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Abstract

Accurate camera pose estimation or global camera re-

localization is a core component in Structure-from-Motion

(SfM) and SLAM systems. Given pair-wise relative cam-

era poses, pose-graph optimization (PGO) involves solving

for an optimized set of globally-consistent absolute camera

poses. In this work, we propose a novel PGO scheme fu-

eled by graph neural networks (GNN), namely PoGO-Net,

to conduct the absolute camera pose regression leverag-

ing multiple rotation averaging (MRA). Specifically, PoGO-

Net takes a noisy view-graph as the input, where the nodes

and edges are designed to encode the geometric constraints

and local graph consistency. Besides, we address the out-

lier edge removal by exploiting an implicit edge-dropping

scheme where the noisy or corrupted edges are effectively

filtered out with parameterized networks. Furthermore, we

introduce a joint loss function embedding MRA formulation

such that the robust inference is capable of achieving real-

time performances even for large-scale scenes. Our pro-

posed network is trained end-to-end on public benchmarks,

outperforming state-of-the-art approaches in extensive ex-

periments that demonstrate the efficiency and robustness of

our proposed network.

1. Introduction

Visual localization or camera pose regression lies in the

heart of many computer vision and robotics tasks, with

applications including robot navigation, autonomous driv-

ing and augmented reality. Camera pose estimation is

the process of self-determining the orientation and posi-

tion with the aid of sequential information via image re-

trieval. As the key component in standard camera pose

estimation pipelines, pose-graph optimization (PGO) in-

volves iterative estimations of pair-wise camera relative

poses and the progressive optimization of the noisy global

view-graph. In most of the conventional Structure-from-

Motion (SfM) [65, 69] and SLAM [47] systems, PGO is

*Work primarily conducted during graduate study at Temple Univ.
†Corresponding author.

conducted as numerically solving a high-dimensional non-

convex approximation problem by leveraging feature-frame

correspondences and often yields high computational costs.
Despite the proliferation of research addressing the back-

end optimization in SfM systems, many challenges remain

open. Firstly, canonical solvers carry a complexity of cu-

bic order with regards to the input size and gradually slows

down [67], forfeiting the real-time requirements. Secondly,

measurements of pair-wise relative camera poses are often

noisy, yielding corrupted and erroneous edges in the view-

graph and henceforth impairing the performances of both

conventional and learning-based methods [52]. Thirdly, di-

rect regressions of structures and motions with deep learn-

ing networks are prone to overfitting [55, 62], hindering the

robustness and generality in real-world applications.
Inspired by the recent successes of Graph Neural Net-

works (GNNs) [53], we herein propose a novel GNN-based

PGO scheme to address all the aforementioned issues with

a concrete network, namely, PoGO-Net. Specifically, we

encode the edge messages with pair-wise geometric con-

straints on the edges of the view-graph, aggregated with the

local consistency information. The absolute camera orien-

tations are encoded as node features, updated according to

its connected edges and neighboring nodes. As we consider

the input as a corrupted graph with erroneous and redun-

dant edges, we address the graph de-noising issue by ex-

ploiting topological parameterized network layers to con-

duct the ‘edge dropping’, i.e., the outlier edges are removed

according to the local graph consistency, resulting a sparser

yet preciser sub-graph of the input view-graph. We re-

define the message aggregation and design the loss func-

tion based on multiple rotation averaging (MRA) algorithm,

with the efficient message passing scheme our proposed net-

work is capable of processing in real-time speed even with

large-scale datasets. Moreover, our network bares an end-

to-end differentiable structure where the parameters of the

de-noising layers and the GNN layers are jointly optimized

during training.
Our contributions can be summarized as follows:

• We propose a novel PGO formulation fueled with a

GNN to conduct the absolute camera pose regression

by exploiting the MRA scheme.

5895



• We design the de-noise layers to address the outlier

edge removal in PGO. Our proposed de-noise layers

are iteratively executed with the GNN layers, implic-

itly exploiting the ‘edge-dropping’ scheme.

• We train PoGO-Net end-to-end and the network can be

easily integrated with both conventional and learning-

based SfM systems*. Extensive experiments on public

benchmarks demonstrates the accuracy, efficiency and

robustness of our proposed network.

2. Related Work

Conventional PGO approaches. Given a 3D scene,

pairwise relative camera poses are initially estimated by

applying robust methods [21, 50] to reject the matched

feature correspondence outliers and thus fits the essen-

tial/fundamental matrix [2], followed by the view-graph re-

finement, i.e., PGO iterations. In standard PGO pipelines

of conventional SfM approaches [19, 35, 47, 56], solv-

ing the high-dimensional non-convex optimization prob-

lem [27, 58] mostly involves adopting iterative non-linear

numerical solvers [1, 45, 48, 64] to minimize the repro-

jection errors with jointly optimizing the 3D scene points,

camera orientations and translations [42, 58, 68], namely,

bundle adjustment (BA).

As a sub-problem in BA, rotation averaging (RA) [26,

29] devotes to solve for the camera orientations given a set

of noisy measurements of the relative camera rotations and

can be categorized into single rotation averaging [28, 38,

40] and multiple rotation averaging (MRA) [4, 7, 20, 44].

The former delivers the optimal solution of one rotation

given several estimates whereas the latter can be consid-

ered as a synchronization problem with the goal to recover

unknown vertex labellings in the graph given noisy edge

labellings [3]. In recent years, we have witnessed a surge

of research interests on MRA [9–12, 46, 63, 66]. Though

MRA is still a computationally difficult problem to solve

due to its non-convexity of the rotation group space, it

shows the advantages by admitting a lower dimension and

complexity compared with conventional BA approaches

based on point-frame correspondences [11, 17, 66], en-

abling faster and lighter solvers. However, the predominant

challenge of MRA is associated with the outlier edges, i.e.,

the accuracy and robustness of MRA is tremendously im-

paired without the knowledge of the noise distribution over

the edges in the view-graph [4, 12, 44, 65]. There have

been plentiful recent lines of work toward robust and effi-

cient MRA approaches, which can be further categorized

into explicit outlier detection/removal schemes [12, 29, 49]

and implicit noise reduction schemes [4, 14, 63].

Learning-based SfM approaches. It was not until re-

cently that research interests focus on incorporating deep

*Code at https://github.com/xxylii/PoGO-Net

neural networks into SfM pipelines and camera pose re-

gression tasks [5, 18, 22, 33, 36, 57, 61, 71]. As one

of the earliest work adopting neural networks for camera

pose regression, the deep convolutional neural network pose

regressor proposed in [33] is trained according to a loss

function embedding the absolute camera pose prediction

error. While [33] pioneers in fusing the power of neu-

ral networks into pose regression frameworks, it does not

take the intra-frame constraints or connectivity of the view-

graph into optimization and thus barely over-performs con-

ventional counterparts on the accuracy, as improved later

in [13, 52, 72]. Other work exploits the algebraic or geomet-

ric relations among the given sequential images and train

the networks to predict to locate the images [8, 13, 59, 61],

among which [13] leverages temporal consistency of the

sequential images by equipping bi-directional LSTMs with

a CNN-RNN model such that temporal regularity can pro-

vide more pose information in the regression. The approach

in [8] trains DNNs model with the pair-wise geometric con-

straints between frames, by leveraging additional measure-

ments from IMU and GPS. Adoption of neural networks

also greatly benefits parallel line of studies including 3D

registration and point cloud alignment [6, 25].

Recent work [72] is the first study to leverage GNNs in a

full absolute camera pose regression framework, where the

authors model the view-graph with nodes fused with image

features extracted by CNNs. Another recent approach [49]

proposes a GNN-based network to address MRA, where

the network consists of two sub-networks addressing out-

lier removal and pose refinement respetively. Though these

two GNN-based approaches both achieve satisfactory per-

formance, limitations exist and improvements can be made.

For example, the correlation of node features and edge val-

ues are treated as purely binary in [72], discarding geomet-

ric constraints between frames. Also, the graph is initialized

to be fully connected, which might introduce large amounts

of redundant and erroneous edges.

In our work, we encode the edge messages with pair-

wise geometric constraints on the edges of the view-graph,

aggregated with the local consistency information. Though

inspired by NeuRoRA [49], the proposed network enables

the ‘edge dropping’ scheme by the explicit formulation of

the edge message, while the former conducts message ag-

gregation solely on nodes. Moreover, the graph information

is preserved more efficiently by allowing node-edge joint

message aggregation such that only one single loss is re-

quired, thus facilitating the end-to-end training, whereas the

additional viewgraph cleaning loss is involved in the net-

work design of NeuRoRA. Especially, we address the ro-

bustness of our proposed network by introducing de-noise

layers for the efficient outlier removal.

Graph Neural Networks. By virtue of its powerful yet

agile data representation, GNNs [34, 53, 60] have achieved
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exceptional performances on numerous computer vision

tasks. Despite their successes, straightforward adoptions

of GNNs in solving PGO is not applicable due to GNN’s

vulnerability against noisy graphs [24, 43, 51, 70, 73]. In

our work, we reduce the negative effects of outlier edges by

adopting parameterized de-noising layers [41, 43, 51].

3. Problem Statement

3.1. Preliminaries and Notations

Given a 3D scene with n image frames, consider there

exists a measurement R̃ij ∈ SO(3) of relative rotation

between frame Ii and Ij . Assume that in the ideal sce-

nario where R̃ij is noise-free, then the absolute rotations

Ri,Rj ∈ SO(3) of Ii and Ij satisfies R̃ij = RjR
−1
i .

However, in practice the relative measurements are often

noisy and contain outliers, the absolute camera orientation

estimation is thus to seek a set of camera orientations which

are globally consistent with the relative measurements, this

process is called multiple rotation averaging (MRA).
Formally, MRA [12] is a transformation synchronization

problem which involves minimizing a cost function that pe-

nalizes the discrepancy between the measurements of rela-

tive rotations R̃ij and RjR
−1
i . That is, to solve the follow-

ing objective function

argmin
Ri,Rj ,1≤i,j≤n

∑

(i,j)

ρ
(
d(R̃ij ,RjR

−1
i )

)
, (1)

where ρ(·) is a robust cost function and d(·, ·) is the distance

metric. We adopt the quaternion parameterization and the

corresponding metric [29] throughout the paper.

3.2. PoseGraph Optimization

With the MRA problem defined above, now we are ready

to formulate the PGO process. Let a graph G = (V, E)
denote the initial view-graph, where the vertex set V =
{vi|i ≤ n} represents the set of the absolute camera orien-

tations to be estimated, and the edge set E = {(i, j)|vi, vj ∈
V} describes the availability of pair-wise measurements of

relative camera orientations between image frames. In prac-

tice, the view-graph is often noisy regarding edges, prevent-

ing us to conduct MRA directly on G. The reasons of E
being noisy are two-fold: 1) In light of the existence of irre-

ducible errors in the image retrieval (e.g. feature matching),

outlier pair-wise relative measurements are hard to elimi-

nate for both deep-learning based approaches [37, 49] and

traditional geometry-constrained approaches [10, 44, 63].

2) As multiple cameras can share similar views, the view-

graph tends to have redundant edges such that MRA defined

in Eq. 1 is often ‘over-constrained’ [12].
In our work, we handle the noise in the view-graph by

exploiting an ‘edge-dropping’ scheme fused by parameter-

ized de-noising layers, such that the noisy/redundant edges

are remedied and eradicated, MRA is then veritably oper-

ated on the proper sub-graph of G.

4. PoGO-Net Architecture

In this section, we detail the proposed PoGO-Net as

shown in Fig. 1. Specifically, we first give the network ar-

chitecture overview in §4.1, followed by the introduction of

our graph structure and feature embedding in §4.2. We then

illustrate the novel construction of our message aggregation

scheme in §4.3, where the node messages and edge mes-

sages are both effectively encoded to gather all the informa-

tion over the neighborhood of each node. §4.4 depicts the

de-noising layers in our proposed network, where the de-

noising layers are designed to be iteratively executed with

GNN layers such that the outlier edges can be efficiently re-

moved implicitly. In §4.5 and §4.6, we emphasize the graph

update rules and the proposed loss function.

4.1. Architecture Overview

As shown in Fig. 1, our PoGO-Net takes noisy view-

graphs as the input and output the optimized pose-graphs.

Since the absolute camera orientations are unknown in the

input, we initialize the node features by seeding a span-

ning tree at the node with the highest degree (i.e. connected

with most nodes) and the initialization is propagated over

the graph with the aid of our de-noise layers actively re-

moving the outlier edges. The network has a multi-layer

feed-forward architecture and consists of de-noise layers

and GNN layers. At each iteration, the de-noise layer con-

ducts the ‘edge-dropping’ scheme on the outlier edges be-

fore updating the aggregated messages through the GNN

layer. PoGO-Net is fully differentiable and trained end-to-

end to jointly optimize the de-noise layers and GNN layers.

4.2. Feature Embedding

For an input view-graph G = (V, E), the edge set E rep-

resenting the set of relative orientations contains most of

the essential information required in the pose aggression.

Let r̃ij ∈ SO(3), (i, j) ∈ E represent the feature vector of

the edge connecting vi and vj . Since the nodes represent

the absolute camera orientations which are unknown, let

qi ∈ SO(3), vi ∈ V represent the node feature. {qi|vi ∈ V}
can be deemed as a set of feature placeholders and is in-

teractively initialized in a spanning-tree manner during the

training process, more details are given in §4.5.
In contrast with regular GNNs where the adjacency ma-

trix AG derived from E is a binary matrix indicating the

neighborhood of each node, the adjacency matrix in our

work is formed by parameterized variables. Specifically,

values of elements consisting AG illustrate whether the cor-

responding edge-denoted measurements are reliable, i.e.,

small values imply that the edges are prone to be noisy or

even outliers. Details of parameterization of AG is in §4.4.
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Figure 1: Illustration of the PoGO-Net pipeline. Our proposed network takes a noisy view-graph as the input and the output

is the optimized pose-graph. The network adopts a multi-layer feed-forward architecture with the message passing scheme,

where the message is aggregated over the connected edges and neighboring nodes of each node. The de-noising layer is

designed to remove the outlier edges and is executed iteratively with GNN layers. Best viewed in color.

4.3. Message Aggregation

Our network adopts a multi-layer feed-forward architec-
ture implemented with the message-passing scheme [53],
i.e., the aggregated information is propagated over the
neighborhood of each node. Since the nodes and edges are
interactively updated through network layers, we design a
novel joint message aggregation scheme to effectively en-
code both the node messages and edge messages. In detail,
denote N l

i = {vj |(i, j) ∈ E l} for the neighborhood of node

vi on the lth layer, the messages are generated as follows

ml
qi

= ρ{r̃ij |(i, j) ∈ E l}++ qli, (2)

ml
r̃ij

= qli ++ qlj ++ r̃lij , (3)

ml
πi

= mean{r̃lij |(i, j) ∈ E l}++ {qlj |vj ∈ N l
i }, (4)

where ++ denotes the concatenation and πi the state of node

vi. For PGO, gathering information from all the neighbor-

ing cameras sharing views with a given camera pose is es-

sential, hence we assemble the state feature of vi with all

the connected edge and node features in its neighborhood.
It is noteworthy that, as our proposed network is capable

of filtering out the outlier/redundant edges during the train-

ing, E is evolving as sparser yet preciser through different

layers (details given in §4.4). The two components of node

state message correspond to the all the connected edges an

neighboring nodes.

4.4. Graph Denoising

As the input of PoGO-Net is often noisy with the pres-

ence of outlier/redundant edges, it is not practical to directly

apply GNNs to the PGO task as the message aggregation

along edges is likely to propagate and amplify the noise over

the whole graph. In our proposed network, we reduce the

noise by exploiting ‘edge-dropping’ de-noising layers along

with the GNN layers, such that the edges and nodes are in-

teractively updated according to the corresponding message

passing defined in §4.3.
In detail, consider the adjacency matrix Al

G at the lth

layer of the network, in our network the elements of Al
G

represent the weights of the corresponding edge features
r̃lij in the regression. That is, Al

G = AG ⊙ Z l, where

Z l denotes the binary coefficient matrix {zlij} and ⊙ de-
notes the element-wise multiplication operation. Follow-
ing [31, 43, 60], we relax the binary elements zlij from be-
ing purely binary to values of a deterministic function g of
the edge message ml

r̃ij
as defined in Eq. 3, such that the

coefficients are continuous and non-binary. Specifically, let
ϵl be a uniformly distributed random variable independent
with ml

r̃ij
, then zlij is defined as

zlij = g(ωγl(m
l
r̃ij

), ϵl), (5)

where ωγl(·) is the MLP parameterized by γl. As we en-
courage the network to remove edges for the optimization,
we extend the open domain (0, 1) of zlij to include 0. De-

note ul
ij as the random variable drawn from the binary con-

crete distribution parametrized by the edge message, i.e.

ul
ij = σ((log ϵl − log(1− ϵl) + ωγl(m

l
r̃ij

))/τ), (6)

where τ > 0 denotes the temperature parameter [31, 43]
and σ(x) = 1

1+e−x is the sigmoid function. Since we want
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Figure 2: Node initialization. Our de-noising layers are

capable of filtering out the outlier edges according to the

local consistency during the spanning-tree based initializa-

tion, preventing erroneous measurements to be broadcast.

ul
ij ∈ (a, b) with a < 0 and b > 0, we thus update ul

ij as

ûl
ij = (b− a)ul

ij + a. Now we are ready to finalize zlij as

zlij = min(1,max(ûl
ij , 0)), (7)

such that the zero-valued coefficients are enabled.
With the de-noising scheme described above, now the

noisy edges can be efficiently removed from the view-graph

without explicit outlier detection. In our proposed network,

the de-noising and message-passing are executed iteratively,

i.e., the input goes through the de-noise layer right before

going through GNN layer in each iteration.

4.5. Graph Initialization and Updating

Initialization. Recall that the graph inauguration is

equipped with the node set as the collection of node fea-

ture placeholders, as the absolute camera orientations are

unknown in the input view-graph at the time of the ini-

tialization (§4.2). In PoGO-Net, we initialize the nodes by

seeding a spanning tree in the view-graph [11, 28], i.e., an

initial value is given to the node with the highest degree,

followed by the iterations of orientation broadcasting over

its neighborhood in a breadth-first manner.
Despite that the initialization with spanning-tree rota-

tion distribution is generally not robust for conventional ap-

proaches, as the outlier measurements on the noisy edges

get propagated progressively [4, 12, 49], our proposed net-

work is capable of correcting the erroneous measurements

dynamically and thus restricting the outlier transmission, by

virtue of the utilization of our de-noise layers. Specifically,

the de-noise layers are parameterized with the edge mes-

sages, which assemble the information of the ‘local edge

consistency’, i.e., the outlier edges generate inconsistent

messages within their neighborhoods, thus prone to be re-

moved (§4.4). An illustration of our initialization process is

given in Fig. 3.

Graph Update. The view-graph is updated regarding

both edges and nodes through the network layers, while the

node features are directly updated with reference to the ag-

gregated node messages, the edge structure evolves implic-

Figure 3: Illustration of back propagation scheme in our

network. The de-noise layers are updated based on the edge

loss while the GNN parameters are tuned by the total loss.

itly regarding the emerging adjacency matrix. In detail, the

edge features are aggregated in the edge messages along

with the inherent graph connectivity information. In each

iteration, outlier edges are dropped before the passing of

the edge message aggregated over the updated local region.
Formally, denote ϕ(·), φ(·) and µ(·) as the differentiable

MLPs for the concatenation of the nodes, edges and states,
respectively, we update the graph according to the rules

qi
l+1 = ϕl

i(ρ{r̃ij |(i, j) ∈ E l}, qli, πi
l), (8)

r̃l+1
ij = φl

ij(q
l
i, q

l
j , r̃

l
ij), (9)

πi
l+1 = µl

i(softmax{r̃lij |(i, j) ∈ E l}, {qlj |vj ∈ N l
i }, πi

l). (10)

4.6. Loss Function

Loss Function. Our loss function consists of two com-
ponents with one representing the edge loss and the other
one representing the node loss. Intuitively, the edge loss
measures the global consistency of the output pose-graph
and the node loss evaluates the prediction of the absolute
camera orientations. Respectively, denote Le the edge loss
and Lv the node loss, let Lr be the additional l1 regular-
ization loss corresponding to the weighted sum of node
weights regarding the vertex degree along with the edge
weights regarding the adjacency coefficients zij , then

L = αeLe + αvLv + αrLr, (11)

where αe, αv, αr ∈ (0, 1) are the weight parameters. Pre-
cisely, denote the groundtruth absolute camera orientations
as {q∗i }, then we have

Le =
∑

(i,j)∈Ê
∥q̂−1

j r̂ij q̂i∥d, (12)

Lv =
∑

i∈V
∥q̂i − q∗i ∥d, (13)

where (̂·) denotes the output variable values, ∥ · ∥d denotes

the norm corresponding to the l1 quaternion metric d.

Our network is trained jointly end-to-end with de-noise

layers and GNN layers parameters optimized concurrently.

Particularly, while the GNN layers are tuned with regard to

the combined total loss, we enforce the de-noise layer train-

ing to be solely dependent on Le since the ‘edge-dropping’

scheme designed for de-noising is based on the edge con-

sistency of the local region.

5899



Table 1: Experiment results on the 7Scenes Dataset [55]. Results are cited directly, the best results are highlighted.

Scene
RelocNet

[5]

LsG

[71]

MapNet

[8]

MapNet+PGO

[8]

PoseNet15

[33]

PoseNet17

[32]

PoseNet+LSTM

[62]

CNN+GNN

[72]
PoGO-Net

Chess 3m x 2m x 1m 4.14◦ 3.28◦ 3.25◦ 3.24◦ 8.12◦ 4.48◦ 5.77◦ 2.82◦ 1.72◦

Office 2.5m x 2m x 1.5m 5.32◦ 5.45◦ 5.15◦ 5.42◦ 7.68◦ 5.55◦ 8.08◦ 5.08◦ 3.93◦

Fire 2.5m x 1m x 1m 10.4◦ 10.92◦ 11.69◦ 9.29◦ 14.4◦ 11.30◦ 11.90◦ 8.94◦ 6.23◦

Pumpkin 2.5m x 2m x 1m 4.17◦ 3.69◦ 4.02◦ 3.96◦ 8.42◦ 4.75◦ 7.00◦ 2.77◦◦ 3.56◦

Red Kitchen 4m x 3m x 1.5m 5.08◦ 4.92◦ 4.93◦ 4.94◦ 8.64◦ 5.35◦ 8.83◦ 4.48◦ 3.85◦

Stairs 2.5m x 2m x 1.5m 7.53◦ 11.3◦ 12.08◦ 10.62◦ 13.8◦ 12.40◦ 13.70◦ 8.78◦ 7.88◦

Heads 2m x 0.5m x 1m 10.5◦ 12.70◦ 13.25◦ 8.45◦ 12.0◦ 13.0◦ 13.7◦ 11.41◦ 7.34◦

Average 6.73◦ 7.47◦ 7.66◦ 6.56◦ 10.4◦ 8.12◦ 9.85◦ 6.33◦ 4.93◦

Training. For the training of PoGO-Net, we optimize

the network parameters with SGD, where the weight decay

is set to be 1e-4, and the learning rate is initialized as 1e-

3. We train the network with batch size of 64, maximum

epochs are set to be 300. In our experiments, we use param-

eters αe = 0.2, αv = 0.7, αr = 0.1 for the loss function.

More details of training are given in §5.1.

5. Experimental Results

Our network is trained end-to-end with SGD for all the

datasets. The networks are implemented in Pytorch on a

single Nvidia GeForce 1080 GPU with 8GB memory.

Datasets and Metrics. We conduct extensive exper-

iments on multiple benchmark against conventional and

learning-based state-of-the-art camera pose regression ap-

proaches. We report the median and mean angular er-

rors along with the runtime for the experiments. For the

datasets where the measurements of relative camera poses

are not available, the initial view-graph is given by manually

running the conventional state-of-the-art SfM system Visu-

alSfM [68, 69] with Gaussian noises (µ = 20◦, σ = 5◦)

added on the edges of the initialized view-graph.

ScanNet [15] is an RGB-D video dataset contain-

ing 2.5 million views in more than 1500 indoor scans,

the groundtruth includes the absolute camera orientations

(given by [16]), triangulated surfaces and semantic seg-

mentations. The Cambridge dataset [33] contains over

12000 images with groundtruth absolute camera orienta-

tions, taken in 6 outdoor scenes around Cambridge Univer-

sity. The dataset is challenging due to the presence of high

amounts of moving objects and changing lightning condi-

tions. 7 Scenes [55] consists of 7 relatively small indoor

scenes, tracked by a Kinect RGB-D camera. While the

dataset with less than 10K images is small in scale com-

pared with the other datasets, the view-graphs are highly

noisy with the presence of various texture-less objects in

scene, thus making it challenging. The Photo Tourism

datasets [65] are a large collection of 19 outdoor scenes

with more than 5k views and over 200K relative measure-

ments on several datasets.

Baselines. We compare performance of PoGO-Net

against both conventional and learning-based state-of-the-

art approaches to demonstrate the efficiency and robust-

ness of the proposed network. Among the methods,

IRLS [11], IRLS-Robust [12], Weiszfeld [28], Arrigoni [4],

DISCO [14], CEMP [39], MPLS [54] and Wang [63]

are conventional MRA-PGO methods. Learning-based ap-

proaches include RelocNet [5], LsG [71], MapNet [8],

PoseNet15 [33], PoseNet17 [32], PoseNet+LSTM [62],

CNN+GNN [72] and NeuRoRA [49].

5.1. Implementation Details

For the training of PoGO-Net, we adopt SGD optimizer

with no dropout. To prevent the ‘over-smoothing’ of GNNs,

we conduct random shuffling within the batch (size = 64)

with l1 regularization. The backbone network adopts the

original GNNs [53]. We train PoGO-Net according to the

conventional split of the datasets, the learning rate is an-

nealed geometrically starting at 1e-3 and decreases to 1e-

5. The view-graph is initialized completely with the con-

ventional spanning tree method, prone to broadcasting er-

roneous edge measurements. We thus address the de-noise

layer parameter tuning by setting the weight of edge loss Le

(i.e. local edge consistency) slightly higher (αe = 0.35) on

first 10% of the training data. The loss component weight

parameters are set αv = 0.7, αe = 0.2, αr = 0.1 for the

training of all the datasets. Though we set the maximum

epochs to be 300, we have observed that the dropping of

validating errors and testing errors terminates around 150-

230 epochs in our experiments.

5.2. Performance Comparisons

7 Scenes. We first compare PoGO-Net with recent state-

of-the-art learning-based PGO methods on the 7 Scenes

dataset, the quantitative results are reported in Table.1.

It can be seen that PoGO-Net has achieved best results

on most of the scenes, among which on Fire and Heads

datasets PoGO-Net outperforms the other approaches by

large margins. On Pumpkin and Stairs dataset, PoGO-Net

slightly falls short to previous approaches. Considering

that both scenes hold high amounts of views with repetitive

patterns and textureless surfaces, the main factor of errors

roots from the exceedingly noisy image retrieval, i.e., the

erroneous feature extraction and matching causes the ini-

tial view-graph to be highly corrupted on most of the edges.
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Table 2: Experiment results on the Cambridge Dataset [33]. Results are cited directly, the best results are highlighted.

Scene
MapNet

[8]

PoseNet15

[33]

PoseNet17

[32]

PoseNet+LSTM

[62]

CNN+GNN

[72]

PoGO-Net

Tourism

PoGO-Net

7Scenes

PoGO-Net

ScanNet

PoGO-Net

Cambridge

T. G. Court 8.0x103 m2 3.76◦ - 3.27◦ - 2.79◦ 3.23◦ 3.92◦ 3.66◦ 1.96◦

Street 5.0x103 m2 27.55◦ - 15.50◦ - 22.44◦ 19.29◦ 28.33◦ 23.17◦ 11.76◦

K. College 5.6x103 m2 1.89◦ 4.86◦ 1.04◦ 3.65◦ 0.65◦ 2.04◦ 3.89◦ 2.55◦ 0.94◦

O. Hospital 2.0x103 m2 3.91◦ 4.90◦ 3.29◦ 4.29◦ 2.78◦ 3.14◦ 3.65◦ 2.97◦ 1.69◦

S. Facade 8.8x103 m2 4.22◦ 7.18◦ 3.78◦ 7.44◦ 2.87◦ 3.93◦ 4.88◦ 4.06◦ 2.40◦

St. M. Church 4.8x103 m2 4.53◦ 7.96◦ 3.32◦ 6.68◦ 3.29◦ 3.66◦ 5.12◦ 3.49◦ 2.12◦

Average 7.64◦ 6.23◦ 5.03◦ 5.52◦ 5.80◦ 5.04◦ 8.29◦ 6.65◦ 3.47◦

Note that [5] and [72] both have utilized the ResNet [30]

feature extractor which is more robust compared with the

conventional approach VisualSfM we adopt for the initial

view-graph generation during the image retrieval phase.
Cambridge. In the experiments on the Cambridge

dataset, we demonstrate the transferability of PoGO-Net

by training on distinct datasets. Results are given in Ta-

ble 2. Specifically, we record the comparable testing results

on the Cambridge dataset with PoGO-Net trained solely on

the 7Scenes [55], ScanNet [15] and the Photo Tourism [65]

datasets separately. We finally report the performance with

training and testing both on the Cambridge dataset and our

PoGO-Net presents significant outperformances on most

of the scenes, further proving the network robustness in

large-scale outdoor scenes. Note that data on Trinity Great

Court and Street are not provided for PoseNet15 [33] and

PoseNet+LSTM [62], the average errors for the two ap-

proaches are based on the results on the left four scenes.

Table 3: Experiment results on the ScanNet Dataset [15].

Results are based on 5 runs of conventional approaches.

The average runtime is evaluated on CPU.

mean angle err. median angle err. runtime

IRLS [11] 14.07◦ 10.65◦ 2.08s

Robust-IRLS [12] 13.23◦ 8.17◦ 2.33s

Weiszfeld [28] 19.74◦ 15.32◦ 85.21s

Arrigoni [4] 27.16◦ 20.43◦ 37.83s

Wang [63] 16.30◦ 10.04◦ 13.2s

NeuRoRA [49] 11.02◦ 6.92◦ 0.92s

PoGO-Net 8.22◦ 3.04◦ 0.37s

ScanNet. We then test the performance of PoGO-

Net against the conventional state-of-the-art approaches.

Specifically, we record the angular errors and the runtime

to demonstrate the accuracy and efficiency of PoGO-Net

compared with traditional MRA-PGO methods. We also

include the results reported by NeuRoRA [49], which is a

GNN-based MRA framework with two sub-networks. Note

that NeuRoRA is pre-trained with synthetic datasets which

are captured by the authors, and the CleanNet and Fine-

tuning network are trained separately while PoGO-Net is

trained end-to-end without pre-tuned parameters. We cite

the results reported in [49] for NeuRoRA and we execute

the conventional approaches and report the 5-run averages,

the results are given in Table 3. It can be seen that PoGO-
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Figure 4: Study of different de-noise layers settings on the

noise distributed to a) 10% b) 20% of the view-graph edges.

Net outperforms the previous methods by a wide margin in

both accuracy and speed.
Tourism. Similar with the experiments on ScanNet, the

angular errors and runtime of experiments on the Photo

Tourism Dataset [65] are reported in Table 4. We cite the

results partly from [4, 12, 49]. It can be observed that

PoGO-Net has achieved the best results on most of the

scenes. On the datasets with large-scale view-graphs (e.g.

Piccadilly), PoGO-Net demonstrates its efficiency by out-

performing conventional approaches by up to 400x faster

and is almost 2x faster compared with learning-based Neu-

RoRA. Full result and more analysis of the experiments are

provided in the supplementary materials.

5.3. Ablation Study

To study the effects of the de-noise layers, we conduct

the ablation study on the 7Scenes dataset with several vari-

ations of PoGO-Net. In detail, we re-train the network with

0%, 30%, 50% amounts of the de-noise layers in the orig-

inal PoGO-Net and test them on the testing sets with ad-

ditional noise (from 1◦ to 10 ◦) on the randomly selected

edges in the viewgraph. The accuracy plots are given in

Fig. 4. With the setting of 0% of the de-noise layers, it is

very difficult to initialize the nodes in the view-graph with

the spanning tree scheme as the edge errors are severely

propagated over the graph. Therefore in the experiments

with the GNN-only variation, we first manually filter out

outlier edges in randomly selected cycles in the view-graph

by enforcing the cycle identity [49]. It can be seen that

though the network with fewer de-noise layers can work,

it yields a much lower accuracy compared with the original
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Table 4: Experiment results on the Tourism Dataset [65]. We report the angular errors (◦) and runtime (s) on CPU. The best

results are highlighted. Full result is given in the supplementary materials.

Scene
#

Nodes

#

Edges

IRLS

[11]

Robust-IRLS

[12]

Weiszfeld

[28]

Arrigoni

[4]

Wang

[63]

DISCO

[14]

CEMP

[39]

MPLS

[54]

NeuRoRA

[49]
PoGO-Net

A
la

m
o mean 3.64 3.67 4.9 6.2 5.3 - 4.05 3.44 4.9 2.96

627 97206 median 1.30 1.32 1.4 1.2 1.1 7.86 1.62 1.16 1.2 0.85

runtime 14.2s 15.1s 84.0s 2.7s 20.6s 3917s 10.38s 20.6s 2.2s 1.74s

M
.N

.D mean 1.25 1.22 2.1 4.8 2.0 - 1.33 1.04 1.2 0.82

474 52424 median 0.58 0.57 0.7 0.9 0.8 6.81 0.79 0.51 0.6 0.37

runtime 8.5s 7.3s 41.5s 2.9s 10.1s 1608s 7.3s 9.3s 1.0s 0.53s

N
.D

am
e mean 2.63 2.26 4.7 3.9 3.5 - 2.35 2.06 1.6 1.17

715 64678 median 0.78 0.71 0.8 1.0 0.9 7.48 0.94 0.67 0.6 0.35

runtime 17.2s 22.5s 80.8s 4.2s 19.5s 4070s 13.2s 31.5s 2.0s 1.24s

P
ic

ca
. mean 5.12 5.19 26.4 22.0 10.1 36.0 4.66 3.93 4.7 4.93

2508 319257 median 2.02 2.34 7.5 9.7 3.9 - 1.98 1.81 1.9 1.75

runtime 353.5s 370.2s 1342.6s 43.7s 118.1s 15604s 45.8s 191.9s 5.9s 3.19s

R
.F

rm
. mean 2.66 2.69 4.8 13.2 4.6 - 2.80 2.62 2.30 1.55

1134 70187 median 1.58 1.57 1.8 8.2 3.5 35.36 1.45 1.37 1.3 0.69

runtime 18.6 21.4 115.0s 16.8s 19.6s 1559s 6.1s 8.8s 1.3s 1.26s

T
.o

.L
. mean 3.42 3.41 4.7 4.6 2.9 - 2.84 3.16 2.6 1.77

508 24863 median 2.52 2.50 2.9 1.8 1.5 10.38 1.57 2.20 1.4 0.43

runtime 2.6s 2.4s 17.4s 3.9s 3.6s 479s 2.2s 2.7s 0.3s 0.38s

U
.S

q
. mean 6.77 6.77 40.9 9.2 6.8 - 7.47 6.54 5.9 3.3

930 25561 median 3.66 3.85 10.3 4.4 3.2 26.27 3.64 3.48 2.0 1.25

runtime 9.0s 8.6s 42.8s 12.1s 4.1s 466s 2.5s 5.7s 0.6s 0.29s

Y
o

rk
m

.

mean 2.6 2.45 5.7 4.5 3.5 - 2.49 2.47 2.5 2.03

458 27729 median 1.59 1.53 2.0 1.6 1.3 26.17 1.37 1.45 0.9 0.72

runtime 3.4s 4.3s 32.0s 2.5s 4.9s 641s 2.8s 3.9s 0.4s 0.12s

S
an

.F
. mean 4.3 3.6 18.8 66.8 89.2 - - - 17.6 6.82

7866 101512 median 3.9 3.4 16.4 43.9 75.5 54.38 - - 12.6 3.16

runtime 18.9s 15.2s 1462.7s 354.7s 27.2s 1413s - - 2.6s 1.54s

V
ie

n
.C

.

mean 9.1 8.2 11.7 19.3 10.1 6.91 7.21 - 3.9 4.26

918 103550 median 3.9 1.2 1.9 2.39 1.8 22.35 2.63 2.83 1.5 1.44

runtime 56.9s 48.1s 158.3s 6.0s 25.7s 4085s 13.1s 42.6s 2.1s 1.53s

PoGO-Net. Moreover, it is noteworthy that the accuracy

of PoGO-Net holds stable in spite of the increasing noise

level, further demonstrating the robustness of the network.

The full study on the de-noise layer effects are provided in

the supplementary materials.

5.4. Discussions and Future Work

To further demonstrate the capability of generalization

of PoGO-Net, we test it on the KITTI Odometry [23] and

integrate it with the state-of-the-art SLAM pipeline ORB-

SLAM [47]. Evaluations and analysis are given in the sup-

plementary materials. Observing that PoGO-Net achieves

real-time performances with high accuracy further vali-

dates the potential of PoGO-Net as to be extended to a full

SfM/SLAM system. While accurate MRA, especially com-

bined with the graph-based formulation, is compact and

lightweight to address PGO efficiently, expanding PoGO-

Net for SE(3) regression is neither immediate nor trivial.

We nonetheless believe that the adoption of feature sub-

nets endows the full pose regression, such that rotations and

translations can be jointly optimized within the graph form.

6. Conclusion

In this work, we propose a novel PGO scheme fueled

by GNNs, namely PoGO-Net, to conduct the absolute cam-

era pose regression leveraging MRA. PoGO-Net takes noisy

view-graphs as inputs where the nodes and edges are de-

signed to encode the pair-wise geometric constraints and

aggregated with the local graph consistency. To address

the outlier edge removal toward a robust MRA-GNN ap-

proach, we design the de-noise layers by exploiting an edge-

dropping scheme on the noisy or corrupted edges, which are

effectively filtered out with parameterized networks. Our

joint loss function embeds MRA formulation, enabling end-

to-end training so that the parameters of the de-noise layers

and GNN layers optimized concurrently. Extensive exper-

iments on multiple benchmarks demonstrate the accuracy,

efficiency and robustness of PoGO-Net.
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Bundlefusion: Real-time globally consistent 3d reconstruc-

tion using on-the-fly surface reintegration. ACM Transac-

tions on Graphics (ToG), 36(4):1, 2017.

[17] F. Dellaert, D. M. Rosen, J. Wu, R. Mahony, and L. Car-

lone. Shonan rotation averaging: Global optimality by surf-

ing SO(p)n. In European Conference on Computer Vision

(ECCV). Springer, 2020.

[18] M. Ding, Z. Wang, J. Sun, J. Shi, and P. Luo. Camnet:

Coarse-to-fine retrieval for camera re-localization. In Pro-

ceedings of the IEEE International Conference on Computer

Vision (ICCV), 2019.
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