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Figure 1: Contaminant removal for video frames captured by dirty lens camera. Contaminants on the lens, e.g., dust, dirt
and moisture, cause spatially variant photography artifacts (first row). Our method restores these contaminant artifacts by
leveraging the spatio-temporal consistency from multiple frames (second row). Please refer to our supplementary material

for video results.

Abstract

Contaminants such as dust, dirt and moisture adhering
to the camera lens can greatly affect the quality and clar-
ity of the resulting image or video. In this paper, we pro-
pose a video restoration method to automatically remove
these contaminants and produce a clean video. Our ap-
proach first seeks to detect attention maps that indicate the
regions that need to be restored. In order to leverage the
corresponding clean pixels from adjacent frames, we pro-
pose a flow completion module to hallucinate the flow of
the background scene to the attention regions degraded by
the contaminants. Guided by the attention maps and com-
pleted flows, we propose a recurrent technique to restore the
input frame by fetching clean pixels from adjacent frames.
Finally, a multi-frame processing stage is used to further
process the entire video sequence in order to enforce tempo-
ral consistency. The entire network is trained on a synthetic
dataset that approximates the physical lighting properties
of contaminant artifacts. This new dataset and our novel
framework lead to our method that is able to address differ-
ent contaminants and outperforms competitive restoration
approaches both qualitatively and quantitatively.

1. Introduction

As imaging devices have become ubiquitous, the abil-
ity to take photographs and videos everywhere and anytime

has increased significantly. Mobile cameras, action cam-
eras, surveillance cameras, and the sensors of autonomous
driving cars are often exposed to the harsh environment in
which contaminants will cause deterioration of image qual-
ity. Figure 1 shows some examples of dirty lens artifacts,
where the visibility of the scene radiance is partially af-
fected by the absorption and reflection of the contaminants
along the light path [17]. These undesired artifacts are not
only aesthetically disturbing, but also bring difficulty for
subsequent computer vision tasks. Although one can phys-
ically clean the lens sporadically, doing this frequently is
by no means a handy solution and sometimes infeasible for
real-time situations.

Since the contaminants adhere to the lens surface and
thereby lie out of focus, their imaging effect can be mod-
eled by a low-frequency light modulation [17], i.e., the dirty
lens artifacts appear diffuse and semi-transparent with the
high-frequency textures of the background scene partially
preserved. This makes image or video inpainting meth-
ods [6, 55, 19, 46, 54] inadequate for our task as they com-
pletely ignore the underlying structures and the hallucinated
content. Albeit visually plausible, they may deviate signif-
icantly from the real scene. Furthermore, these works as-
sume the completion regions are prescribed by a user-given
mask, whereas our task automatically identifies the degra-
dation region, which is inferred from camera motion.

This work is more closely related to single image artifact
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removal for raindrops [ 1, 18, 32, 33], reflection [3, 12, 45,

] and thin obstructions [29]. These works typically adopt
learning approaches, utilizing the spatial prior of natural
images to restore the spatial variant degradation. Nonethe-
less, the artifact removal for a single image is inherently ill-
posed, and the learned spatial prior often fails to generalize
to scenes with domain gaps. To solve this, multi-frame ap-
proaches [2, 28, 47] decouple the occlusion and background
scene by leveraging the fact that there exists motion differ-
ence between the two layers, and the pixels occluded in one
frame are likely to be revealed in other frames. In particular,
the recent learning-based approach [28] achieves remark-
able quality in removing unwanted reflection and obstruc-
tions. However, this method only considers a fixed number
of adjacent frames as input, which should be varied depend-
ing on the magnitude of the motion and obstruction size,
whereas our recurrent scheme supports an arbitrary number
of adjacent frames for restoration until convergence.

In this work, we propose a learning-based framework
tailored for removing the contaminant artifacts of moving
cameras. To this end, we first train the network to auto-
matically spot the contaminant artifacts which are usually
prominent in the flow maps of a video with a moving cam-
era. As opposed to layer decomposition, we only focus on
the background motion, of which the degraded region by
the contaminants is hallucinated and softly blended by our
flow completion network, depending on how much of the
background is occluded.

In order to leverage information spanning an arbitrary
number of frames, the restoration for each frame is recur-
rent. That is, to restore one frame, we recurrently feed the
adjacent frames one by one. Guided by the completed back-
ground flow, the pixels within the artifact region can be pro-
gressively restored by referring to the corresponding clean
pixels from other frames. So far the restoration operates
on each input frame individually, utilizing only the infor-
mation of their adjacent frames. To produce the temporally
consistent result for the whole video, we propose another
multi-frame processing stage, in which we follow the same
pipeline again but this time using the restored results from
the last recurrent stage as input.

We train the entire framework in a supervised fashion.
To achieve this, we propose a synthetic dataset that follows
the imaging physics of contaminant artifacts. Extensive ex-
periments prove that the proposed model can generalize to
real dirty lens videos (as shown in Figure 1), outperforming
strong baselines both qualitatively and quantitatively. Our
contributions can be summarized as follows:

* We propose the first deep learning approach to specif-
ically address the contaminant artifacts for moving
cameras. The proposed method performs better than
general restoration methods on real videos.

* A physics-inspired synthetic dataset is proposed to
mimic real contaminant artifacts.

* We propose a flow completion module to effectively
hallucinate the background motion given the partially
visible structure clue within the degraded region.

* The proposed recurrent scheme not only helps lever-
age the multiple adjacent frame information to restore
individual frames but can also be reused to refine such
frame-wise output and ultimately yield temporally co-
herent video results.

2. Related Work

Camera artifact removal. The pioneer work [17] pro-
poses a physics-based method to remove the dirty lens arti-
fact, yet the point-wise restoration they propose cannot han-
dle complex artifacts. Following works, on the other hand,
merely focus on the contaminant detection [I, 8, 43, 49],
but do not study how to give a clean image with contami-
nant removal. Indeed, the artifacts region can be restored
with a follow-up content completion [29, 25, 54, 30], yet
this will totally neglect the underlying structure within the
degraded region. In comparison, we jointly consider the ar-
tifact localization and restoration in a single framework that
utilizes the partially visible structures as much as possible.
Notably, lens flare or glare is another common lens artifact
that plagues the photography in which the scene is also par-
tially obstructed. Nonetheless, existing solutions [4, 34, 44]
focus on single image restoration which is inherently ill-
posed, whereas our method explicitly utilizes multi-frame
information captured by moving cameras.

Adherent raindrop removal. A number of methods have
been proposed to address raindrops attached to glass win-
dows, windscreens, et al., mostly for single image [ 1, 32,

, 33]. Several methods have been proposed to remove
raindrops from video [37, 48, 51, 52, 53]. However, after
detecting the raindrops using the spatial-temporal informa-
tion, these methods rely on off-the-shelf video inpainting
techniques to restore the video, which does not fully utilize
the partially visible details within the raindrops. Besides,
both the raindrop detection and restoration are optimized
separately. Recently, Liu et al. [28] present a learning ap-
proach for removing unwanted obstructions which also in-
clude semi-transparent raindrops. Instead of formulating
the problem as layer decomposition, we only consider the
scene motion and use a recurrent scheme to consider infor-
mation from an arbitrary number of adjacent frames. Be-
sides, our method does not require time-consuming online
optimization as post-processing for handling real-world se-
quences.

Video-based restoration. Video-based restoration such
as video inpainting, video denoising and video deblur uti-
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Figure 2: Overview of our two-stage recurrent network for
contaminant removal. (a) In the single-frame restoration
stage, frame I, is progressively restored by feeding its ad-
jacent frames one by one. (b) The multi-frame processing
stage takes the frame-wise results { P, } as input and recur-
rently processes them to produce a temporal coherent result
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lizes spatial-temporal information for restoration. One typ-
ical application is rain streak removal. While prior ap-
proaches rely on hand-crafted features [5, 13, 14, 15, 16,
38, 56], recent prevalent methods resort to deep neural net-
works [7, 24]. Although some of them also employ recur-
rent scheme [26, 27, 50] to leverage temporal information,
additional modules like flow completion, multi-frame pro-
cessing have been uniquely considered for our problem.

3. Method

Figure 2 illustrates the proposed two-stage recurrent
framework. Given an input frame [, suffering from contam-
inant artifacts, we first gradually restore the degraded region
by iteratively utilizing the adjacent frames I, n<p<i+N
that may reveal some new clean pixels under the camera
motion. This is achieved by aligning the frames with the
hallucinated flow. This way, we obtain frame-wise inter-
mediate outputs { P, }, which are further fed into the multi-
frame processing stage and yield the frames {O,} that con-
sider the temporal consistency relative to the outputs at an
earlier time. Next, we introduce a synthetic dataset that
realistically emulates the contaminant artifacts for training
(Section 3.1). Then we elaborate on the details of the single-
frame restoration (Section 3.2) and the multi-frame process-
ing (Section 3.3), respectively.

3.1. Dataset Construction

It is challenging to obtain large quantities of well-aligned
video pairs of real scenes, so we synthesize a training
dataset that covers realistic and diverse contaminant arti-
facts. To this end, we render images following the physics
model [17] about how the contaminants affect the image

Figure 3: Samples from our synthetic dataset. The first
row shows images with contaminant artifacts and the sec-
ond row shows the corresponding ground truth images.

irradiance. Specifically, we use Blender [10] for the render-
ing. We collect a large number of moving camera videos as
source frames, which serve as the scene textures represent-
ing our scene. Between the scene and the camera, we added
a glass layer with an index of refraction set to 1 to simulate
the contaminants. We model the contaminants with ran-
domly deformed particles adhered to the glass layer in or-
der to mimic diverse shapes so that our method can handle
various real world situations. The material of the contami-
nants is a mixture of different shaders: the glass shader adds
some refraction, the emission shader contributes some radi-
ance so as to emulate the scattering due to the lens dirt, and
the transparent shader models the light attenuation caused
by the contaminants. By stochastically varying the param-
eters of these shaders, we are able to simulate the effect of
common contaminant materials. For sequential frames in
the video, the parameters for generating random contam-
inants are the same for consistency. But for frames from
different video sequences, we use random parameters and
synthesize them independently. Figure 3 shows examples of
our rendered images. The synthetic samples closely mimic
the real contaminated images and have a large variation to
cover common situations in real photos.

3.2. Single-frame Restoration

In this stage, we aim to remove the artifacts from frame
I by recurrently referring to the adjacent frames {Ij}.
The procedures for the single-frame restoration are depicted
in Figure 4 (a). We first estimate the bidirectional flows
{Fi—k, Fr—+} between the two frames {I;, I}, } and detect
the attention maps { A, Ay } to localize the degraded region
based on the flows. Guided by the attention maps, we com-
plete the background motion by a flow completion module
so that we can warp the reference frame towards the input
accordingly. The pixel checking module validates whether
the pixel in the warped reference W, _,+(I) can be used to
restore the corresponding contaminated pixels in ;. Next,
a recurrent temporal fusion module updates the restored re-
sult from 7}~ * to T} by leveraging the effective clean pixels
from Wj,_¢(I1,) as well as the recurrent hidden state h'~*
that comes from the last iteration (i — 1). Finally, the hid-
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Figure 4: Overview of the recurrent pipeline for (a) single-frame restoration and (b) multi-frame processing.

den representation is decoded to the image output P} with
a spatial restoration module.

Flow estimation & attention detection. We first estimate
the optical flows { F} 1, Fj,—+ } between the input I; and its
adjacent frame [j, using the off-the-shelf RAFT model [42].
As shown in Figure 4 (a), the contaminants become promi-
nent in the estimated flow. Therefore we could utilize it to
help predict the attention map that indicates the degraded
region. Specifically, we adopt an U-Net [36] to estimate the
attention map A; for I; using the information of flow F;_.
assisted with the frame I;. The network is trained with a bi-
nary cross entropy (BCE) loss between A; and the ground
truth A%":

1
Lage = “ oW Zp:A%t log Ay +(1—A$") log(1—A;) (1)

where p indexes the pixels and HW is the image resolution.
Similarly, the attention map Ay, of Ij can be estimated using
the inverse flow Fj_,; and frame I;. Here, a higher value
for A; indicates a higher possibility of being occluded by
the contaminants.

Flow completion & pixel checking. Due to the motion
difference between the fast-moving background and rela-
tively static contaminants, the pixels degraded in one frame
could be revealed in adjacent frames. Hence, we could uti-
lize this fact to restore the video frames. In order to leverage
the corresponding clean pixels from the reference frames,
we need to hallucinate the flow of the background scene that
is unreliably estimated within the degraded region. To this
end, we propose a flow completion module whose effect is
shown in Figure 5: the pixels within the degraded region can

(a) Degraded Flow (b) Completed Flow

Warped I, by (a) Warped I, by (b)

Figure 5: The effect of our flow completion module. The
middle of the marked region is still degraded with the warp-
ing Wy—,+(I1) using the degraded flow but corrected filled
in with the completed flow.

only be correctly filled with clean pixels according to the
completed flow. Note that our flow completion module not
only corrects degraded regions but automatically resolves
the flow errors at both clean and degraded regions.

Notably, the estimated flow within the degraded region
may not be unreliable all the time in that the flow mod-
ule may leverage partially visible structures and induce cor-
rect flow estimation. As such, the flow completion should
flexibly hallucinate the flow depending on how much the
background structures are visible. Therefore, we propose a
feature fusion layer that dynamically fuses the features of
two branches: the input and the flow hallucinated from the
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scratch, according to a fusion weight map a:
fout:fin®a+gl(fin)®(1_a) (2)

where f;, and fo,4 are the input and output features re-
spectively, G; denotes the mapping function, and © is the
Hadamard operator. The fusion weight map is obtained
from the input feature map with layers G, followed by a
sigmoid squashing function:

a = sigmoid(Gu(fin)) (3)

Larger values in « denote that the degraded pixel is more
visible, so the flow completion is more confident to the flow
input and resorts less to the hallucinated values.

The flow completion module has an autoencoder archi-
tecture whose encoder consists of six such fusion layers,
whereas we place four fusion layers with dilation at the bot-
tleneck. The decoder, on the other hand, adopts the upsam-
pling module as [42], i.e., learning a weighted combination
of a local 3 x 3 neighbors at coarse resolution, which we
find beneficial to produce a sharper flow estimation com-
pared with the traditional bilinear upsampling. We enforce
the flow completion with the £; loss between the output

F/_,, and the ground truth F%",, ,

Lo = |Flan = FE |- @

Having localized the artifact in both frames and obtained
the background flow, we can determine which pixel of [}, is
useful to restore the degraded pixels for the current frame.
We identify these effective pixels in the Wy_,;(I}) by com-
puting the following map:

Astect — (1 — W 1(Ar)) ® Ay, (5)

which we use to guide the following restoration modules.

Spatio-temporal restoration. Prior approaches [51, 53,

] exploit the spatio-temporal information from a fixed
number of frames, yet the number of adjacent frames
needed for the restoration may vary depending on the mag-
nitude of camera motion and the size of degraded region. In
view of this, we propose a recurrent restoration network that
provides the flexibility of feeding a varying number of ad-
jacent frames and can thereby leverage long-term temporal
information when necessary.

The whole recurrent restoration module consists of two
steps: temporal fusion and spatial restoration. The tem-
poral fusion iteratively estimates a sequence of temporar-
ily restored results. In each iteration, the recurrent module
produces an intermediate image restoration 7} and a hidden
state h’ based on the 7" and h*~! of the last iteration. We
regard I; to be the initial restoration result, i.e., Tt0 = I;.

The recurrent module adopts a convolutional gated recur-
rent unit (ConvGRU) [9], and the iteration process can be
formulated as follows,

2; = o(Conv[h' ™1, 2;])
r; = o(Conv[h' ™1, 2;])
h' = tanh(Conv[r; ® hi™1, z;])
R=(1—-z)0h 1 4+z0n0

(6)

where z; and r; are update gate and reset gate respectively,
and x; is the feature of the input which is a concatenation
of the frame Iy, the attention map A;, the warped frame
Wh—¢(I1,) and the effective restoration map ATt Once
the hidden state is updated by the GRU block, it will pass
through three convolutional layers followed by a sigmoid
function to predict a blending mask M, which is used to
attentively fuse the warping Wi+ () and the intermediate
prediction 7}~ *:

Ti=MoW () +(1-M)oT/™  (7)

We enforce such intermediate result by minimizing its mean
square error against the ground truth C;. Note that we com-
pute the loss for all the iterations 2N and each iteration is
accounted by different factors:

1 2N
Leusion = ﬁ Z ’Y‘ZNill
1=1

In the experiments we empirically use v = 0.8.

As more adjacent frame are utilized, the restoration pro-
gressively improves. Nonetheless, there may exist scene
locations occluded in all the frames, so it still requires to
leverage the spatial prior for restoration. We use the con-
textual autoencoder architecture from [32] for this spatial
restoration task, as shown in Figure 4 (a). The network re-
ceives the temporal fusion result 7}/ and the hidden state h’
as the input, and learns the spatial restoration by minimizing
the perceptual loss [21]:

. 2
T, — C,
2

®)

2N L

11 ; 2
Cspatial = ﬁf ;;H(bl(Pt) - ¢Z(Ct) ‘2 )

where P} denotes the spatial restoration output at ith itera-
tion and ¢' is the [th layer of a pretrained VGG model [39].
The spatial restoration module is capable to deal with dif-
ferent levels of degradation during training, complementing
the restoration ability of the recurrent fusion.

In summary, we train the entire single-frame restoration
network using the following objective function:

‘Csingle = £att + £ﬁow + A\ Efusion + )\2£spatial (10)

where the coefficients \; and A\, balance different terms. In
the experiments we set A\; = 100 and Ay = 10.
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Figure 6: Example results of different network architectures for flow completion. Our full model with feature fusion layers
and the upsampling module can produce a more accurate result with sharper motion boundaries.
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Figure 7: Ablation study of single-frame stage. Our full model can generate the results with fewer visible artifacts.

3.3. Multi-frame Processing

By far, the video frames are processed individually,
based on the adjacent frames. Hence, the single frame
restoration (denoted by ¥) can be formulated as,

P, =VY(L|{I;}),k € [t — N,t+ N]. (11)

However, the temporal consistency over the entire output
sequence cannot be guaranteed due to the nature of frame-
by-frame processing. To address this, we propose a multi-
frame processing stage as shown in Figure 2 (b) and Fig-
ure 4 (b). As opposed to the first stage that keeps refining
one frame in different iterations, the multi-frame processing
refines different input frames during iterations. Concretely,
we feed into the outputs from the first stage in sequence, and
let the network adjust P; based on the earlier output frame
O¢_1, so the processing becomes:

Ot = \I/(Pt|0t_1), OO = Po. (12)

A slight difference of the pipeline is that the attention de-
tection module is no longer needed since the input frames
{P,} are already cleaned by the frame-wise processing. Be-
sides, we introduce a temporal 10ss Liemporal to enforce the

temporal consistency between successive outputs:

M
1 Z{efHthwt—lﬂt(ctfl)”z/u

Etcmporal = M—1 2o

X||Or = Wi10(0-1) ], }
(13)

where W;_1¢(Cy—1) and Wy_1,4(O;_1) are the frame
warpings using the ground truth flow, M is the length of
the video sequence, and we set the exponential coefficient
i = 0.02. The overall loss for training the multi-frame
processing is defined as,

ACmultizcﬂow + )\1 ACfusion + )\2£spatial + )\3£temporala
(14)
where the newly introduced weight A3 is set by 10.

4. Experiments
4.1. Implementation

Training details. We adopt Adam optimizer [22] with
B1 = 0.9, By = 0.999, a learning rate of 0.0001, and batch
size of 8 images for training. Each image uses five neigh-
boring frames as input, where the middle frame is the one to
be restored in the single-frame stage. During training, We
randomly crop these images from 384 x 384 to 256 x 256
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Table 1: Ablation study for the flow completion network.

Input Conv  GatedConv  FeatFusion  Ours

EPE| 3.17 2.10 1.89 1.72 1.60

Table 2: Ablation study for the single-frame stage.

Model PSNRT SSIMT  Euwarp 4

w/o Attention Map 33.70 0.976 0.0046
w/o Flow Completion 34.09 0.975 0.0046
w/o Spatial Restoration 29.61 0.953 0.0049

Full Model 35.37 0.980 0.0045

for data augmentation. It first takes 300 epochs to train the
single-frame stage. After that, we run the trained single-
frame model on the entire dataset to generate the train-
ing set for the multi-frame stage, which takes another 50
epochs to converge. Our method is implemented using Py-
torch [31]. The entire training takes approximately five days
on 8x GeForce RTX 2080Ti GPUs.

Datasets. We render 600 video clip pairs as our training
set, where each clip has 30 frames at 6fps and a resolu-
tion of 384 x 384. For the test set, we produce another 30
clip pairs with random rendering parameters to differenti-
ate from the training set. We will use this test set for the
quantitative evaluation in ablation studies and comparisons
since the ground truth videos are available. For qualitative
results, we use a Canon EOS 80D camera to capture the real
videos with different contaminants adhered to the lens.

4.2. Ablation Study

Flow completion network. We first conduct an ablation
study to demonstrate the effectiveness of our flow comple-
tion network. Different architectures with the same atten-
tion detection module are used to learn the completed flows.
Specifically, we adopt the same encoder-decoder architec-
ture with plain convolution layer (Conv), gated convolution
layer (GatedConv) [54] for image inpainting and our feature
fusion layer (FeatFusion). Finally, we use the feature fusion
layer and replace the decoder with our upsampling module
which is our full model for flow completion task (Ours). As
shown in Table 1 and Figure 6, our full model achieves the
most accurate flow with the lowest endpoint error (EPE) and
sharpest motion boundaries.

Effectiveness of the main component. We validate the
effectiveness of three main components in the first stage:
attention detection, flow completion and spatial restoration.
To keep all the other modules intact, we remove the atten-
tion detection module by giving attention maps with all ze-
ros to the subsequent modules. For the removal of the flow
completion, we directly use the degraded flow without any

Table 3: Quantitative comparison of our approach with
other methods.

Method Type PSNR1T SSIMT  FEwarp 4

Single-image 33.78 0.977 0.0049
Single-image 35.05 0.980 0.0047
Video-based 20.80 0.794 0.0075
Video-based 29.17 0.952 0.0052
Video-based 31.95 0.936 0.0051

PReNet [35]
AttGAN [32]
FastDerain [20]
ObsRemoval [28]
FastDVDnet [41]

Ours (stage one) Video-based 35.37 0.980 0.0045
Ours Video-based 34.98 0.979 0.0035

Figure 8: Example results showing the progressive restora-
tion of our recurrent network. The first row is the input
neighboring frames, and the second row is the correspond-
ing restoration results.
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Figure 9: Quality comparison of our approach with different
input frames. Our method is able to use more frames for
better performance until convergence.

Input PReNet [35] AttGAN[32] Ours (1st Ours
stage)
Figure 10: Qualitative comparison with single-image

restoration methods on the real images.

processing. In addition to using metrics such as PSNR and
SSIM, we also use the warping error (Eyqrp) from [23] to
measure the temporal consistency of the results, i.e., we ap-
ply the method in [40] to detect the occlusion regions and
calculate the consistency between every two consecutive
frames excluding these pixels. As shown in Table 2, the
best result is achieved in terms of PSNR, SSIM and E,y4/p
when the full model is used. Examples from the test set are
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Input FastDerain [20] ObsRemoval [28]

Ours (stage one) Ours

FastDVDnet [41]

Figure 11: Qualitative comparison with video-based restoration methods on the real video frames contaminated by dirt.

shown in Figure 7. One can see that the proposed full model
can generate results with fewer visible artifacts.

Recurrent restoration. Owing to the recurrent design of
our network, our method is able to restore the frame pro-
gressively by iteratively utilizing the adjacent frames as
shown in Figure 8. In this example, four iterations of tem-
poral fusion are used to obtain the output. Figure 9 plots
the PSNR and SSIM results against the number of input
frames or iterations, showing that the optimal number of
iterations is approximately six. We could also determine
the number of iterations automatically by using the blend-
ing mask from the temporal restoration module, which indi-
cates how many pixels are used for restoration at the current
frame/iteration. We could therefore stop when it reaches
below a given threshold. Since our training dataset includes
videos with diverse magnitudes of motion, the network can
learn to handle different cases in each iteration. In addition,
due to the special design of the recurrent unit, it could gen-
eralize to the different number of iterations with satisfactory
performance.

4.3. Comparisons

We compare our method with related techniques for
single-image and video-based restoration on our test set.
Five competitive methods with public source code are
included, which are PReNet [35], AttGAN [32], Fast-
Derain [20], ObsRemoval [28] and FastDVDnet [41].
Among them, FastDerain [20] is an optimization-based
method and others are learning-based approaches which
are retrained on the same training set. All the video-
based methods leverage the same number of input frames
as our approach for both training and testing during the
comparison. These methods focus on different restoration
tasks like adherent raindrop removal [32], rain streak re-
moval/deraining [35, 20], obstruction removal [28], and
video denoising [41], which could be potentially applied
to our task. As shown in Table 3, our single-frame stage
outperforms other methods in terms of PSNR and SSIM
whereas the full model with the multi-frame processing

achieves the lowest warping error. The new temporal loss
in the full model significantly improves the temporal con-
sistency albeit the slight drop of PSNR and SSIM. Fig-
ure 10 and 11 showcase the results on real scenes for qual-
itative comparison. Our method generalizes well to the real
captured images and demonstrates more visually pleasing
results without noticeable contaminant artifacts. Figure 1
shows that our method has the ability to remove various
contaminants in the real world and produces high-quality
results. We provide additional results in conjunction with
the video outputs in the supplementary material.

Running time. We evaluate the inference time of all com-
pared methods on the Intel Xeon Gold 6244 machine with
an Nvidia GeForce RTX-2080Ti GPU card. The resolu-
tion of the input videos is 256 x 256. The average times
to process one frame for the different methods are 0.029s
for PReNet [35], 0.025s for AttGAN [32], 1.28s for Fast-
Derain [20], 1.25s for ObsRemoval [28], 0.0088s for Fast-
DVDnet, and 0.88s for our method.

5. Conclusion

We present a novel framework that removes the contam-
inant artifact for moving cameras. We propose an atten-
tion detection module to localize the degraded regions and
a flow completion module to recover the background mo-
tion for better alignment. Guided by the attention map and
the restored flows, we recurrently fuse corresponding clean
pixels to the current frame using the reference frames. Ulti-
mately a multi-frame processing stage improves the tempo-
ral consistency. Experiments on both synthetic dataset and
real scenes verify the effectiveness of each component and
prove the quality advantage over prior approaches. We will
make the synthetic dataset along with the source code pub-
licly available and hopefully benefit the following works.
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