion output. To be
specific, the synthesized motion is almost the same as the
original motion used to extract this motion-specific code.
This feature is perfect for a type of motion synthesis appli-
cation where pre-defined motions are provided on the time-
line as constraints. For example, if there is a n-frame long
motion clip that we want the avatar to perform from frame
t to t + n. We could extract its motion-specific code s
with the motion encoder and directly replace the sampled
motion-specific code Ir from ¢ to ¢ + n. Our model could
generate a smooth motion from the edited motion-specific
code. Please refer to our project page for the demonstration.

6. Conclusion

In this paper, we explicitly model the one-to-many map-
ping by splitting the latent code into shared code and
motion-specific code. This simple solution with our cus-
tomized training strategy effectively improves the realism,
diversity, and multimodality of the generated motion. We
also demonstrate an application that the model could insert
a specific motion into the generated motion by editing the
motion-specific code, with smooth and realistic transitions.
Despite the model could generate multimodal motions and
provide users the ability to control the output motion, there
exist some limitations. For example, the generated motion
is not very related to what the person says, future work
could be improving the meaning of the generated motion by
incorporating word embedding as an additional condition.

7. Acknowledgement

This work was supported by the Natural Science
Foundation of China (U2013210, 62006060), the Shen-
zhen Research Council (JCYJ20210324120202006), the
Shenzhen Stable Support Plan Fund for Universities
(GXWD20201230155427003-20200824125730001), and
the Special Research project on COVID-19 Prevention and
Control of Guangdong Province (2020KZDZDX1227).

11300



References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

(14]

[15]

[16]

Mixamo. https://www.mixamo.com. [Online; ac-

cessed 15-March-2021].

Abien Fred Agarap. Deep learning using rectified linear units
(relu). arXiv preprint arXiv:1803.08375, 2018.

Simon Alexanderson, Gustav Eje Henter, Taras Kucherenko,
and Jonas Beskow. Style-controllable speech-driven gesture
synthesis using normalising flows. Comput. Graph. Forum,
39(2):487-496, 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affin-
ity fields. In IEEE Conf. Comput. Vis. Pattern Recog., pages
7291-7299, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Infogan: Interpretable repre-
sentation learning by information maximizing generative ad-
versarial nets. In Adv. Neural Inform. Process. Syst., pages
2172-2180, 2016.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In IEEE Conf. Comput. Vis. Pattern Recog., June 2020.
CARL DOERSCH. Tutorial on variational autoencoders.
stat, 1050:13, 2016.

Jeff Donahue, Philipp Krédhenbiihl, and Trevor Darrell. Ad-
versarial feature learning. arXiv preprint arXiv:1605.09782,
2016.

Ylva Ferstl and Rachel McDonnell. Iva: Investigating the use
of recurrent motion modelling for speech gesture generation.
In IVA ’18 Proceedings of the 18th International Conference
on Intelligent Virtual Agents, Nov 2018.

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-
tendra Malik. Recurrent network models for human dynam-
ics. In Int. Conf. Comput. Vis., pages 4346-4354, 2015.

S. Ginosar, A. Bar, G. Kohavi, C. Chan, A. Owens, and J.
Malik. Learning individual styles of conversational gesture.
In IEEE Conf. Comput. Vis. Pattern Recog. IEEE, June 2019.
Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249-256. JMLR Work-
shop and Conference Proceedings, 2010.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Adv. Neural
Inform. Process. Syst., pages 2672-2680, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In /IEEE Conf.
Comput. Vis. Pattern Recog., pages 770-778, 2016.

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow.
Moglow: Probabilistic and controllable motion synthesis us-
ing normalising flows. ACM Trans. Graph., 39(6), Nov.
2020.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

11301

Alejandro Hernandez, Jurgen Gall, and Francesc Moreno-
Noguer. Human motion prediction via spatio-temporal in-
painting. In Int. Conf. Comput. Vis., pages 7134-7143,2019.
Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
Eur. Conf. Comput. Vis., pages 172-189, 2018.

Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh
Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. In Proceedings of the ieee conference on computer
vision and pattern recognition, pages 5308-5317, 2016.
Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-End Recovery of Human Shape and
Pose. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 7122—
7131, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Adv. Neural Inform.
Process. Syst., pages 10215-10224, 2018.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. stat, 1050:1, 2014.

Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normal-
izing flows: An introduction and review of current methods.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

Nikos Kolotouros, Georgios Pavlakos, Michael Black, and
Kostas Daniilidis. Learning to reconstruct 3D human pose
and shape via model-fitting in the loop. In Proceedings of the
IEEE International Conference on Computer Vision, volume
2019-Octob, pages 2252-2261, 2019.

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, Hugo
Larochelle, and Ole Winther. Autoencoding beyond pixels
using a learned similarity metric. In Proceedings of the 33rd
International Conference on International Conference on
Machine Learning - Volume 48, ICML’ 16, page 1558-1566.
JMLR.org, 2016.

Sergey Levine, Philipp Krihenbiihl, Sebastian Thrun, and
Vladlen Koltun. Gesture controllers. In ACM SIGGRAPH
2010 papers, pages 1-11. 2010.

Sergey Levine, Christian Theobalt, and Vladlen Koltun.
Real-Time Prosody-Driven Synthesis of Body Language.
ACM Trans. Graph., 28(5):1-10, dec 2009.

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van
De Panne. Character controllers using motion vaes. ACM
Trans. Graph., 39(4), July 2020.

Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and
Ming-Hsuan Yang. Mode seeking generative adversarial net-
works for diverse image synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

Julieta Martinez, Michael J Black, and Javier Romero. On
human motion prediction using recurrent neural networks. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 2891-2900,
2017.

Brian McFee, Vincent Lostanlen, Alexandros Metsai, Matt
McVicar, Stefan Balke, Carl Thomé, Colin Raffel, Frank



(33]

(34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

(42]

[43]

Zalkow, Ayoub Malek, Dana, Kyungyun Lee, Oriol Nieto,
Jack Mason, Dan Ellis, Eric Battenberg, Scott Seyfarth,
Ryuichi Yamamoto, Keunwoo Choi, viktorandreevichmoro-
zov, Josh Moore, Rachel Bittner, Shunsuke Hidaka, Ziyao
Wei, nullmightybofo, Dario Herefii, Fabian-Robert Stoter,
Pius Friesch, Adam Weiss, Matt Vollrath, and Taewoon Kim.
librosa/librosa: 0.8.0, July 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In IEEE Conf. Comput. Vis.
Pattern Recog., 2019.

Dario Pavllo, David Grangier, and Michael Auli. Quaternet:
A quaternion-based recurrent model for human motion. In
Brit. Mach. Vis. Conf., 2018.

Eli Shlizerman, Lucio Dery, Hayden Schoen, and Ira
Kemelmacher-Shlizerman. Audio to body dynamics. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 7574-7583,
2018.

Stanley Smith Stevens, John Volkmann, and Edwin B New-
man. A scale for the measurement of the psychological mag-
nitude pitch. The Journal of the Acoustical Society of Amer-
ica, 8(3):185-190, 1937.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan
Kautz. Mocogan: Decomposing motion and content for
video generation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 15261535, 2018

Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan
Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin Yumer, and
Honglak Lee. Mt-vae: Learning motion transformations to
generate multimodal human dynamics. In Eur. Conf. Com-
put. Vis., pages 265-281, 2018.

Jason Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra
Malik. Predicting 3D human dynamics from video. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, volume 2019-Octob, pages 7113-7122, 2019.

Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li
Hao. On the continuity of rotation representations in neural
networks. In IEEE Conf. Comput. Vis. Pattern Recog., June
2019.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 465—476. Curran As-
sociates, Inc., 2017.

Yizhe Zhu, Martin Rengiang Min, Asim Kadav, and
Hans Peter Graf. S3vae: Self-supervised sequential vae for
representation disentanglement and data generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6538-6547, 2020.

11302



