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Abstract
Conventional face super-resolution methods usually as-

sume testing low-resolution (LR) images lie in the same do-
main as the training ones. Due to different lighting condi-
tions and imaging hardware, domain gaps between train-
ing and testing images inevitably occur in many real-world
scenarios. Neglecting those domain gaps would lead to in-
ferior face super-resolution (FSR) performance. However,
how to transfer a trained FSR model to a target domain ef-
ficiently and effectively has not been investigated. To tackle
this problem, we develop a Domain-Aware Pyramid-based
Face Super-Resolution network, named DAP-FSR network.
Our DAP-FSR makes the first attempt to super-resolve LR
faces from a target domain by exploiting only a pair of high-
resolution (HR) and LR exemplar in the target domain. To
be specific, our DAP-FSR firstly employs its encoder to ex-
tract the multi-scale latent representations of the input LR
face. Considering only one target domain example is avail-
able, we propose to augment the target domain data by mix-
ing the latent representations of the target domain face and
source domain ones, and then feed the mixed representa-
tions to the decoder of our DAP-FSR. The decoder will gen-
erate new face images resembling the target domain image
style. The generated HR faces in turn are used to optimize
our decoder to reduce the domain gap. By iteratively updat-
ing the latent representations and our decoder, our DAP-
FSR will be adapted to the target domain, thus achieving
authentic and high-quality upsampled HR faces. Extensive
experiments on three benchmarks validate the effectiveness
and superior performance of our DAP-FSR compared to the
state-of-the-art methods.

1. Introduction
Face Super-Resolution (FSR), also known as face hallu-

cination, aims at reconstructing high-resolution (HR) face
images from input low-resolution (LR) ones. FSR pro-
vides critical information for the downstream computer vi-
sion and machine learning tasks, such as face detection [1],
recognition [31] and photo-editing [22, 62, 27]. Thanks to
the advance of generative adversarial networks [15], FSR
has achieved great success in recent years [51, 53, 52, 48,
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Figure 1. Conventional FSR methods achieve good performance
on the source dataset, but are prone to fail on the target dataset due
to the domain gap. Our proposed method effectively adapts the
model by leveraging only one-shot example.

54, 49, 56, 5, 8, 61].
Previous FSR methods usually presume training and

testing LR faces are captured from the same domain. When
testing LR faces resemble the training ones, previous works
achieve authentic upsampled HR faces. However, in prac-
tice, the domain gap between testing images and training
ones is inevitable due to different imaging equipment, illu-
mination conditions, etc. As shown in the upper right of
Figure 1, previous state-of-the-art FSR methods fail to up-
sample HR authentically due to the large domain gap be-
tween the target domain (testing) and source domain (train-
ing). Considering FSR models would be deployed in dif-
ferent scenarios, it is very inefficient to re-train every de-
ployed FSR model by collecting large-scale data from the
corresponding target domain. Therefore, only using a few
samples, ideally one example, to efficiently update an FSR
model is highly desirable.

In this paper, we aim to super-resolve LR faces that
exhibit an obvious domain gap by only leveraging one-
shot exemplar from the target domain. We name this task
as One-Shot Domain Adaption for Face Super-Resolution
(OSDA-FSR). Different from conventional FSR meth-
ods [51, 8, 37], two challenges are naturally raised: (i) how
to design a FSR network architecture that is intrinsically
suitable for efficient adaptation; and (ii) how to explore one
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example to bridge the domain gap since simply fine-tuning
an FSR network with one example is ineffective.

To address these challenges, we present a novel Domain-
Aware Pyramid based Face Super-Resolution network,
namely DAP-FSR network. Our DAP-FSR contains two
parts: a domain-aware pyramid encoder and an upsampling
decoder. Our DAP-FSR encoder is designed to extract the
latent representations by leveraging the multi-scale features
from the input LR faces. Considering LR faces may be un-
aligned, we propose an Instance Spatial Transformer Net-
works (ISTN) to align LR faces inspired by [21]. In this
way, we facilitate the latent representation learning and face
upsampling processes by aligning the LR faces into the
canonical view. Motivated by the powerful architecture of
StyleGAN [23, 24], an image generation network, we con-
struct our upsampling decoder. Once we obtain the latent
representations, we feed those representations to our DAP-
FSR decoder to hallucinate high-quality HR face images.

To tackle the problem of super-resolving LR faces in
a new domain without the need for tremendous data col-
lection, we propose a Domain-Aware latent Mixing and
Model Adaptation algorithm (DAMMA). In a nutshell, our
DAMMA algorithm is able to adapt the model trained on
the source domain to the target domain by exploring only
the one-shot example. As illustrated in Figure 1, when a
target domain example is given, DAP-FSR network first ex-
tracts its latent representations. Then, supervised by the
given one-shot example, we learn a soft mixture weight to
mix the target latent representations with random-sampled
source latent ones. In this fashion, the newly generated
faces will resemble the target domain faces and we signif-
icantly augment the target-style data. By constrained fine-
tuning our decoder with the augmented images, our network
is gradually adapted from the source domain to the target
domain. After iteratively updating the soft mixing weight
and adapting our decoder, our DAP-FSR attains authentic
target domain HR faces.

Our main contributions are summarized as follows,

• We propose a novel domain-aware pyramid-based face
super-resolution network, named DAP-FSR network,
to efficiently upsample cross-domain LR face images
by peeking at one-shot target domain example.

• We present a simple yet effective domain-aware latent
mixing and model adaptation algorithm (DAMMA)
to adapt our DAP-FSR to the target domain. Our
DAMMA generates target-style alike faces to adapt the
upsampling decoder in DAP-FSR by fully exploiting
the one-shot example.

• To the best of our knowledge, our method is the first
attempt to super-resolve cross-domain LR face images,
making our method more practical.

• Our proposed DAP-FSR can be adapted to a target do-
main effectively and is also robust to unaligned LR
faces. Experiments on three constructed cross-domain
face super-resolution benchmarks validate the superior
performance of our proposed approach compared to
the state-of-the-art methods.

2. Related Work

Face super-resolution. Face super-resolution (FSR), also
known as face hallucination, aims at establishing the inten-
sity relationships between input LR and output HR face im-
ages from the same domain.

Traditional holistic appearance-based methods firstly
leverage a parameterized model to represent faces and then
construct the mappings between LR and HR faces. Some
representative models super-resolve HR faces from LR ones
by adopting global linear mapping [45, 29], or optimal
transport [25]. However, they require input LR images to
be aligned to a canonical pose and HR faces in the database
to share similar facial expressions. Later on, part-based ap-
proaches have been proposed to relax the strict requirements
in holistic appearance-based methods. Part-based face hal-
lucination algorithms [36, 43, 47] firstly extract local facial
regions and then upsample them separately.

Taking advantage of the powerful feature representation
of deep neural networks, deep learning based face super-
resolution methods [65, 51, 52, 50, 59, 65, 18, 8, 37, 60]
have been proposed and achieved promising results. Sev-
eral methods exploit prior knowledge, such as facial at-
tributes [49], parsing maps [8], facial landmarks [48, 7, 6]
and identity [57, 42], to advance the upsampling perfor-
mance. However, when LR faces are captured from an-
other domain, such as different imaging conditions, existing
methods may fail to super-resolve them photo-realistically.
Moreover, when the new domain data is not abundantly
available, it would be difficult to retrain FSR networks with
such a limited number of samples. In this paper, we make
the first attempt to address this challenging scenario in a
data efficient manner.

One-shot Domain Adaptation To overcome the need of
large-scale training data and improve the adaption ability
of models on new domains, many works have been exten-
sively proposed [13, 30, 38, 4, 3, 44, 33, 10, 12, 11]. Early
one/few-shot based classification tasks [9] construct gener-
ative models from shared appearance priors across classes
for classification. Recently, a new stream of works focuses
on using meta-learning to quickly adapt models to novel
tasks [13, 39, 41]. However, these one/few-shot methods
are mainly applied to different classification tasks without
taking domain gaps between image-pairs into account.

Pix2Pix [20] and CycleGAN [64] have been proposed
as image-to-image translation networks. However, due to
the scarcity of samples in the target domain, these meth-
ods might not be suitable for transferring from the source
domain to the target one with few samples. To mitigate
the data hungry problem of deep neural networks, sev-
eral works employ shared [30] or partially shared [26] la-
tent space assumption to conduct image-to-image transla-
tion tasks, such as style transfer [19, 30] and face genera-
tion [46]. Since these methods only address the domain gap
without learning the mapping between LR and HR images,
they are not suitable for face hallucination.
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Figure 2. Illustration of our DAP-FSR architecture. (a) The encoder network. Feature maps from different spatial resolution are up-
sampled and concatenated as the multi-scale pyramid context. Each Adaptive Latent Encoding (ALE) module dynamically attends the
multi-scale context to generate the latent representation wi. (b) The decoder network, where the HR images are generated based on the
latent representations. (c) The Instance Spatial Transformer Network (ISTN) learns the style-invariant affine transformation matrix to
adjust the unaligned LR images. (d) The detailed Adaptive Latent Encoding module, where the channel-wise feature attention is learned
to adaptively capture the multi-scale information of the input images.

3. Task Definition: One-shot based FSR
Conventional Face Super-Resolution (FSR) methods aim

to learn a face super-resolution model M that generates a
high-resolution super-resolved face image ISR ∈ RH×W

from a low-resolution one ILR ∈ Rh×w, as follows:

ISR =M (ILR) . (1)

The goal of the FSR task is to make the reconstructed
image ISR best recover its corresponding high-resolution
version IHR. In the conventional face hallucination set-
ting [29, 36, 51], an FSR model M is trained and evaluated
on the {(ILR, IHR)} pairs from the same source domain.
However, as illustrated in Figure 1, when LR images come
from another target domain, a pre-trained model M might
fail to generalize well to the new domain data and the qual-
ity of super-resolved HR images will degrade severely.

Inspired by previous domain adaptation works [40], we
formulate our task as One-Shot Domain Adaptation for
Face Super-Resolution (OSDA-FSR). In general, OSDA-
FSR can be divided into two stages, i.e., a procurement
stage and a deployment stage, based on the real-world ap-
plication scenario. In the procurement stage, an FSR model
is trained on the large-scale source dataset with Ns HR and
LR image pairs, denoted as Ds = {(IsLR, IsHR)i}

Ns
i=1. In

this stage, image reconstruction objectives will be employed
to optimize the model parameters. However, in the deploy-
ment stage, a trained model might encounter an unknown
data distribution shift in a target domain. In this case, a deep
model may fail to super-resolve LR faces in a target domain
without knowing any information about the new domain.

Although collecting data and re-training a network can
solve this issue, it might be inefficient and time-consuming
when deploying deep models in many different real-world

scenarios. Therefore, we aim to use only a few examples,
e.g., K LR-HR pairs Dt = {(ItLR, ItHR)i}Ki=1, to effec-
tively adapt the pre-trained model M . Without the loss of
generality, we focus on the most challenging case where
K = 1. In other words, we will exploit the one-shot exem-
plar to minimize the domain gap and then hallucinate the
target domain LR faces.

4. Proposed Method
Overview. The general goal of OSDA-FSR task is to trans-
fer the model from the trained source domain to the target
domain by fully exploiting the given one-shot example. To
achieve this goal, the key idea of our approach is to adapt
the model towards the target domain by enriching the target-
style samples beyond the solely given one-shot exemplar.
We present a Domain-Aware Pyramid-based Face Super-
Resolution (DAP-FSR) network to super-resolve input LR
images to output HR images, as shown in Figure 2. Our
DAP-FSR firstly obtains the semantic latent representations
from an unaligned LR face image by the encoder network
and then generates the high-quality HR images from these
latent representations by the upsampling decoder network.

Given an LR image in the target domain, our DAP-FSR
network first extracts the latent representations. However,
due to the existing large domain gap, the latent representa-
tions of target domain LR images may not lie on the man-
ifold of the source domain ones, thus causing inferior up-
sampled results. To address this problem, we propose to
project the latent representations of the target one-shot ex-
emplar to the closest one in the source domain. We then
synthesize random images sharing similar styles with the
target domain by mixing randomly sampled source and the
extracted target domain latent representations. These gen-
erated samples will be in turn used to optimize our upsam-
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pling network. In this fashion, the latent representation
manifold will gradually shift to the target domain and we
can super-resolve target domain LR images even with only
one exemplar.

4.1. Domain Aware Pyramid-based FSR
Choice of decoder and latent space. Due to the advanced
network architecture, StyleGAN [23, 24] obtains phenom-
enal high-resolution and photo-realistic images. Recent
work [37] also demonstrates the possibility that employ-
ing a pre-trained StyleGAN, HR faces can be found from
the given LR inputs. More importantly, decouple the train-
ing of an encoder and a decoder would allow us to achieve
larger upscaling factors while being less restricted by GPU
memory. Therefore, we choose the StyleGAN architecture
as the upsampling decoder in our DAP-FSR.

Former work [37] demonstrates that the multi-layer dis-
entangled latent space W+ in StyleGAN is more repre-
sentative to depict an image than the normalized Gaus-
sian distribution space Z . Furthermore, the layer-wise cor-
responding AdaIN modules in StyleGAN can also facili-
tate us to transfer domain-specific characteristics when we
adapt our trained upsampling decoder to a target domain.
Hence, to fully utilize the power of StyleGAN, we adopt
the w ∈ Rl×dw as our latent representations to better en-
code the LR images, where l is the layer number and dw is
the latent representation dimension.

Latent representation learning. Unlike PLUSE [37] that
optimizes a latent representation w ∈ W+ by minimizing
the pixel-wise reconstruction loss between the downsam-
pled version of upsampled HR image and the input image,
we introduce an encoder to extract latent representations of
the input LR faces. Doing so allows us to address unaligned
LR faces and handle the domain gap by fine-tuning our up-
sampling decoder, while PLUSE cannot handle the domain
gap and face misalignments as its decoder (i.e., pre-trained
StyleGAN) is fixed and only w is updated during iterations.

Recall that in the StyleGAN, each latent representation
controls a certain level of image details. Hence, our en-
coder aims to adaptively predict latent representations from
an enhanced multi-scale context feature. Toward this goal,
we develop an adaptive latent encoding (ALE) module that
is able to generate latent representations for the upsampling
decoder at different scales adaptively. Here, we employ
ResNet50 as our encoder to extract multi-scale feature maps
at the conv3, conv4, conv5 and average pooling layers,
denoted as C3, C4, C5, Cglobal, as shown in Figure 2. Then,
each ALE generates multi-scale latent representations wi

for the decoder by attending the multi-scale features adap-
tively. Then, the latent representations are fed to our up-
sampling decoder for face hallucination.

Robust against unaligned LR faces. Previous face hal-
lucination methods [32, 36, 37] often assume LR faces are
precisely aligned beforehand. However, such an assumption
hardly holds in real application scenarios. Inspired by the
works [53, 61], we estimate the transformation of LR im-
ages and warp them to the canonical position by the spatial
transformation network (STN) [21]. Therefore, our network

Algorithm 1: Domain-Aware Latent Mixing and
Model Adaptation

Input: Initialized DAP-FSR model M = (E,G)
trained on source dataset Ds, one-shot
exemplar {ItLR, ItHR} ∈ Dt, initialized
latent code mixing weight α0, AdaIN
parameter φ in G ,learning rate ξ, η

Output: Adapted model Mφ∗

1 while do not converge do
2 Generate wt by manifold preserving projection

as Eq. (2);
3 Sample a batch of source latent codes:

ws = µw + σwε, ε ∼ N (0, 1);
4 Initialize latent code mixing weight: α← α0;
5 for i=1,2,3,...,n do
6 Update mixing weight by Eq. (7):

α← α− ξ∇αL(α);
7 Generate mixing latent codes wm by

Eq. (6);
8 Update model parameters by Eq. (5):

φ← φ− η∇φL(φ);
9 end

10 end
11 Return final model weight φ as φ∗;

is robust against unaligned LR faces with in-plane rotations,
translations and scale changes. The detailed architecture of
spatial transformation layers are illustrated in Figure 2(c).

More importantly, unlike previous FSR models [53, 61]
that use STNs, we apply an instance normalization layer to
the feature maps before computing the transformation pa-
rameters in our instance spatial transformer network (ISTN)
module. This allows us to obtain style-invariant feature
maps. Therefore, even when target-domain LR faces are
provided, our ISTN layers are still able to align them to the
up-right position, potentially facilitating the following do-
main adaptation process. Thus, our decoder can focus on
super-resolving high-quality HR faces while preserving the
latent representations from being affected by misaligned in-
put LR faces.

Manifold preserving encoding. Previous work [63] shows
that it is possible to invert an arbitrary image, even not a face
image, into style latent spaceW+. However, such deduced
latent codes are not aligned with the semantic knowledge
prior learned by G(·) and lose the versatile image editing
capability. In our OSDA-FSR task, the situation will be-
come even worse where a domain gap between the source
and target domains exists.

To overcome these drawbacks, we explicitly constrain
the output of the encoder E(·) in the feature space of G.
Particularly, instead of directly predicting the style latent
codes, we predict the offset scale w.r.t. the mean µw and
variance σw of the latent representations of G. To be spe-
cific, our DAP-FSR model maps the encoded representa-
tions of LR images to the latent representations w of the
decoder, as follows:
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Figure 3. Compared to the style-transfer based method ASM [35]
(left), given only one-shot target domain exemplar (Extend-
edYaleB), our method (right) efficiently generates authentic target-
style images from the source domain (CelebA).

w = µw + E(ILR)σw, (2)

where µw and σw are fixed during the encoder training pro-
cess. Therefore, using Eq. (2), we can explicitly constrain
the latent representation output by our encoder to lie in the
latent representation spaceW+ of our decoder G.

Network optimization. Our encoderE is trained using two
losses. We employ the pixel-wise reconstruction loss Lmse
to enforce reconstructed HR images to be close to their HR
ground-truth IHR,

Lmse = ‖IHR −G(w))‖2. (3)

In addition, we also introduce the perceptual loss to enforce
the feature-wise similarity,

Lpercept = ‖F (IHR)− F (G(w))‖2, (4)

where F denotes the perceptual feature extractor. In our ex-
periments, we extract features from relu1 1, relu2 1,
relu3 1, relu4 1 layers in VGG-19 with equal weights.
In our final objective, we also treat the image intensity sim-
ilarity and feature similarity equally, and the objective is
defined as,

L(θ) = Lmse + Lpercept, (5)

where θ is the trainable parameters of our network. Note
that our upsampling decoder and encoder are trained indi-
vidually and thus our decoder is fixed during training our
encoder.

4.2. Peeking at One-Shot Exemplar

Towards target-domain image generation. Benefiting
from the encoder design in our DAP-FSR network, we can
encode the given one-shot target domain HR image ItHR
into a latent representation wt. However, using only one-
shot exemplar does not suffice to transfer our decoder to the
target domain, and will lead to an over-fitting problem. As
explained in [23], the latent codes of the StyleGAN con-
trol the coarse, medium, fine attributes of generated im-
ages at different style layers. Thus, we also regard the la-
tent code wt as an interpretable representation of a target
domain face. Moreover, we can generate a large number
of domain-specific (i.e., style-consistent) face images with
ItHR. Specifically, for a latent code ws randomly sampled
from the latent representation manifold of the source do-
main, we mix it with wt in a layer-wise manner so that

a generated image Im inherits the the target domain style
from It. The mixing procedure is defined as:

wm
i = (1−αi)w

t
i +αiw

s
i , (6)

where α ∈ Rl is a layer-wise soft weight for mixing latent
representations. In this manner, we effectively enlarge the
number of target domain examples from the given one-shot
exemplar by G(wm). In Figure 3, compared with a style
transfer based method (i.e., ASM [35]), our method is able
to generate more natural style-consistent images while pre-
serving the identity.

Learning soft mixing weight. When mixing the latent rep-
resentations of random sampled ws and the target sample
wt, we preserve the image content information by applying
a feature-wise intensity consistent loss Lc and enforce the
domain information to be transferred by employing a style
similarity loss Ls. Here, we learn a soft weight α to mix the
latent codes of the source and target domain instead of man-
ually selecting a certain layer, and the optimization process
is formulated as,

L(α) = Lc + Ls, (7)

Lc = ‖F (G(wm))− F (G(ws))‖2, (8)

Ls =‖µ(F (It)− µ(F (G(wm)))‖2+
‖σ(F (It))− σ(F (G(wm)))‖2.

(9)

where µ and σ denote the mean and variance of the ex-
tracted features respectively, and F is the same perceptual
extractor in Eq. (4).

Model updating by constrained adaptation. After we
generate a batch of random images exhibiting the same tar-
get domain style, our next step is to adapt our model to-
wards the target domain. The most straightforward way is
to fine-tune the entire decoder G directly on our generated
target-domain alike samples. However, when the number
of training examples is limited, especially in our case, fine-
tuning the whole network weights often leads to over-fitting
and may potentially destroy the learned knowledge prior in
G. Instead of fine-tuning the entire decoder weights, we
constrain the fine-tuning on a subset of the decoder param-
eters. To be specific, we only adapt the affine transform pa-
rameters in the AdaIN module. By restricting the trainable
parameters, our model can be effectively adapted to the tar-
get domain while preserving the semantic knowledge, i.e.,
natural face structure. The overall pipeline of our algorithm
is illustrated in Algorithm 1.

4.3. Training and Inference
Our training process consists of two main stages, the pro-

curement stage and development stage. In the procurement
stage, we first train our decoder G following the protocols
of StyleGAN and then only train the encoder model E on
the source dataset by Eq. (5) while fixing the parameters of
G. After training, our DAP-FSR is able to super-resolve HR
faces from LR faces with an upscaling factor up to ×64. In
the development stage, we peek at the one-shot exemplar
from the target domain and adapt our model to the target

4473



Table 1. Comparison with state-of-the-art methods. Results are reported on three benchmarks noted as source → target. ‘Source only’
denotes the methods only using source dataset for training, while ‘one-shot’ denotes the methods exploring one-shot exemplar on the target
dataset. ↑ indicates that higher is better, and ↓ that lower is better.

CelebA → ExtendedYaleB CelebA → MultiPIE MultiPIE → ExtendedYaleBMethod
LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑

so
ur

ce
on

ly Bicubic 0.52 0.31 19.94 0.46 0.55 0.27 17.11 0.39 0.54 0.31 17.70 0.43
PUSLE [37][CVPR’20] 0.40 0.38 20.18 0.46 0.46 0.36 14.63 0.37 0.42 0.27 17.02 0.46
MTDN [55][IJCV’20] 0.39 0.32 17.74 0.45 0.38 0.38 18.00 0.52 0.47 0.20 18.67 0.43
CPGAN [61][CVPR’20] 0.40 0.28 17.03 0.47 0.40 0.31 18.61 0.52 0.45 0.24 18.80 0.44
DAP-FSR (Ours) 0.38 0.41 20.39 0.49 0.38 0.40 19.15 0.54 0.41 0.34 19.28 0.46

on
e-

sh
ot PULSE+ASM [35][NeurIPS’20] 0.44 0.32 20.47 0.47 0.49 0.32 17.87 0.41 0.44 0.23 17.89 0.43

MTDN+ASM 0.42 0.27 19.01 0.48 0.44 0.33 19.38 0.53 0.52 0.25 19.11 0.47
CPGAN+ASM 0.49 0.26 18.42 0.42 0.49 0.29 19.29 0.55 0.51 0.23 19.19 0.49
DAP-FSR (Ours) 0.36 0.46 22.32 0.55 0.36 0.44 21.00 0.61 0.39 0.40 20.43 0.51

domain by employing our proposed Algorithm 1. During
inference, we test our adapted model on the whole target
dataset and report the super-resolution performance. Note
that, we only see one-shot image from the target domain
and all other testing images are never seen during training.

5. Experiments
In this section, we conduct extensive experiments to

evaluate our DAP-FSR framework. Since we focus on the
OSDA-FSR task, we mainly compare with the state-of-the-
art in this scenario.

5.1. Datasets and Evaluation Protocols
Benchmarks. Current FSR benchmarks conduct training
and testing within the same domain, and do not support the
setting of the cross-domain OSDA-FSR task. Therefore, We
propose three benchmarks to evaluate the performance of
our DAP-FSR, i.e., CelebA [34]→Multi-PIE [16], CelebA
→ ExtendedYaleB [14], and Multi-PIE→ ExtendedYaleB.
In particular, CelebA dataset contains large-scale in-the-
wild face images, Multi-PIE and ExtendedYaleB datasets
comprise indoor face images captured in different poses and
illumination conditions. We select 10 different illumina-
tion and pose condition data splits in Multi-PIE and Ex-
tendedYaleB, respectively. The adaptation performance is
evaluated with a given exemplar in each split and then the
final reported performance is averaged over all the splits.
Evaluation metrics. We report the quantitative results us-
ing the average Peak Single-to-Noise Ratio (PSNR), Struc-
tural SIMilarity scores (SSIM) following the common FSR
practice [53, 61]. Furthermore, we also employ the Learned
Perceptual Image Patch Similarity (LPIPS) [58] and Face
Image Quality (FIQ) [17] to evaluate the quality and au-
thenticity of super-resolved faces. The PSNR, SSIM, LPIPS
metrics are calculated between the reconstructed HR im-
ages ISR and the ground-truth HR images IHR. The FIQ is
a non-reference metric for face quality assessment, which is
calculated only on ISR.

5.2. Implementation Details
In our experiments, we crop the aligned faces and re-

size them to 128 × 128 pixels to achieve ground-truth HR
images. In real-world applications, we do not assume that
the input LR faces are perfectly aligned. Following [55],

we apply affine transformations, including rotations, trans-
lations and scaling, to HR faces and then downsample them
to 16 × 16 pixels as our LR face images. We use the
author-provided codes of PULSE [37], MTDN [55] and CP-
GAN [61]. For comparison fairness, we adopt the same
training protocols for all the methods. To alleviate the influ-
ence of the selected one-shot exemplar, we run the proposed
method for ten times with different randomly selected one-
shot exemplars in each task and report the averaged results.

5.3. Comparisons with the State-of-the-Art
Qualitative comparisons. We first conduct qualitative
comparisons with the state-of-the-art methods on three
OSDA-FSR benchmarks in Figure 4.

CPGAN [61] and MTDN [55] can super-resolve LR im-
ages well and deal with unaligned LR input faces success-
fully in the source domain. However, these methods do
not take the domain gap into account, and lack an effi-
cient mechanism to address LR images from a new domain.
Therefore, their final reconstructed HR images from target
domain LR faces suffer from severe artifacts. Although col-
lecting a large number of target domain data and then re-
training the networks can solve the above issue, doing so is
time-consuming and does not provide a data-efficient solu-
tion to OSDA-FSR.

PULSE [37] traverses the high-resolution face image
manifold and searches images whose downsampled ver-
sions are close to the given LR images. Although realistic
images are achieved, this method requires input LR images
to be perfectly pre-aligned. When LR images are unaligned,
the reconstructed HR images are enforced to match the in-
tensities of LR faces. This will lead to severe changes of
face identities, as seen in Figure 4. Moreover, PULSE does
not consider the domain gap. Due to the data distribution
shift between the source and target domains, PULSE fails
to super-resolve HR faces sharing the same style as the tar-
get domain images.

In contrast, as seen in Figure 4, our method achieves su-
perior performance compared to the other competing meth-
ods. Although input LR images are unaligned, our DAP-
FSR still produces visually appealing HR faces which are
close to their HR ground-truth. Notably, our upsampled
faces also exhibit style-consistency with respect to the given
one-shot target domain exemplar. This demonstrates the
transfer ability of our method. Note that our method is
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Figure 4. Comparisons with state-of-the-art methods on CelebA→ExtendedYaleB, CelebA→MultiPIE and MultiPIE→ExtendedYaleB
benchmarks under the OSDA-FSR setting. Our method achieves high-quality, style-consistent HR faces and is also robust against unaligned
LR inputs.

actually able to super-resolve LR faces with an upscaling
factor up to 64×, and for fair comparisons with the state-
of-the-art methods, we only show HR faces in the same res-
olution as other methods. To the best of our knowledge,
our DAP-FSR network is the first attempt to super-resolve
cross-domain LR images with only one target-domain ex-
emplar, and achieves superior super-resolution results.

To further validate the generalization ability, in Figure 5,
we show the FSR results of tiny faces in-the-wild [2] un-
der real-world unconstrained conditions, where the ground-
truth HRs are unavailable. Here, LR faces may undergo dif-
ferent poses, blurs, noises, etc. All the models are trained
on the CelebA source dataset and adapted to the target do-
main using the given one-shot HR example. Moreover, in
Figure 6, we also conduct cross-domain FSR experiments
on near infrared (NIR) face images [28] as a target domain.
Our DAP-FSR still outperforms the other competing meth-
ods, demonstrating the generalization ability of our method.

Quantitative comparisons. As indicated in Table 1, we
report the LPIPS, FIQ, PSNR and SSIM metrics on three
OSDA-FSR benchmarks, respectively. Our proposed DAP-
FSR outperforms the state-of-the-art methods significantly,
especially on the perceptually-driven metrics, i.e., LPIPS
and FIQ. This indicates that our super-resolved target do-
main HR faces not only resemble their ground-truth but
also are photo-realistic. More importantly, our DAP-FSR
consistently performs better than other methods on all
the benchmarks. Thanks to our dedicated network de-
sign, we are able to align and upsample target domain
LR faces, simultaneously. In particular, DAP-FSR recon-
structs high-quality face images and outperforms the sec-
ond best method PULSE on unaligned images by a mar-
gin of +43% (0.32 → 0.46 ) in FIQ on the benchmark
CelebA→ExtendedYaleB.

To address the domain gap, a straightforward idea is fine-
tuning the source-trained FSR model with the augmented
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Figure 5. Comparisons with state-of-the-art methods on tiny faces
in-the-wild [2] under real-world unconstrained conditions.

Figure 6. Comparisons with state-of-the-art methods on near-
infrared (NIR) sensor captured faces [28].

target samples. Thus, we employ a style-transfer-based
method ASM [35] to augment new training samples from
the one-shot target domain exemplar, and then fine-tune the
FSR models. We name these the combination as +ASM
in Table 1. As indicated by Table 1, applying style trans-
fer cannot fully establish the facial detail correspondences
between the source and target domains, thus leading to per-
formance degradation.

Furthermore, benefiting from our designed one-shot
adaptation algorithm, we transfer our network to the target
domain effectively. Therefore, our quantitative results are
better than the results of MTDN+ASM and PULSE+ASM.
Owing to our encoder-decoder design, our method is also
more efficient and effective compared to the decoder-only
based method PULSE. After training, our DAP-FSR hallu-
cinates LR faces in a feed-forward manner and runs ×150
faster than PULSE, which provides a high application po-
tential in the real-world scenario.

5.4. Ablation Analysis
In our ablation analysis, we conduct all the experiments

on the CelebA→ExtendedYaleB benchmark.
Effectiveness of network design. We analyze the effect of
each component in our network design in Table 2. Com-
pared to a straightforward approach that predicts the latent
representations at the end of the backbone, our network
adaptively explores the abundant multi-scale features (Con-
fig A). It is a long-standing shortcoming that CNN is sen-
sitive to rotations. Our multiple ISTN design effectively
handle this problem (Config B), thus being robust against
unaligned LR images. We also illustrate that it is vital to
explicitly constrain the predicted latent representations on
the manifold (Config C).
Effectiveness of one-shot domain adaptation. Table 2 in-
dicates the impact of each component in Algorithm 1 on
the OSDA-FSR performance. In our method, we effectively
enrich the training samples by mixing the latent representa-
tions between the source and target domain faces (Config
D). Compared to the configuration without exploring the

Table 2. Ablations on different configurations of the network ar-
chitecture (A,B,C) and different configurations of the adaptation
algorithm (D,E,F). ↑ indicates the higher the better, and ↓ indi-
cates the lower the better.

CelebA → ExtendedYaleBConfiguration LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑
Baseline network 0.48 0.28 17.64 0.44

A + Multi-scale features 0.46 0.30 17.82 0.44
B + Multi-STN modules 0.43 0.34 18.41 0.45
C + Predict offset scale 0.38 0.41 20.39 0.49
D + Style mixing examples 0.38 0.41 21.97 0.52
E + Soft mixing weight 0.38 0.42 22.10 0.54
F + Constrained adaptation 0.36 0.46 22.32 0.55

Table 3. Comparisons on one-shot adaptation augmentation strate-
gies. ↑ indicates the higher the better, and ↓ the lower the better.

CelebA → ExtendedYaleBMethods LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑
Direct fine-tuning 0.44 0.30 20.11 0.45
Style Transfer [19] 0.42 0.37 20.16 0.46
ASM [35] 0.40 0.38 20.71 0.50
DAP-FSR (Ours) 0.36 0.46 22.32 0.55

one-shot exemplar (Config C), we observe that Config D
achieves better super-resolution performance. This implies
our method fully exploits the one-shot target exemplar to
bridge the domain gap.

By applying the soft mixing weight (Config E), we fur-
ther improve the super-resolution performance. This indi-
cates that our soft mixing strategy is more effective than
simply replacing the last three final layers of the latent rep-
resentations between the source and target domain images
as done in Config D. As fine-tuning the whole decoder net-
work may lead to over-fitting and destroy the learned face
priors, we constrain the optimization space and only modify
the AdaIN parameters to improve performance (Config F).

We also compare with other target domain augmentation
methods, including Style Transfer and ASM. Specifically,
these are employed to enlarge the target domain examples
and then we constrained fine-tune our model using the aug-
mented data. As indicated in Table 3, our method signifi-
cantly facilitates the model adapting to the target domain,
thus achieve better super-resolution performance.

6. Conclusion
In this paper, we addressed a more challenging and

practical face super-resolution task, where a domain gap
between the training and testing data exists. To tackle
this problem, we proposed a new Domain-Aware Pyramid-
based Face Super-Resolution network (DAP-FSR) that is
able to super-resolve unaligned low-resolution ones from a
target domain effectively by leveraging only one target do-
main exemplar. Our approach bridges the domain gap by
fully exploiting the given exemplar from the target domain
as well as our designed soft mixing strategy which signifi-
cantly enlarges the number of the training samples. Exten-
sive experiments demonstrate our method is able to super-
resolve cross-domain LR faces and outperforms the state-
of-the-art methods significantly. We hope that our work will
also motivate future research on the low-shot FSR task.
Acknowledgment This work is partly supported by ARC
DP200100938.
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