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Abstract

Existing blind image super-resolution (SR) methods
mostly assume blur kernels are spatially invariant across
the whole image. However, such an assumption is rarely
applicable for real images whose blur kernels are usually
spatially variant due to factors such as object motion and
out-of-focus. Hence, existing blind SR methods would in-
evitably give rise to poor performance in real applications.
To address this issue, this paper proposes a mutual affine
network (MANet) for spatially variant kernel estimation.
Specifically, MANet has two distinctive features. First, it
has a moderate receptive field so as to keep the locality of
degradation. Second, it involves a new mutual affine convo-
lution (MAConv) layer that enhances feature expressiveness
without increasing receptive field, model size and computa-
tion burden. This is made possible through exploiting chan-
nel interdependence, which applies each channel split with
an affine transformation module whose input are the rest
channel splits. Extensive experiments on synthetic and real
images show that the proposed MANet not only performs
favorably for both spatially variant and invariant kernel es-
timation, but also leads to state-of-the-art blind SR perfor-
mance when combined with non-blind SR methods.

1. Introduction
Single image super-resolution (SR), with the aim of re-

constructing the high-resolution (HR) image from a low-
resolution (LR) image, is a classical vision problem. Re-
cently, convolutional neural networks (CNNs) [42, 40, 39,
7, 5, 21, 15, 44, 24, 23] have been widely used in SR. How-
ever, most of these SR methods assume the blur kernel is
ideal and fixed (usually a bicubic kernel), and thus dete-
riorate seriously if the real kernel deviates from the ideal
one [46, 3, 53, 14]. Therefore, dealing with unknown blur
kernels, i.e., blind SR, is becoming a hot topic.

*Corresponding author.

Figure 1: Kernel estimation results of the proposed MANet on
“img017” in Urban100 [19] for scale factor 4. The shown image
is the SR image, whose corresponding HR image was blurred by a
spatially invariant kernel as shown in the top right green rectangle.

While existing blind SR methods [14, 3, 54, 53, 32, 25]
have achieved remarkable performance, they assume blur
kernels are spatially invariant and only estimate a single ker-
nel for the whole image, giving rise to two inherent prob-
lems. First, real-world blur kernels are typically spatially
variant. Due to different environmental factors like object
motion and depth difference, as well as non-ideal imaging
such as out-of-focus and camera shake [37, 2], blur ker-
nels at different locations of the image tend to be different.
Second, estimating a single kernel for the whole image is
susceptible to the adverse effects of flat patches, even un-
der the spatially invariant assumption. For a natural image,
some patches contain edges or corners that are discrimina-
tive for kernel estimation (e.g., the pillars in Fig. 1), while
some other patches are rather flat (e.g., the blue sky) and
are less discriminative since they correspond to various in-
distinguishable but correct blur kernels that all result in the
same LR patch. Therefore, estimating spatially variant ker-
nels is more reasonable for blind SR.

The main challenge of spatially variant kernel estima-
tion lies in the locality of degradation. A blur kernel only
has impacts on a local image patch of the same size, e.g.,
21 × 21, which becomes even smaller after downsampling
(e.g., about 5× 5 when scale factor is 4). Furthermore, uti-
lizing pixels outside of the impacted patch may be detrimen-
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tal when nearby kernels are different, as shown in Fig. 4(b).
Therefore, an ideal kernel estimation model should estimate
kernel from the impacted image patch. This is very chal-
lenging due to the ill-posedness of the problem. An ap-
pealing option is CNN, which has shown great promise for
ill-posed problems [8, 52, 50]. However, most of existing
networks have very large receptive fields, making them un-
suitable for kernel estimation.

To tackle the problem, we propose the Mutual Affine
Network (MANet) that has a moderate receptive field. More
specifically, MANet consists of feature extraction and ker-
nel reconstruction module. The first module uses several
residual blocks, along with downsampler layer, upsampler
layer and skip connections, to extract image feature from
the LR image input, while the second module reconstructs
kernels for every HR image pixel from the feature. In partic-
ular, we propose the mutual affine convolution (MAConv)
layer for the residual block, in order to exploit channel in-
terdependence without increasing network receptive field. It
splits a feature along the channel dimension, and then trans-
forms each split by the affine transformation module whose
parameters are learned from the rest splits. After that, each
split is fed into a convolution layer and then concatenated
as the MAConv layer output.

The main contributions of this work are as follows:
• We propose a kernel estimation framework named

MANet. With a moderate receptive field (i.e., 22× 22), it
estimates kernels from tiny LR image patches. The mini-
mum patch from which it can accurately estimate a kernel
is of size 9× 9.

• We propose the mutual affine convolution layer to en-
hance feature expressiveness by exploiting channel inter-
dependence without increasing network receptive field,
making it suitable for feature extraction of blur kernels.
It also reduces model parameters and computation cost
by about 30% compared with plain convolution layer.

• Compared with existing methods, MANet performs
favourably for both spatially variant and invariant ker-
nel estimation, leading to state-of-the-art blind SR perfor-
mance when combined with non-blind SR models. It also
shows good properties in dealing with different kinds of
patches, e.g., estimating kernels accurately from non-flat
patches and producing fixed kernels for flat patches.

2. Related Work
Kernel estimation. Prior to the deep learning era, blind
SR methods typically estimate HR image and kernel via
image patch or edge prior information [16, 34, 12, 55, 29].
Recently, several attempts have been made on using deep
neural networks for blind SR. Bell-Kligler et al. [3] propose
KernelGAN which trains an internal generative adversarial
network (GAN) on a single image. Based on KernelGAN,
Liang et al. [25] propose KernelGAN-FKP to incorporate

a flow-based kernel prior into the framework. Neverthe-
less, KernelGAN and its variant are not suitable for low-
resolution images and large scale factors. The GAN op-
timization also brings unstable estimation and long testing
time. Cornillere et al. [6] propose SRSVD to use a ker-
nel discriminator to evaluate the non-blind SR model out-
put and optimize kernel latent variables by minimizing the
discriminator error. However, it needs to optimize kernels
patch by patch for spatially variant SR, which is inefficient
and ineffective. Gu et al. [14] propose IKC for kernel es-
timation on the basis of paired training data. They first es-
timate the PCA feature of kernel by a CNN network and
then iteratively correct it by alternating optimization. One
common problem of SRSVD and IKC is that they predict
the kernel feature rather than the kernel itself, limiting their
combination with other methods.

Non-blind SR. Non-blind SR models aim to reconstruct
the HR image given estimated kernels. Gernot et al. [32]
transform SRCNN [8] to a non-blind model by replacing
the weight of the first convolution layer with the kernel
feature. Zhang et al. [53] propose a stretching strategy
to take kernels as additional input and train an end-to-end
model SRMD. Based on SRMD, Gu et al. [14] propose the
SFTMD model that inputs kernels by the SFT layer [41],
while Xu et al. [45] incorporate dynamic convolution into
their UDVD model. Besides, Zhang et al. [49] decompose
SR into deblurring and denoising, and use a trainable neural
network to solve these two sub-problems iteratively. Differ-
ent from above methods, Shocher et al. [35] propose zero-
shot models to train image-specific networks at test time
based on patch recurrence property. It is worth pointing out
that the proposed MANet focuses on kernel estimation and
could be combined with most non-blind models.

Other methods. There are other related methods that
do not explicitly estimate blur kernels, such as unpaired
SR [47, 26, 13, 27, 22, 43], zero-shot SR [35, 36, 20] and
data augmentation techniques [51]. However, these meth-
ods often suffer from pixel misalignment problem and are
hard to be compared quantitatively.

3. Methodology
3.1. Problem Formulation

Mathematically, the LR image ILR is generated from the
HR image IHR by a degradation model. When blur kernels
are spatially invariant [10, 11], the relation between ILR

and IHR is modelled as

ILR = (k ⊗ IHR) ↓s + n, (1)

where ⊗ denotes the convolution between IHR and blur
kernel k, ↓s represents downsampling with scale factor s,
and n is noise. For blind SR, both HR image IHR and blur
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Figure 2: Architecture of the proposed mutual affine network (MANet). Given a LR image input ILR ∈ RC×H
s
×W

s , the network outputs
the kernel estimation K ∈ Rhw×H×W for the corresponding HR image IHR ∈ RC×H×W . MANet is composed of feature extraction
and kernel reconstruction modules. In particular, in the feature extraction module, each residual block consists of two mutual affine
convolution (MAConv) layers, while the Downsampler, Upsampler and Upscale blocks are implemented by 2 × 2 convolution (stride of
2), 2× 2 transpose convolution (stride of 2) and nearest neighbor interpolation (scale factor of s), respectively.

kernel k are unknown. This problem is very ill-posed since
many different pairs of IHR and k can give rise to the same
LR image ILR. When blur kernels are spatially variant, the
problem becomes even more ill-posed. In this case, images
and kernels can be written in vector forms. The degradation
process is modelled as

ILR = (KIHR) ↓s + n, (2)

where K denotes the blur matrix similar to the convolution
matrix. Since the i-th row of K corresponds to the blur
kernel of the i-th pixel in IHR, K is no longer a Toepliz
matrix as in spatially invariant degradation,

In the literature of blind SR [3, 34, 14, 53, 46, 32, 16,
31, 35, 45, 51], kernels are widely assumed to be Gaussian
as many estimated real-world kernels (e.g., [29, 34]) are ac-
tually unimodal and can typically be modeled by a Gaus-
sian [32, 9, 46]. Besides, Gaussian kernel is reasonable and
challenging for the SR problem (in contrast to image deblur-
ring). It is also practical for quantitative evaluation. There-
fore, following the practice of spatially invariant blind SR,
we adopt this assumption for the more challenging spatially
variant blind SR as well. Note that our model is learning-
based and not restricted to specific kernel assumptions. If
other kernel distributions prove to be more reasonable, it is
easy to re-train our model.

3.2. Proposed Method

As observed in [12, 55, 29], image patches blurred by
different kernels have different patch distributions. Kernel-
GAN [3] exploits this property by an internal GAN and
uses a discriminator to discriminate image patches as real
or fake. However, it only works for spatially invariant ker-
nel estimation and cannot estimate kernels for tiny image
patches. To take one step further, we propose to estimate
kernels directly from image patches.
Overall framework. Modern neural networks often
stacks multiple layers to build deep models with large re-
ceptive fields. However, for the task of spatially variant ker-
nel estimation, we need to keep the locality of degradation.
Hence, we propose a mutual affine network (MANet) with
a moderate receptive field.

More specifically, as shown in Fig. 2, MANet contains
two modules: feature extraction and kernel reconstruction
modules. Inspired by U-Net [33], feature extraction mod-
ule is composed of convolution layers, residual blocks, a
downsampler and an upsampler. The LR image is first in-
put to a 3 × 3 convolutional layer to extract image feature,
which then goes through 3 residual blocks. Each residual
block contains two proposed mutual affine convolution lay-
ers with ReLU activation between them for learning non-
linearity. Before and after the intermediate residual block,
a convolution and a transpose convolution layer (both with
stride of 2) are used for downsampling and upsampling the
image feature, respectively. Additionally, we add two skip
connections in feature extraction module to utilize different
levels of features and improve representation capability.

After feature extraction, kernel reconstruction module
uses a 3 × 3 convolution layer and a softmax layer along
the channel to predict the kernels for every LR image pixel.
Then, we use nearest neighbor interpolation to obtain the
final kernel predictions for the HR image. With a slight
abuse of notation, the kernel prediction is denoted as K ∈
Rhw×H×W , where h, w, H and W are kernel height, kernel
width, HR image height and HR image width, respectively.

With elaborate architecture design, MANet has a moder-
ate receptive field of 22× 22 on the LR image input, which
ensures that kernel estimation would not be interfered by
other image patches farther than 11 pixels. Meanwhile, it
has enough capability to predict kernels with the mutual
affine convolution layer as to be described below.

Mutual affine convolution. Generally, small receptive
field means shallow networks, which have less representa-
tion capacity to learn kernels from various image patches.
One possible solution is to increase the channel number.
However, it brings quadratic increases of parameters and
computation burden. Instead, we propose a novel mutual
affine convolution (MAConv) layer to solve the problem.

Let x ∈ RCin×Hf×Wf be the input feature of the MA-
Conv layer. As shown in Fig. 3, we first divide x into S
splits along the channel as

x1,x2, ...,xS = split(x). (3)
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Figure 3: Illustration of the mutual affine convolution (MAConv).

For each split xi ∈ R
Cin
S ×Hf×Wf , we denote the con-

catenation of splits that are complementary to xi as x̄i ∈
R

Cin(S−1)

S ×Hf×Wf . Both xi and x̄i are passed into the
affine transformation module, which has a fully-connected
network F to learn transformation parameters βi and γi

from x̄i. Then, βi and γi are used to scale and shift xi,
respectively. The whole process is formulated as

βi,γi = split(F(x̄i)),

yi = βi ⊙ xi + γi,
(4)

where ⊙ denotes the Hadamard product. F is composed
of two 1 × 1 convolution layers and an in-between ReLU
activation layer. The input, hidden and output channels are
set to Cin(S−1)

S , Cin(S−1)
2S and 2Cin

S , respectively.
After transformation, for all i ∈ {1, 2, ..., S}, we use a

3× 3 convolution layer to generate feature zi = convi(yi).
zi ∈ R

Cout
S ×Hf×Wf when MAConv has Cout output chan-

nels. Finally, different features z1, z2, ...,zS are concate-
nated to generate the MAConv output

z = concat(z1, z2, ...,zS). (5)

MAConv exploits the interdependence between different
channels by mutual affine transformation, instead of fully
connecting all input and output channels as in plain con-
volution layer. Such a design can improve feature repre-
sentation capacity and largely reduce model size as well as
computation complexity. For plain 3× 3 convolution, num-
ber of parameters and floating point operations (FLOPs) are
9CinCout and 9CinCoutHfWf , respectively. In contrast,
MAConv only has 9

SCinCout +
S2−1
2S C2

in parameters and
( 9
SCinCout +

2(S−1)
S2 C2

in)HfWf FLOPs, which are much
smaller when choosing proper S. Comparisons of exact pa-
rameters and FLOPS are shown in Table 1.

It is noteworthy that the receptive field of MAConv is
still the same as a single 3×3 convolution layer, as the affine

transformation modules do not increase receptive field. In
comparison, popular feature extraction blocks such as dense
block [18] and squeeze-and-excitation (SE) block [17] lead
to tremendous increase of receptive field and thus are not
suitable for kernel estimation networks.
Loss function. Mean absolute error (MAE) is used as
the loss function to measure the difference between esti-
mated kernels and ground-truth kernels. Specifically, the
loss function is

L =
1

N ×H ×W

N∑
n=1

H∑
i=1

W∑
j=1

∥K(n)
ij −G

(n)
ij ∥1, (6)

where K
(n)
ij and G

(n)
ij denote the estimated kernel and the

corresponding ground-truth at position (i, j) on training
sample n. N , H and W are the total number, height and
width of training samples, respectively.

4. Experiments
4.1. Experimental Setup
Implementation details. Following existing blind SR
works [3, 34, 14, 53, 46, 32, 16, 31, 35, 45, 51], we con-
duct experiments on 21 × 21 anisotropic Gaussian kernels.
In training, kernel widths σ1, σ2 ∼ U(0.175s, 2.5s) for
scale factor s, while rotation angle θ ∼ U(0, π). We ran-
domly crop 192 × 192 image patches from DIV2K [1] and
augment them by random flip and rotation. Then, image
patches are blurred by random kernels. It is worth pointing
out that the network can learn to deal with spatially variant
kernels even trained on spatially invariant blurred images.
For MANet, channel numbers of three residual blocks are
set to 128, 256 and 128, respectively. Channel split number
S is 2 unless specified. For non-blind SR, we first train a
modified RRDB-SFT network with 10 RRDB blocks [42]
and SFT layers [41]. Then, we fine-tune RRDB-SFT on
kernels estimated by MANet. Details on training procedure
and RRDB-SFT architecture are provided in the supplemen-
tary.
Performance evaluation. In our ablation study and spa-
tially invariant experiments, we sample kernels in an evenly
spaced manner: σ1, σ2 ∈ {1, 5, 9} and θ ∈ {0, π

4 } when
scale factor is 4. For scale factors 2 and 3, we keep the
same procedure and sample kernel widths from {1, 3, 5}
and {1, 4, 7}, respectively. This sampling strategy means
that, after kernel deduplication, every image in testing sets
is degraded by 9 different kernels, resulting in 9 testing
pairs. Separately, kernel sampling details for spatially vari-
ant experiments are given in Table 3. For kernel evaluation,
it is not suitable to use kernel PSNR since an image patch
may correspond to multiple correct kernels. Hence, we use
reconstructed LR image PSNR/SSIM for evaluation. For
image evaluation, we compare SR image PSNR/SSIM on
the Y channel of YCbCr space.
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Table 1: Comparison of plain convolution, group convolution and MAConv. ‘#Channel’ represents channel numbers of residual blocks in
MANet, while ‘#Split’ represents group numbers for group convolution or channel split number for MAConv. LR image PSNR/SSIM are
tested on BSD100 [28] for scale factor 4. ‘#Params’, ‘Memory’, ‘FLOPs’ and ‘Runtime’ are tested on a 256× 256 LR image input.

Type #Channel #Split LR Image PSNR/SSIM #Params [M] Memory [M] FLOPs [G] Runtime [s]

Plain Convolution
[32, 64, 32]

-
46.22/0.9951 0.2557 234.229 12.6804 0.006499

[64, 128, 64] 47.65/0.9965 0.7649 248.170 33.9508 0.010534
[128, 256, 128] 48.85/0.9974 2.5451 278.959 102.2613 0.018363

Group Convolution

[32, 64, 32] 2 45.14/0.9930 0.2004 234.018 10.8685 0.006490
[64, 128, 64] 2 46.72/0.9957 0.5437 247.326 26.7030 0.009985

[128, 256, 128] 2 48.32/0.9969 1.6603 275.584 73.2703 0.012948
[128, 256, 128] 4 47.98/0.9967 1.2180 273.896 58.7748 0.012562
[128, 256, 128] 6 47.74/0.9965 1.0452 272.991 52.7863 0.012382

MAConv (ours)

[32, 64, 32] 2 45.87/0.9946 0.2102 234.068 11.1757 0.011263
[64, 128, 64] 2 47.74/0/9965 0.5818 247.481 27.9215 0.016451

[128, 256, 128] 2 49.39/0.9978 1.8104 276.162 78.1231 0.020956
[128, 256, 128] 4 49.77/0.9979 1.5902 275.334 70.9173 0.025172
[128, 256, 128] 6 49.80/0.9979 1.6451 275.596 72.6990 0.030595

0 160 320 480
0

160

320

480

(a) #MAConv=2, kernel loss

0 160 320 480
0

160

320

480

(b) #MAConv=4, kernel loss

0 160 320 480
0

160

320

480

(c) #MAConv=2, LR image loss

Figure 4: Comparison of different numbers of MAConv layers in a residual block and different training losses when scale factor is 4. The
shown images are nearest neighbour interpolations of the LR image, whose corresponding HR image was divided into patches of size
80× 80. For all image patches, Gaussian kernel parameters σ1 = 10 and σ2 = 0.7. In particular, for different patches, θ is set to π

4
when

the sum of spatial patch coordinates is even, and 3π
4

otherwise.

4.2. Ablation Study
MAConv vs. other convolutions. Comparison among
plain convolution, group convolution and the proposed MA-
Conv are shown in Table 1, from which we have the follow-
ing observations. First, MAConv achieves best performance
on LR image PSNR/SSIM, indicating that its resulting ker-
nels could better preserve data fidelity compared with its
competitors. It also has significantly less parameters and
FLOPs than plain convolution. Note that, unlike FLOPs,
the runtime of MAConv is slightly longer than plain convo-
lution because the implementation code is not optimized for
parallel computing of different splits. Second, with the in-
crease of the channel number, the kernel estimation perfor-
mance of MAConv is improved, accompanying with num-
ber of parameters and FLOPs rising up. Third, kernel esti-
mation performance of MAConv has an increasing tendency
with the number of splits. This implies that larger number
of splits can better exploit channel interdependence and in-
crease feature representation capability. To balance accu-
racy and runtime, we set channel numbers and split number
to [128, 256, 128] and 2, respectively.

Different numbers of MAConv layers. We increase the
MAConv layer number in a residual block from 2 to 4 to ex-
plore its effects on kernel estimation. Accordingly, the re-
ceptive field of MANet is increased from 22×22 to 38×38.
As shown in Figs. 4(a) and 4(b), on a toy example image

whose neighboring patches have different kernels, MANet
with 2 MAConv layers can estimate kernels for different
patches accurately, but it fails to generate accurate kernel
estimations when MAConv layer number is 4. This actu-
ally accords with our previous analysis: when the model
has a large receptive field and takes pixels far from the cen-
ter pixel into account for kernel estimation, its results may
be affected by other image patches. This is not a desired
property for spatially variant kernel estimation.

Kernel loss vs. LR image loss. Another choice of loss
function is the LR image loss, which corresponds to the data
fidelity term in the Maximum A Posteriori (MAP) frame-
work. It is defined as the mean absolute error (MAE) be-
tween the LR image and the corresponding LR image re-
construction. As a relaxation of kernel loss, LR image loss
only requires that the kernel can reconstruct the LR image
with high fidelity. Figs. 4(a) and 4(c) show the compari-
son between kernel loss and LR image loss. As one can
see, MANet succeeds to estimate kernels when trained with
kernel loss. However, when using LR image loss, MANet
cannot discriminate different kinds of image patches and al-
ways predict a fixed kernel, which could be the average of
all possible kernels. Note that, even MANet is forced to
estimate kernels accurately from all kinds of patches with
the kernel loss, it learns to estimate kernels accurately from
non-flat patches and generates fixed kernels for flat patches.
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Figure 5: Kernel estimation results of MANet at different positions
on a synthetic image when scale factor is 4. The image is generated
by blurring with a Gaussian kernel with σ1 = 6, σ2 = 1 and
θ = π

4
, as shown in the down right green rectangle. The HR

image (can be found in the supplementary) has 9 black crosses
(1× 1, 3× 3, 5× 5, 7× 7, 9× 9, 11× 11, 21× 21, 41× 41 and
61 × 61), whose kernel predictions are shown in the right purple
rectangle. Best viewed by zooming.

Table 2: Kernel estimation results under complex noise corrup-
tion. σ and q denote Gaussian noise level and JPEG compression
level, respectively. The reported LR image PSNR/SSIM is tested
on BSD100 [28] for scale factor 4.

σ
q 70 80 90 100

0 43.37/0.9918 44.13/0.9929 44.82/0.9940 45.45/0.9947
5 43.23/0.9917 43.67/0.9924 43.88/0.9928 44.54/0.9938
10 42.33/0.9902 42.43/0.9904 43.16/0.9916 43.66/0.9925
15 40.59/0.9849 40.81/0.9865 41.36/0.9872 42.56/0.9905

4.3. Experiments on Kernel Estimation

We plot kernel estimation results on a testing image in
Fig. 1. As we can see, MANet can accurately estimate ker-
nels from non-flat patches (e.g., the pillars) and tends to pre-
dict a fixed kernel for flat patches (e.g., the blur sky), which
could be the average of all possible kernels. The kernels
are diversified and may not be identical to the ground-truth
kernel, but most of them are “correct” kernels, as indicated
by the high LR image PSNR (the data fidelity). Visualiza-
tion of kernel distribution is provided in the supplementary.
We also test MANet on a synthetic image for better under-
standing. As shown in Fig. 5, MANet can estimate ker-
nels accurately from a minimum image patch of size 9× 9.
The performance is further improved when patch size is in-
creased. When there is no corner (only edges) in a small
patch, MANet cannot estimate kernels accurately due to in-
sufficient information. For flat patches without corners and
edges, MANet would estimate a fixed isotropic-like kernel.

In real-world scenarios, images may suffer from noise
corruption or compression artifacts. To test kernel estima-
tion performance in more complex cases, we add Gaussian
and JPEG compression noises during training, and test it
on different noise levels and compression levels. As shown
in Table 2, even though there is a performance drop com-
pared with the noisy-free case, the LR image PSNR ranges
from 40.59 to 45.45dB, which shows the potential to esti-
mate kernels under heavy noisy corruptions.

4.4. Experiments on Spatially Variant SR

We compare MANet with baseline models and existing
blind SR models: HAN [30], DIP [38], KernelGAN [3],
HAN with correction [20], SRSVD [6], IKC [14] (retrained
with anisotropic Gaussian kernel and the same non-blind
SR model RRDB-SFT as MANet) and the upper bound
model (RRDB-SFT given ground-truth kernels). As shown
in Table 3, MANet leads to the best performance for dif-
ferent spatially variant kernel types. In particular, repre-
sentative bicubic SR models RCAN and HAN suffer from
severe performance drop when kernels deviate from the as-
sumed bicubic kernel. Similarly, DIP produces unfavorable
results since it also assumes that kernels are fixed. Kernel-
GAN designs an internal GAN framework based on patch
dissimilarity, but its kernel estimation performance is lim-
ited, leading to inferior SR results. SRSVD has the potential
to deal with spatially variant SR by optimizing kernels patch
by patch, but it significantly increases the runtime. IKC per-
forms better than above models by learning to predict kernel
directly from LR images. However, it only estimates one
kernel for the whole image and has limited performance for
spatially variant degradation. In comparison, the proposed
MANet estimates kernels for every position on the image.
Therefore, it can deal with spatially variant degradation and
outperform IKC by large margins based on the same non-
blind model. Even with image noises, MANet still achieves
superior performance compared with other models.

Fig. 6 compares visual results of different methods.
Though it is known that GAN loss can improve the visual
quality, we train all these model with only L1 pixel loss
for simple and fair comparison. One can see that HAN
tends to generate blurry results when kernel mismatches,
whereas DIP generates images with some noise-like arti-
facts. SRSVD is not compared as the codes and models for
scale factor 4 are not available. The kernel estimations of
KernelGAN and IKC are either too smooth, or too sharp, re-
sulting in ringing or blurry artifacts on final SR images. By
comparison, our MANet is able to handle spatially variant
degradation and produces the most visually pleasant results.

For the runtime and memory usage, the proposed MANet
takes about 0.02 seconds and 0.3GB memory to predict ker-
nels for a 256× 256 LR image input on a Tesla V100 GPU.
By contrast, KernelGAN needs about 93 seconds and con-
sumes 1.3GB memory, while the runtime and memory us-
age of IKC are about 15.2 seconds and 2.0GB, respectively.

4.5. Experiments on Spatially Invariant SR

Most existing blind SR models assume blind SR has
spatially invariant kernels, which is a special case of spa-
tially variant SR. As one can see from Table 4, the pro-
posed MANet maintains its performance and produces best
results across different datasets and scale factors. Particu-
larly, although KernelGAN can estimate kernels from LR
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Table 3: Average PSNR/SSIM of different methods for spatially variant blind SR on BSD100 [28]. Every testing image is divided into
m × n patches (patch size is 40 × 40), which are degraded by different kernels. According to experimental setup in Sec 4.1, for scale
factor s, the Gaussian kernel width range a and minimum kernel width b are 2.325s and 0.175s, respectively. In particular, for patch (i, j),
its corresponding kernel is determined by a, b, x = i

m
and y = j

n
, as shown in the table header. The best and second best results are

highlighted in red and blue colors, respectively.

Method
Scale
Factor

Noise
Level

Spatially Variant Kernel Type
1 2 3 4 5

σ1 = a + b
σ2 = ax + b
θ = 0

σ1 = ay + b
σ2 = ax + b
θ = 0

σ1 = a + b
σ2 = b
θ = πx

σ1 = ay + b
σ2 = ax + b
θ = πx

σ1 ∼ U(b, a + b)
σ2 ∼ U(b, a + b)
θ ∼ U(0, π)

HAN [30] ×2 0 24.98/0.6424 25.31/0.6721 25.04/0.6593 25.41/0.6801 25.19/0.6643
DIP [38] ×2 0 26.11/0.6765 25.04/0.6693 23.81/0.6375 25.05/0.6695 25.40/0.6780
KernelGAN [3] ×2 0 24.81/0.6579 23.68/0.6391 21.88/0.5456 23.63/0.6410 23.49/0.6309
HAN [30] + Correction [20] ×2 0 27.88/0.7634 27.18/0.7352 25.53/0.6996 26.25/0.7101 25.88/0.6811
SRSVD [6] ×2 0 28.53/0.8019 27.81/0.7871 27.44/0.7819 27.81/0.7765 27.81/0.7788
RRDB-SFT + IKC [14] ×2 0 28.45/0.7996 27.92/0.7922 27.49/0.7854 27.83/0.7946 27.75/0.7755
RRDB-SFT + MANet (ours) ×2 0 30.09/0.8397 30.70/0.8610 29.15/0.8305 30.46/0.8567 28.27/0.7957
RRDB-SFT + GT (upper bound) ×2 0 30.71/0.8578 31.47/0.8809 29.63/0.8582 31.32/0.8804 28.37/0.8460

HAN [30] ×3 0 23.29/0.5591 23.22/0.5713 23.03/0.5537 23.17/0.5641 23.08/0.5603
DIP [38] ×3 0 25.75/0.6507 25.38/0.6573 23.75/0.6105 25.32/0.6583 25.71/0.6660
RRDB-SFT + IKC [14] ×3 0 27.07/0/7357 26.86/0.7352 26.31/0.7188 26.87/0.7377 26.71/0.7189
RRDB-SFT + MANet (ours) ×3 0 28.48/0.7753 28.51/0.7780 27.72/0.7641 28.48/0.7792 26.93/0.7268
RRDB-SFT + GT (upper bound) ×3 0 28.83/0.7892 29.05/0.8011 28.27/0.7838 29.01/0.8004 27.96/0.7836

HAN [30] ×4 0 22.19/0.5111 21.83/0.5066 21.66/0.4989 22.04/0.5233 21.99/0.5136
DIP [38] ×4 0 25.24/0.6174 25.30/0.6242 24.01/0.5813 25.24/0.6229 25.31/0.6266
KernelGAN [3] ×4 0 19.90/0.4317 18.32/0.3697 17.62/0.3517 18.56/0.3826 19.02/0.3888
HAN [30] + Correction [20] ×4 0 25.13/0.6151 25.51/0.6156 24.41/0.6017 25.67/0.6454 25.82/0.6435
RRDB-SFT + IKC [14] ×4 0 26.46/0.6952 26.03/0.6880 25.58/0.6759 26.09/0.6887 26.01/0.6775
RRDB-SFT + MANet (ours) ×4 0 27.24/0.7169 27.21/0.7169 26.61/0.7070 27.16/0.7157 26.16/0.6790
RRDB-SFT + GT (upper bound) ×4 0 27.51/0.7300 27.57/0.7355 27.05/0.7227 27.53/0.7345 27.13/0.7262

HAN [30] ×4 15 20.58/0.3148 20.28/0.3078 20.53/0.3139 20.97/0.3286 20.34/0.3146
DIP [38] ×4 15 18.15/0.1854 18.14/0.2042 17.71/0.1960 18.02/0.1997 18.10/0.1998
KernelGAN [3] ×4 15 15.16/0.0992 14.68/0.0961 14.51/0.0873 15.11/0.1086 14.66/0.0859
HAN [30] + Correction [20] ×4 15 18.13/0.1840 18.21/0.2141 18.04/0.2450 18.32/0.2209 18.41/0.2281
RRDB-SFT + IKC [14] ×4 15 24.64/0.5950 24.94/0.6162 24.81/0.6175 25.01/0.6174 24.95/0.6078
RRDB-SFT + MANet (ours) ×4 15 24.89/0.6030 25.21/0.6192 25.11/0.6197 25.24/0.6200 25.05/0.6118
RRDB-SFT + GT (upper bound) ×4 15 24.98/0.6082 25.32/0.6255 25.33/0.6292 25.34/0.6264 25.30/0.6233

Table 4: Average PSNR/SSIM of different methods for spatially invariant blind SR on different datasets. Note that KernelGAN is not
applicable to small images or large scale factors for some datasets. The best and second best results are highlighted in red and blue colors,
respectively.

Method Scale
Factor

Noise
Level Set5 [4] Set14 [48] BSD100 [28] Urban100 [19]

HAN [30] ×2 0 26.83/0.7919 23.21/0.6888 25.11/0.6613 22.42/0.6571
DIP [38] ×2 0 28.19/0.7939 25.66/0.6999 25.03/0.6762 22.97/0.6737
KernelGAN [3] ×2 0 - 23.92/0.6898 25.28/0.6395 21.97/0.6582
HAN [30] + Correction [20] ×2 0 28.61/0.8013 26.22/0.7292 26.88/0.7116 25.31/0.7109
SRSVD [6] ×2 0 34.51/0.8787 31.10.0.8581 29.71/0.7993 28.08/0.7965
RRDB-SFT + IKC [14] ×2 0 35.30/0.9381 31.48/0.8797 30.50/0.8545 28.62/0.8689
RRDB-SFT + MANet (ours) ×2 0 35.98/0.9420 31.95/0.8845 30.97/0.8650 29.87/0.8877
RRDB-SFT + GT (upper bound) ×2 0 36.64/0.9473 32.85/0.8964 31.40/0.8754 30.95/0.9069

HAN [30] ×3 0 23.71/0.6171 22.31/0.5878 23.21/0.5653 20.34/0.5311
DIP [38] ×3 0 27.51/0.7740 25.03/0.6674 24.60/0.6499 22.23/0.6450
RRDB-SFT + IKC [14] ×3 0 32.94/0.9104 29.14/0.8162 28.36/0.7814 26.34/0.8049
RRDB-SFT + MANet (ours) ×3 0 33.69/0.9184 29.81/0.8270 28.80/0.7931 27.39/0.8331
RRDB-SFT + GT (upper bound) ×3 0 34.12/0.9218 30.20/0.8338 28.98/0.7980 28.01/0.8463

HAN [30] ×4 0 21.71/0.5941 20.42/0.4937 21.48/0.4901 19.01/0.4676
DIP [38] ×4 0 26.71/0.7417 24.52/0.6360 24.34/0.6160 21.85/0.6155
KernelGAN [3] ×4 0 - - 18.24/0.3689 16.80/0.3960
HAN [30] + Correction [20] ×4 0 24.31/0.6357 24.44/0.6341 24.01/0.6005 22.32/0.6368
RRDB-SFT + IKC [14] ×4 0 31.08/0.8781 27.83/0.7663 27.12/0.7233 25.16/0.7609
RRDB-SFT + MANet (ours) ×4 0 31.54/0.8876 28.28/0.7727 27.35/0.7305 25.66/0.7759
RRDB-SFT + GT (upper bound) ×4 0 31.93/0.8915 28.53/0.7786 27.48/0.7340 26.10/0.7872

HAN [30] ×4 15 20.88/0.4245 18.91/0.2901 21.01/0.4881 19.31/0.3552
DIP [38] ×4 15 18.60/0.2695 18.14/0.2392 17.90/0.2073 18.82/0.3476
KernelGAN [3] ×4 15 - - 19.56/0.4582 13.65/0.1136
HAN [30] + Correction [20] ×4 15 19.21/0.2281 18.21/0.2478 19.25/0.4231 19.01/0.3500
RRDB-SFT + IKC [14] ×4 15 27.23/0.7877 25.55/0.6717 25.15/0.6236 23.31/0.6697
RRDB-SFT + MANet (ours) ×4 15 27.57/0.7918 25.75/0.6746 25.30/0.6259 23.56/0.6758
RRDB-SFT + GT (upper bound) ×4 15 27.81/0.7970 25.92/0.6787 25.38/0.6295 23.82/0.6861
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No Ground-Truth
(Real Image)

PSNR (dB) 20.86/21.28/21.94/- 25.19/23.92/25.34/- 17.28/19.99/17.22/- 25.75/24.91/26.24/- 26.71/25.84/27.42/- 27.03/26.18/27.77/-

LR (×4) HAN [30] DIP [38] KernelGAN [3] RRDB-SFT +
IKC [14]

RRDB-SFT +
MANet (ours)

RRDB-SFT +
GT (upper bound)

Figure 6: Visual results of different methods on spatially variant blind SR and real-world images for scale factor 4. From the first to the
third row, the corresponding kernel types are 2, 3 and 4, respectively.

images, it only has similar performance to HAN and DIP.
As a learning-based method, IKC performs better, but it is
inevitably affected by less discriminative patches because
it predicts one kernel for the whole image. In comparison,
the proposed MANet remedies the problem by estimating
different kernels for different image patches, outperforming
IKC by significant margins.

4.6. Experiments on Real-World SR

As there is no ground-truth for real images, we only com-
pare visual results of different methods. Note that we only
use L1 pixel loss (no GAN loss) in training for simple and
fair comparison. As shown in Fig. 6, similar to the results
on synthetic images, HAN still generates blurry images.
Different from HAN, DIP and KernelGAN produce images
with obvious ringing artifacts. As for IKC, it over-sharpens
the image and has obvious artifacts on edges, maybe due
to the fact that it only estimates one kernel for different re-
gions. In comparison, MANet produces sharp and natural
edges with less artifacts based on the same non-blind SR
model. The possible reason is that MANet estimates spa-
tially variant kernels and feeds them to the non-blind model,
which adaptively adds high-frequency details to edges and
low-frequency information to flat areas. More visual results
are provided in the supplementary.

5. Conclusion
In this paper, we proposed a mutual affine network

(MANet) for spatially variant blind SR kernel estimation.
MANet is composed of feature extraction and kernel recon-
struction modules, and it has a moderate receptive field so
as to keep the locality of degradation. In particular, it uses
the proposed mutual affine convolution (MAConv) layer to
exploit the channel interdependence by learned affine trans-
formations between different channel splits, which can en-
hance model expressiveness without increasing the model
receptive field, model size and computation burden. We
conduct extensive experiments on synthetic datasets (in-
cluding both spatially variant and invariant degradation)
and real-world images to demonstrate the effectiveness of
MANet. It performs well on blur kernel estimation, lead-
ing to state-of-the-art performance on blind image SR when
MANet is combined with existing non-blind SR models. In
the future, we will consider more real-world degradations
and utilize GAN-based training for better visual quality.
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