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Abstract

Spatio-temporal action detection is an important and
challenging problem in video understanding. The exist-
ing action detection benchmarks are limited in aspects of
small numbers of instances in a trimmed video or low-level
atomic actions. This paper aims to present a new multi-
person dataset of spatio-temporal localized sports actions,
coined as MultiSports. We first analyze the important ingre-
dients of constructing a realistic and challenging dataset for
spatio-temporal action detection by proposing three crite-
ria: (1) multi-person scenes and motion dependent identifi-
cation, (2) with well-defined boundaries, (3) relatively fine-
grained classes of high complexity. Based on these guide-
lines, we build the dataset of MultiSports v1.0 by selecting
4 sports classes, collecting 3200 video clips, and annotat-
ing 37701 action instances with 902k bounding boxes. Our
datasets are characterized with important properties of high
diversity, dense annotation, and high quality. Our Multi-
Sports, with its realistic setting and detailed annotations,
exposes the intrinsic challenges of spatio-temporal action
detection. To benchmark this, we adapt several baseline
methods to our dataset and give an in-depth analysis on
the action detection results in our dataset. We hope our
MultiSports can serve as a standard benchmark for spatio-
temporal action detection in the future. Our dataset website
is at https://deeperaction.github.io/multisports/.

1. Introduction
Spatio-temporal human action detection in untrimmed

videos is of great importance for many applications, such as
surveillance and sports analysis. Recently, recognizing ac-
tions from short trimmed videos has achieved considerable
progress [44, 3, 40, 35, 41, 42], but these classification mod-
els can not be directly applied for video analysis in a multi-
person scene. Meanwhile, although temporal action detec-
tion methods [56, 26, 25, 50, 53] for untrimmed videos can
distinguish intervals of human actions from background,
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they are still unable to spatially detect multiple concurrent
human actions, which is important in real-world applica-
tions of video analysis.

Current spatio-temporal action detection benchmarks
can be mainly classified into two categories: 1) Densely
annotated high-level actions such as J-HMDB [17] and
UCF101-24 [38]. Their clips only have a single person
doing some semantically simple and temporally repeated
actions. Typically, the scene context can provide enough
cues for recognizing these coarse-grained action categories.
Thus, these benchmarks might be impractical for real-world
applications such as surveillance, where it is required to
deal with more fine-grained actions in a multi-person scene;
2) Sparsely annotated atomic actions such as AVA [12].
They fail to provide clear temporal action boundaries, and
simply focus on frame-level spatial localization of atomic
actions. This setting removes the requirements of tempo-
ral localization for action detection algorithms. Meanwhile,
their atomic actions rarely require the complex reasoning
over the actors and their surrounding environment.

Based on the analysis above, we argue that a new
benchmark is necessary to advance the research of spatio-
temporal action detection. The benchmark should satisfy
several important requirements to cover the realistic chal-
lenges of this task. 1) There should be multiple persons
performing different actions concurrently in the same scene,
where the background information is not sufficient for ac-
tion recognition and motion itself of the actor plays a sig-
nificant role. 2) To address the inherently confusing human
action boundaries in time, actions should be both semanti-
cally and temporally well-defined with a consensus among
humans. 3) Considering the complexity of real-world appli-
cations, actions should be fine-grained which requires accu-
rate human pose and motion information, long-term tempo-
ral structure, possible interactions between humans, objects
and scenes, and reasoning over their relations.

Following the above guidelines, we develop the Multi-
Sports dataset, short for Multi-person Sports Actions. The
dataset is large-scale, high-quality, multi-person, and con-
tains fine-grained action categories with precise and dense
annotations in both spatial and temporal domains. The ac-
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dribble, drive screen, screen pick-and-roll defensive, pick-
and-roll defensive

bent leg(s) jump, support explosive support, support bent leg(s) jump, support

Figure 1. The 25fps tubelets of bounding boxes and fine-grained action category annotations in MultiSports dataset. Multiple concurrent
action situations frequently appear in MultiSports with many starting and ending points in the long untrimmed video clips. The frames are
cropped and sampled by stride 5 or 7 for visualization propose. Tubes with the same color represent the same person.

tion vocabulary consists of 66 action classes collected from
4 sports (basketball, volleyball, football and aerobic gym-
nastics). An example clip has been visualized in Figure 1.
We choose these four sports for the following reasons. 1)
There are plenty of multiple concurrent action instances in
sports competitions. Also, the background is far less char-
acteristic and cannot provide sufficient information for fine-
grained action recognition. 2) Sports actions have well-
defined categories and boundaries. These boundaries are
defined by either professional athletes or official documen-
tations [7]. 3) Due to the complex competition rules, rec-
ognizing sports action generally requires to model the long-
term structure and the human-object-scene interactions. For
example, in football, although the athlete may take only 0.5s
to kick the ball, we may need up to 5s context to recognize
whether it is pass, long ball, through ball, or cross.

In practice, we conduct exhaustive annotations of 25 fps
frame-wise bounding boxes and fine-grained action cate-
gories in a two-stage procedure: 1) a team of professional
athletes of corresponding sport to annotate the temporal and
category labels, and 2) a team of crowd-sourced annota-
tors to finish the bounding boxes with the help of tracking
method FCOT [6]. This two-stage annotation procedure as
well as careful quality control together can guarantee con-
sistent and clean annotations. To ensure the visual qual-
ity, all videos in our dataset are high-resolution records of
professional competitions from a diversity of countries and
different performance levels.

Given the well-defined and dense-annotated action in-

stances in MultiSports v1.0, we benchmark spatio-temporal
action detection on this challenging dataset. We perform
empirical studies with several recent state-of-the-art action
detector methods. Compared with previous action detection
benchmarks such as J-HMDB [17] and UCF101-24 [38],
our MultiSports is quite challenging with a much lower
frame mAP and video mAP. We also introduce a detailed
error analysis on detection results and try to provide more
insights on spatio-temporal action detection. According
to our analysis on MultiSports benchmark, we figure out
several challenges of spatio-temporal action detection that
needs to be addressed, such as capturing subtle differences
between fine-grained action categories, performing accurate
temporal localization, dealing with action occlusion and
modeling long-range context. We hope MultiSports could
serve as a standard benchmark to advance the area of spatio-
temporal action detection in the future. MultiSports sptatio-
temporal action detection is currently a track of DeeperAc-
tion challenge at ICCV 2021 https://deeperaction.github.io/.

In summary, our main contribution is twofold. 1) We de-
velop a new benchmark MultiSports of spatio-temporal ac-
tion detection for well-defined and realistically difficult hu-
man actions in a multi-person scene, providing high-quality
and 25fps frame-wise annotations from four sports. 2) We
conduct extensive studies and systematic error analysis on
MultiSports, which reveals the key challenges of spatio-
temporal action detection and hopefully can facilitate future
research in this area.
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2. Related Work
Action recognition datasets. Early datasets of action
recognition mainly focus on action classification. Those
datasets, including KTH [32], Weizmann [2], UCF-101 [38]
and HMDB [21], contains manually trimmed short clips to
capture semantics of a single action. Their human action
cues, however, are overwhelmed by signals of background
scenes. Multi-MiT [27] is a multi-label action recogni-
tion dataset, which may have several concurrent actions but
do not provide temporal duration and spatial annotations.
Recently, large-scale video classification datasets such as
Sports-1M [19], YouTube-8M [1] and Kinetics [3] have
been created for feature representation learning and serve as
pre-training in downstream tasks, but appearance cues still
play a important role here. Something-something [11] and
FineGym [33], with plenty of fine-grained action categories,
effectively reduce the influences of background scenes and
reveal some key challenges of modeling a single action.
They share the similar property of capturing motion cues
with MultiSports, but only have one concurrent action there-
fore we address a different need with them.

Temporal action detection datasets such as Activi-
tyNet [13], HACS [54], THUMOS14 [16], MultiTHU-
MOS [52] and Charades [34] provide temporal action de-
tection annotations for each action of interest in untrimmed
videos. But unlike MultiSports, they do not provide spa-
tial annotations and could not identify multiple concurrent
actions for multiple people.

Previous spatio-temporal action detection datasets, such
as UCF Sports [30], UCF101-24 [38] and J-HMDB [17],
typically evaluate spatio-temporal action detection for short
videos with only a single person and coarse-grained action
categories. Our MultiSports significantly differs from them
in several aspects: multiple concurrent actions by multiple
people; less characteristic background scenes; the larger
number of action and fine-grained categories; more fast
movement and large deformation; and significantly more in-
stances per clip. Recently, a new type of extensions such
as DALY [46], AVA [12] and AVA-Kinetics [22] adopt
sparse annotations of daily life actions, either in compos-
ite or atomic forms, to reduce human labors of annotat-
ing and increase the scale of datasets. It may be a good
way for evaluating daily life actions without fast move-
ment and large deformation, but unsuitable for areas like
sports analysis, since it often requires continuous annota-
tions of all human actions of interest. MEVA [5] is a se-
curity dataset, which provides spatial-temporal annotations
and some other modality annotations. But our sports actions
are more complex and fast-changing than MEVA. Different
from previous datasets, our MultiSports proposes a more
difficult benchmark with multi-person, well-defined bound-
aries, fine-grained setting and frame-by-frame annotations,
which focuses on the sports domain.

Spatio-temporal action detection. Most recent ap-
proaches for UCF101-24 and JHMDB can be classified into
two categories: frame-level detectors and clip-level detec-
tors. Many efforts have been made to extend an image ob-
ject detector to the task of spatio-temporal action detection
at the frame level [10, 43, 28, 31, 36, 45], where the re-
sulting per-frame detections are then linked to generate fi-
nal tubes. Although flows could be used to capture mo-
tion cues, frame-level detector fails to fully utilize tempo-
ral information. To model temporal structures for action
detection, some clip-level approaches or action tubelet de-
tectors [15, 23, 18, 51, 24, 55, 37] have been proposed.
ACT [18] took several frames as input and detected tubelets
regressed from anchor cuboids. STEP [51] progressively
refined the proposals by a few steps to solve the large dis-
placement problem and utilized longer temporal informa-
tion. MOC-detector [24] proposed an anchor-free tubelet
detector by treating action instances as trajectories of mov-
ing points. For AVA, many methods [8, 9, 39, 47, 48] have
been proposed to better make use of spatio-temporal infor-
mation for atomic action classification.

3. The MultiSports Dataset
Our MultiSports dataset aims to introduce a new chal-

lenging benchmark with high-quality annotations to the
area of spatio-temporal action detection, which differs from
previous ones in multi-person scene, well-defined temporal
boundaries, and fine-grained action categories. Sec. 3.1 in-
troduces our annotation procedure. Statistics and character-
istics of MultiSports are elaborated in Sec. 3.2 and Sec. 3.3.

3.1. Dataset Construction

Action vocabulary generation. We select sports of basket-
ball, volleyball, football and aerobic gymnastics, because of
their multi-person setting, less ambiguous actions and well-
defined temporal boundary. For aerobic gymnastics, we use
the official documentations [7]. In practice, we only select
difficulty elements and discard movement patterns. For the
remaining ball sports, we use an iterative way to generate
our action vocabulary in each sport: we initialize an ac-
tion list by the suggestions of athletes and write a handbook
to clarify the definition of action boundaries. Then we let
several annotators try to annotate the data, where inaccu-
rate definitions of action boundaries, ambiguities between
action categories and missed action categories will be col-
lected from their feedback. We iteratively adjust our action
list and handbook according to the feedback several times
before we start massive annotating, which results in the fi-
nal action hierarchy shown in Figure. 2(a). Note that the
annotators of action categories and temporal boundaries are
professional athletes of the corresponding sports, so their
feedback is important for building a well-defined action vo-
cabulary in practice. To keep action boundaries accurate
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MultiSports

… …
(a): Hierarchy of our action category

Aerobic Gymnastics

explosive support

push up

leg circle

helicopter

Basketball

pass

3-point shot

drive

dribble

… …

Football

long ball

aerial duels

shoot

through ball

… …

Volleyball

serve

defend

protect

block

first hit pass

… …
(b): User interface for action annotation

Figure 2. The action vocabulary hierarchy and annotator interface of the MultiSports dataset. (a) Our MultiSports has a two-level hierarchy
of action vocabularies, where the actions of each sport are fine-grained. (b) Details of annotations can be found in Sec 3.1.

and make our dataset suitable for spatio-temporal action de-
tection, we do not count common and atomic actions such
as run or stand in our action vocabulary. We also exclude
foul in ball sports. Because in the 2D video records, we
recognize fouls most from the referee’s reaction instead of
the actor’s motion. What is worse, it is hard to identify who
fouls due to occlusion.
Data preparation. After choosing the four sports, we
search for their competition videos by querying the name
of sports like volleyball and the name of competition levels
like Olympics and World Cup on YouTube, and then down-
load videos from top search results. For each video, we
only select high-resolution, e.g. 720P or 1080P, competition
records and then manually cut them into clips of minutes,
with less shot changes in each clip and to be more suitable
for action detection. These official records share consistent
and rich content, and can guarantee a high-quality dataset.
Action annotation. Since our annotations are difficult in
labeling fine-grained categories and exhaustive in determin-
ing 25fps frame-wise bounding boxes, we naturally decom-
pose our annotation procedure into two stages: 1) A team
of professional athletes generate records of the action la-
bel, the starting and ending frame, and the person box in
the starting frame, which can ensure the efficiency, accu-
racy and consistency of our annotation results; 2) With the
help of FCOT [6] tracking algorithms, a team of crowd-
sourced annotators adjust bounding boxes of tracking re-
sults at each frame for each record. The ambiguity of spa-
tial human boundaries is much less than that of fine-grained
action categories and temporal action boundaries. They use
the interface shown in Figure 2(b).

To ensure the consistency of action temporal boundaries,
which tends to be ambiguous and remains as a big chal-
lenge for most temporal action detection datasets, we write
a handbook to clarify the definition of action boundaries
as mentioned above. For example, our handbook unifies
the annotations of football pass as starting from the ball-
controlling-leg leaving the ground and ending with this leg
touching the ground again. The annotation handbook is pro-
vided in the supplementary material.

Person bounding-box tracking. As mentioned above, we
first tack each record generated by professional athletes and
then employ crowd-sourced annotators to refine the bound-
ing boxes at each frame. Specifically, we use FCOT [6]
to track the bounding boxes frame-by-frame. We find this
tracking-to-refinement labeling process can not only speed
up the annotation process, but also increase the annotation
quality by enforcing workers to focus on determining pre-
cise boundary of each box.

We also evaluate the output of FCOT [6] and results are
shown in Table 1. We adopt success and precision metrics
proposed in OTB100 [49]. Aerobic turned out the hardest
in both success and precision aspects.

Aerobic gym. Volleyball Football Basketball
Success 0.66 0.72 0.77 0.66
Precision 0.67 0.93 0.92 0.72

Table 1. Tracking results on different sports

Quality control. For the first stage of annotation, every clip
has at least one annotator with domain knowledge double-
checking the annotations. We correct wrong or inaccurate
ones and also add missing annotations for a higher recall,
e.g., adding missed defence action in football and modify-
ing inconsistent action boundaries. For the second stage, we
double-check each instance by playing it in 5fps and manu-
ally correct the inaccurate bounding boxes.

3.2. Dataset Statistics

Our MultiSports v1.0 contains 66 fine-grained action cat-
egories from four sports, and has videos selected from 247
competitions. The videos are manually cut into 800 clips
per sport to keep data balance between sports. We discard
intervals with only background scenes, such as award, and
select the highlights of competitions as clips for action de-
tection. Table 2 compares the annotation types and statistics
of MultiSports v1.0 with the existing datasets. AVA [12]
only has sparse and 1fps annotations of bounding boxes,
which fails to provide clear temporal action boundaries and
focuses on atomic action recognition. AVA-Kinetics [22]
uses part of 10s clips of the Kinetics [3] and annotates one
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Figure 3. Statistics of each action class’s data size in MultiSports, which is sorted by descending order with 4 colors indicating 4 different
sports. For actions in the different sports sharing the same name, we add the name of sports before them.

anno type # act. # inst. avg act./vid. dur. # bbox

J-HMDB [17] Tube 21 928 1.2s / 1.2s 32k
UCF101-24 [38] Tube 24 4458 5.1s / 6.9s 574k
AVA V2.1 [12]∗ Frame 80 ˜56000† Sparse‡ /15m 426k

AVA-Kinetics [22]∗ Frame 80 ˜186000† - 590k
HACS [54] Segment 200 140k 33.2s / 148.7s -

FineGym V1.0 [33] Segment 530 32697 1.7s / 10m -

Aerobic gym. Tube 21 8703 1.5s / 30.7s 325k
Volleyball Tube 12 7645 0.7s / 10.5s 139k
Football Tube 15 12254 0.7s / 22.6s 225k

Basketball Tube 18 9099 0.9s / 19.7s 213k

Ours in total Tube 66 37701 1.0s / 20.9s 902k

Table 2. Comparison of statistics between existing action detec-
tion datasets and our MultiSports v1.0. (∗ only train and val sets’
ground-truths are available; Tube with class, temporal boundary
and spatial localization; Frame with class and spatial localiza-
tion; Segment with class and temporal boundary; † number of
person tracklets, each of which has one or more action labels; ‡

1fps action annotations)

key frame per clip without any temporal boundary annota-
tions either. Our annotation type is different from theirs.
MultiSports distinguishes with existing datasets such as
J-HMDB [17] and UCF101-24 [38] in longer untrimmed
video clips (20.9s vs. 1.2s or 6.9s), more fine-grained action
categories (66 vs. 21 or 24), much more instances (37701
vs. 928 or 4458), and more instances per video clip (11.8
vs. 1 or 1.4), which raises new challenges of modeling fast
movement and fine-grained actions of multiple people in a
longer video. Our MultiSports also has the largest number
of bounding boxes among all existing datasets. We find that
fine-grained category and well-defined boundary usually
greatly shorten the action duration, which agrees with Fin-
eGym [33]. Also, we only keep the common part of actions
in ball sports for well-defined boundaries. For instance,
basketball pass starts from the player pushing the ball out-
wards with his arms, but does not include holding the ball
and doing fake actions. Therefore our average action dura-
tion is smaller than UCF101-24 and HACS [54], which con-
tains coarse-grained and temporally repeated actions such
as volleyball in HACS and riding horses in UCF101-24.

As shown in Figure 3, the instance number of each ac-
tion category ranges from 3 to 3,477, showing the natural
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Figure 4. Statistics of action instance duration in MultiSports,
where the x-axis is the number of frames and we count all in-
stances longer than 95 frames in the last bar.

long-tailed distribution [14]. The long-tailed action cate-
gories also raise new challenges for action detection mod-
els. Figure 4 shows the distribution of action instance du-
ration. The large variations of action instance duration add
more difficulty for action detection models to accurately lo-
calize temporal boundary. Moreover, action instances in
MultiSports are often related with longer temporal context
and interactions with context. These inherent challenges of
MultiSports require a more powerful and flexible temporal
modeling scheme for action detection.

Our training/validation/test sets are split at the clip level,
where the clip numbers in each sport are manually con-
trolled as 3:1:2 for training/validation/test.

3.3. Dataset Characteristics

Our MultiSports has several distinguishing characteris-
tics compared with existing datasets.
Difficulty. As discussed above, MultiSports is difficult in
several aspects comparing to existing datasets: 1) multi-
person situations of different concurrent actions, which pre-
vents the model from distinguishing action categories only
with backgrounds and requires models to capture subtly dif-
ferent motion cues; 2) a larger number of fine-grained cat-
egories with a long-tailed distribution; 3) the large variance
of action instance duration, which makes it difficult to lo-
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calize the temporal boundary; 4) the fast movement, large
deformation and occlusion of actions in sports.
High Quality. The videos of MultiSports are with high-
resolution (720P or 1080P) competition records, which can
preserve details of small humans and objects. Besides, with
the help of our annotation team composed of professional
athletes, our action categories and their corresponding ac-
tion boundaries are precisely annotated. The professional
annotators and careful quality control is able to provide con-
sistent and clean annotations.
Diversity. Our video clips are selected from competitions
of different performance levels with diverse countries and
genders, making the dataset less biased and good balanced
for realistic sports analysis.
Application. This task has many application scenarios for
sports analysis. Combined with Re-ID techniques, we can
automatically perform game commentary, AI referee and
technical statistics. It can also assess the player abilities
and provide information for developing the training plan
and game strategy, and trading players between clubs.

4. Experiments and Analysis
4.1. Datasets and Metrics

MultiSports benchmark. To build a solid action detection
benchmark, we manually split the instances into the training
set, validation set, and testing set. Due to the long-tailed dis-
tribution of action instance numbers, following AVA [12],
we only evaluate on 60 classes that have at least 25 instances
in validation and test splits to benchmark performance. We
resize the whole dataset into 720P. In total, the current ver-
sion contains 18,422 training instances from 1,574 clips and
6,577 validation instances from 555 clips. We provide the
detailed ratio of training and validation instances for each
sport in the supplementary material. All those instances are
selected from 3200 clips covering 247 competition records.
Unless otherwise mentioned, we report the results trained
on the training set and evaluated on the validation set. The
testing set includes 1071 clips and we withhold the annota-
tions in the public release.
Metrics. Following the standard practice [45, 18], we uti-
lize frame-mAP and video-mAP to evaluate action detec-
tion performance. For video-mAP, we use the 3D IoU,
which is defined as the temporal domain IoU of two tracks,
multiplied by the average of the IoU between the overlapped
frames. The threshold is 0.5 for frame-mAP, 0.2 and 0.5 for
video-mAP.

4.2. Spatio-temporal Action Detection Results

We evaluate several representative action detection
methods on MultiSports and compare their performance on
the UCF101-24 [38], JHMDB [17], and AVA [12] in Ta-
ble 3. For SlowOnly Det. and SlowFast Det., we use the

code in MMAction2 [4]. We use the official released code
for ROAD, YOWO and MOC. More details about the meth-
ods are provided in the supplementary material.

For UCF101-24 [38] and JHMDB [17], which have
dense annotations of high-level actions as MultiSports, we
find that these methods achieve good performance on them
but obtain low performance on MultiSports (frame-mAP of
25.22%, video-mAP@0.2 of 12.88% and video-mAP@0.5
of 0.62% for MOC [24]). In our dataset, the largest per-
formance drop occurs on ROAD [36], which is a frame-
level action detector that performs action detection at each
frame independently without exploiting temporal informa-
tion. UCF101-24 [38] and JHMDB [17] have only one cate-
gory per video. Characteristic visual scenes provide enough
cues for predicting their coarse-grained actions. However,
MultiSports has a similar background in the same sport,
where the background fails to provide sufficient information
for fine-grained action recognition. Meanwhile, our tempo-
ral boundary annotation is more precise and requires more
accurate localization in temporal domain.

For AVA [12], which has only sparse annotations of
atomic actions, we observe that the performance gap be-
tween SlowFast Det. [8] and SlowOnly Det. [8] on Mul-
tiSports is more evident than on AVA (frame-mAP gap of
11.02% vs. 4.54%). This indicates that the sports actions
need a higher frame rate to capture fast motion at a finer
temporal granularity. As shown in Figure 5, many aerobic
actions gain large absolute improvement, such as aerobic
turn (+30 AP) and aerobic horizontal support (+54 AP). We
analyze that aerobic actions’ deformation and displacement
is the largest among the four sports and benefit more from
this finer temporal analysis. We also observe a large per-
formance increase in other sports, such as basketball pass,
football clearance and volleyball second attack, which have
short temporal duration and intense motion.

4.3. Error Analysis

In this section, we analyze the cause of errors to bet-
ter understand MultiSports’ challenges. Based on ACT [18]
frame-mAP error analysis, which is designed for the dataset
with one action category per video, we propose a new de-
tailed error analysis in video-mAP. We classify the detec-
tion errors into 10 mutually exclusive categories to analyze
which percentage of the mAP is lost. ER : a detection result
targets at a ground-truth tube that has already been matched.
EN : a detection result that has no spatial-temporal inter-
section with any ground-truth tubes and appears out of thin
air. EL : a detection result that has the correct action class,
accurate temporal localization and inaccurate spatial local-
ization. EC : a detection result that has the wrong action
class, accurate temporal localization and accurate spatial lo-
calization. ET : a detection result that has the correct action
class, accurate spatial localization and inaccurate temporal
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Method Res MultiSports UCF101-24 JHMDB AVA
F@0.5 V@0.2 V@0.5 F@0.5 V@0.2 V@0.5 F@0.5 V@0.2 V@0.5 F-mAP@0.5

ROAD [36] 300 × 300 3.90 0.00 0.00 70.7 69.8 40.9 - 60.8 59.7 -
YOWO [20] 224 × 224 9.28 10.78 0.87 71.10 72.97 46.42 74.51 88.05 82.57 -

MOC [24] (K=7) 288 × 288 22.51 12.13 0.77 78.0 82.8 53.8 70.8 77.3 77.2 -
MOC [24] (K=11) 288 × 288 25.22 12.88 0.62 - - - - - - -

SlowOnly Det., 4× 16 [8] short side 256 16.70 15.71 5.50 - - - - - - 20.02
SlowFast Det., 4× 16 [8] short side 256 27.72 24.18 9.65 - - - - - - 24.56

Table 3. Comparison of the state-of-the-art methods on MultiSports, UCF101-24, JHMDB and AVA.
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Figure 5. SlowOnly vs. SlowFast frame-mAP. Categories are sorted by descending order on the number of instances.
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Figure 6. Error Analysis. AP is the correct detection. The thresh-
old for a ground-truth matched by a detection is 0.1. Recall is
1− EM

localization. EC&T, EC&L, ET&L, EC&T&L: a detection
that is inaccurate in corresponding aspects while acceptable
in other aspect (if any). For example, EC&T refers to re-
sults with wrong action class, inaccurate temporal localiza-
tion yet accurate spatial localization. EM : ground-truth
tubes that have not been matched by any detection results.
The first nine categories cover the false positive predictions.
The partition can be explained with a decision tree which is
attached to our supplementary material. The code is pro-
vided at https://github.com/MCG-NJU/MultiSports.

As shown in Figure 6, despite the relatively low recall,
SlowFast Det. achieves higher video-mAP than MOC be-
cause it makes much fewer false positive predictions. This
can be explained by the fact that SlowFast Det. uses Faster
RCNN [29] finetuned on MultiSports as person detector
to greatly avoid the person boxes without actions. How-
ever, there are still many hard examples missed by Slow-
Fast Det. For MOC, EC and EN are the most common
errors among false positive detection results, indicating the

difficulty of our fine-grained action classification. Detec-
tion results with EN errors means the model indeed detects
the person spatio-temporally but unable to identify the ac-
tion class correctly as the background class. EN error is
also a result of the training strategy of MOC where only
the frames temporally inside action instances are sampled
for training, so that although there are negative samples in
other spatial location of these frames, the detector does not
have enough amount of negative samples for people without
doing any sports action. What is more, EC&T , EC&T&L

and ET are also a large portion of the rest errors (where
EC&T > EC&T&L > ET ), indicating more temporal er-
rors with inaccurate action boundaries than spatial localiza-
tion errors for current methods. Therefore we need a more
effective way of modeling temporal boundary. Typical error
visualization is shown in Figure 7.

4.4. Ablation Study

How important is temporal information? The tubelet
length K is important in MOC [24] and we report results
on UCF101-24 [38] and MultiSports with different K in
Table 4. For frame-mAP, we can find that MultiSports can
benefit more from longer temporal context than UCF101-
24, in spite of the shorter action duration of MultiSports
than UCF101-24 as shown in Table 2. For video-mAP, the
result does not increase as frame-mAP. We analyze there are
two reasons. First, predicting movement in MOC is harder
with longer input length. What is worse, the categories in
MultiSports have large deformation and displacement, and
MOC Movement Branch can not predict them accurately,
which harms the video level detection seriously. Second,
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Figure 7. Visualization of typical errors in MultiSports. Green
boxes are the ground-truths. Yellow boxes are the detections. Red
boxes are the missed ground-truths. 1st and 2nd row: missed de-
tection due to occlusion. 3rd and 4th row: EC&T : drive is mis-
classified as dribble and also has inaccurate action boundary; EM :
missed detections of screen, pick-and-roll defensive and sag.

Figure 4 shows the variability of action duration. The ratio
is 9% for instances duration less than 7 and 23% for less
than 11. The fixed clip length K (e.g. 11) will damage
temporal detection ability. So, we need to consider longer
temporal context, more accurate movement estimation and
flexible temporal detection for MultiSports.
Which action categories are challenging? Figure 5 shows
that not all categories yield better performance with more
training samples. Categories highly correlated with scenes
(such as basketball free throw) or aerobics basic categories
(such as aerobic horizontal support and V support) can
still achieve high performance with fewer samples. Note
that aerobics contains basic and complex categories, where
complex action combines the motion of basic action and its
own core motion, thus longer temporal context is required
for these complex actions. In contrast, categories with short
temporal duration and intense motion (such as football pass,
basketball pass and football interception) achieve low per-
formance even though with lots of training samples. By
observing the confusion matrix in supplementary materials,
we summarize other common challenges: (1) Context mod-
eling, such as basketball 2-point shot vs. 3-point shot (2)
Reasoning, such as for volleyball protect vs. defend, we
need to focus on whether the ball was blocked back or was
spiked by an opponent several frames earlier. (3) Long tem-
poral modeling, such as football long ball vs. pass, they
have the similar motion but need to identify how long the
ball will be passed.
Trimmed vs. untrimmed settings. MultiSports has well-
defined and high-quality temporal boundaries. We eval-
uate the performance of SlowFast Det. under both the

K MultiSports UCF101-24
F@0.5 V@0.2 V@0.5 F@0.5 V@0.2 V@0.5

1 14.61 12.53 1.06 68.33 65.47 31.50
3 17.22 11.88 0.76 69.94 75.83 45.94
5 19.29 11.81 0.98 71.63 77.74 49.55
7 22.51 12.13 0.77 73.14 78.81 51.02
9 24.22 11.72 0.57 72.17 77.94 50.16
11 25.22 12.88 0.62 - - -
13 24.28 11.23 0.57 - - -

Table 4. Exploration study of MOC on the MultiSports and
UCF101-24 with different tubelet length K.

Estimation MultiSports AVA
F@0.5 V@0.2 V@0.5 F-mAP@0.5

Untrimmed 27.72 24.18 9.65 22.57
Trimmed 38.71 24.95 18.34 24.56

Table 5. Test SlowFast Det. on AVA and MultiSports with trimmed
way and untrimmed way.

untrimmed and trimmed setting on MultiSports and AVA
datasets. The results are reported in Table 5. The trimmed
setting only evaluates the performance on the frames hav-
ing annotations and the untrimmed setting reports the per-
formance on all frames. We find that it only drops 2%
on AVA while 11% on our dataset, which indicates that
temporal localization is really important in our dataset.
In addition, video-mAP@0.5 drops far more than video-
mAP@0.2. This demonstrates that temporal localization is
important for high-quality action tube detection.

5. Conclusion
In this paper, we have introduced the MultiSports dataset

with dense spatio-temporal annotations of actions from four
sports. MultiSports distinguishes from the existing action
detection datasets in many aspects: 1) raising new chal-
lenges for recognizing fine-grained action classes; 2) re-
quirement of accurate localization of well-defined bound-
aries in multiple-person situations; 3) high quality video
data and dense annotations; 4) potential applications in
sports analysis; 5) less biased dataset with high diversity in
competition levels, countries and genders. We have empiri-
cally investigated several action detection baseline methods
on the MultiSports dataset. Our error analysis and ablation
studies on the detection results uncover several insightful
findings that are beneficial for the future research of spatio-
temporal action detection.
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