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Abstract

In this paper, we propose a novel solution for object-
matching based semi-supervised video object segmentation,
where the target object masks in the first frame are pro-
vided. Existing object-matching based methods focus on
the matching between the raw object features of the current
frame and the first/previous frames. However, two issues
are still not solved by these object-matching based meth-
ods. As the appearance of the video object changes drasti-
cally over time, 1) unseen parts/details of the object present
in the current frame, resulting in incomplete annotation in
the first annotated frame (e.g. view/scale changes). 2) even
for the seen parts/details of the object in the current frame,
their positions change relatively (e.g. pose changes/camera
motion), leading to a misalignment for the object match-
ing. To obtain the complete information of the target ob-
ject, we propose a novel object-based dynamic memory net-
work that exploits visual contents of all the past frames. To
solve the misalignment problem caused by position changes
of visual contents, we propose an adaptive object align-
ment module by incorporating a region translation function
that aligns object proposals towards templates in the feature
space. Our method achieves state-of-the-art results on lat-
est benchmark datasets DAVIS 2017 (J of 81.4% and F of
87.5% on the validation set) and YouTube-VOS (the overall
score of 82.7% on the validation set) with a very efficient
inference time (0.16 second/frame on DAVIS 2017 valida-
tion set). Code is available at: https://github.com/
liang4sx/DMN-AOA.

1. Introduction

Semi-supervised video object segmentation (VOS) is a
task that distinguishes target objects from their background
at the pixel level in a video, where ground-truth masks of

∗This work was done when the author was visiting Alibaba as a re-
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†Corresponding author.
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Figure 1. Two issues for the object matching based VOS. In the
top two cases, corresponding parts (in red) of the query object do
not present in the first frame because of view/scale changes. The
bottom two cases show the misalignment problem caused by pose
changes and camera motion. Our method solve these issues by ex-
ploiting object-specific memories and aligning objects adaptively.

objects are provided in the first frame. The task is then to
predict the segmentation masks from the rest video frames.
One of the main challenges of VOS is that the appearances
of the target object can change drastically across frames due
to object movements, camera movements and occlusions.
For the semi-supervised video object segmentation commu-
nity, the pixel matching based VOS (PVOS) and the object
matching based VOS (OVOS) are investigated in parallel
as two research topics. PVOS methods predict based on
cross-frame pixel correlations (e.g. [7, 20, 28, 35]). OVOS
methods predict by correlating proposal objects of the cur-
rent frame with template objects of historical frames (e.g.
[4, 11, 29, 36]).

Existing OVOS methods focus on the matching be-
tween the raw object features of the proposals in the cur-
rent frame and the templates in the first/previous frames
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[2, 4, 11, 26, 29, 36]. However, two issues are still not
solved by these methods (shown in Figure 1). Specifically,
as the appearance of the video object changes drastically
over time, first, unseen parts/details of the object present
in the current frame, resulting in incomplete information in
the first frame (e.g. view/scale changes). For example, in
the top two cases, the information about the person’s back
and the details of the vehicle’s side (which are required by
the current frame) are not provided in the first frame. And
second, for the seen parts/details of the object in the current
frame, their positions change relatively (e.g. pose/camera
motion), leading to a misalignment for the object matching.
For example, in the bottom two cases, some object parts in
the first frame spatially correspond to the background (the
dancer’s hand vs. the audience’s head) or to other dissimilar
parts (the vehicle’s body vs. the vehicle’s wheel) in the cur-
rent frame. Consequently, existing OVOS methods are not
as strong as the state-of-the-art (SOTA) PVOS methods, es-
pecially the PVOS methods exploiting all past frames with
memory networks [12, 13, 16, 20, 24].

The key challenges for OVOS to exploit all past frames
and surpass PVOS lie in two folds: a) The memory module
for PVOS is straight-forward, where directly storing feature
maps of raw frames is enough. While for OVOS, we need
a special memory module to store specific object features,
which is still not solved in OVOS (no memory is used in
existing OVOS methods [4, 11, 29, 36]). b) Instead of di-
rectly computing pixel-to-pixel similarities between frames
as in PVOS, the matching of object features between tem-
plates and proposals is faced with the misalignment prob-
lem caused by object deformation across frames, which is
still not solved by OVOS. Specifically, [4] aligns the object
sizes rather than the deformed object appearances. Other
works compute the object similarities by unaligned pixel-to-
pixel distance [29] or global average pooled features with-
out spatial information [4, 36].

To solve the aforementioned two challenges, we propose
a novel dynamic memory network and a new adaptive object
alignment module for OVOS. By reading relevant object in-
formation from all available resources, memory of object
features in past frames is used to generate dynamic object
templates. In this way, the past frames with object masks
form a dynamic memory, and the current frame as the query
is used to decode templates that represent the current ap-
pearances of objects. With the dynamic memory network,
there is no restriction on the number of frames to use and
new object information of a given frame can be easily accu-
mulated in the memory. To solve the misalignment problem
caused by position changes of visual contents in the target
object, we propose an adaptive object alignment operation
by incorporating a non-local region translation function that
recomposes regions of the object templates based on the ob-
ject features of proposals. Specifically, object templates and

proposals are firstly projected to a shared feature space, then
dense correspondences between them are utilized to trans-
late object proposals towards the templates in the feature
space.

Equipped with the proposed dynamic memory network
and the adaptive object alignment module, we design an
easy-to-extend framework for OVOS. Firstly, for a test
frame, object proposals are generated through a pre-trained
instance segmentation model. Secondly, current-frame fea-
tures and object bounding boxes from the previous frame
are combined as a query input to the dynamic memory net-
work, which generates object templates for the frame incor-
porating object information from memory frames. Thirdly,
the object matching assignment between the generated tem-
plates and proposals is produced based on the adaptive ob-
ject alignment module and a differentiable matching layer
[36]. Finally, the object matching results are input to a mask
refinement network to make output segmentation.

Our contributions can be summarized as follows:

• We present a novel and easy-to-extend object-
matching framework for the VOS task. Our proposed
OVOS model outperforms all SOTA PVOS methods
for the first time in the community, and we pave a new
way for the development of OVOS.

• We are the first to exploit all the frames in the video
for OVOS. Specifically, we introduce a dynamic mem-
ory network that computes spatio-temporal attention
on object features of all past frames for each query
frame, to obtain current-frame representations of tar-
get objects.

• We propose a novel adaptive object alignment module
to solve the misalignment between the object propos-
als and templates. In detail, we design a region trans-
lation function that recomposes template-like regions
with proposal object features.

2. Related Works

For the semi-supervised video object segmentation com-
munity, the pixel matching based VOS (PVOS) and the ob-
ject matching based VOS (OVOS) are investigated in par-
allel as two research topics. In this section, the classic and
SOTA methods of both topics are introduced. Extra discus-
sions about the methods without matching are in our sup-
plementary material.

Pixel matching based VOS (PVOS). PVOS methods
provide segmentation clues based on cross-frame pixel cor-
relations. Classic PVOS methods [3, 7, 25, 28] match
current-frame pixels with the pixels from the first/previous
frames. STM [20] extends the pixel matching with interme-
diate frames by incorporating a key-value memory network
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[18]. Some recent works improve upon the memory net-
work, making it spatial position-aware [24], developing it
with a graph network [12], maintaining a fixed-size mem-
ory representation [12], and adding merging and obsoleting
schemes for memory frames [13]. Other recent develop-
ments in PVOS include contrasting foreground-background
features [35] and developing an efficient transductive ap-
proach [39]. Even though PVOS methods achieve good per-
formances, they heavily rely on historical pixels and mostly
make little use of object-level semantic features. As a re-
sult, these methods could be vulnerable to accumulated er-
rors and distractor objects nearby.

Object matching based VOS (OVOS). OVOS meth-
ods obtain clues by correlating proposal objects of the
current frame with template objects of historical frames.
DyeNet [11] uses template re-identification and mask prop-
agation iteratively to estimate object masks. FAVOS [4]
tracks part regions of objects and aggregates part masks
into object masks through template matching. DMM-Net
[36] proposes a differentiable and Hungarian-algorithm-
like object matching layer. Recent works develop OVOS
with approaches like state-switchable tracking [2], tracklet-
based dynamic programming [29], 3D convolutions and a
rule-based template bank [8] and actor-critic reinforcement
learning [26]. Object-level correlations endow segmenta-
tion networks with a high-level object estimation. However,
all existing OVOS methods fail to learn object templates
in an optimizable and dynamic way, and overlook the mis-
alignment between templates and proposals. Then it is not
surprising that they are not as strong as the SOTA PVOS
methods (refer to Section 4.2).

Our method belongs to the OVOS topic. The differences
between our method and previous OVOS methods lie in two
aspects. First, our template is generated in a dynamic way
via a memory network, while in others, the template is fixed
using the annotation in the first frame with/without the pre-
diction of the previous frame. Second, the misalignment
between the template and proposals is solved by our adap-
tive object alignment module for the first time.

3. Approach
For simplicity, in Section 3.1, 3.2 and 3.3, we introduce

the proposed method in the case of single-object VOS. And
in Section 3.4, we introduce how the proposed method can
be used for multi-object VOS.

3.1. Framework Overview

The overview of our framework is shown in Figure 2.
During the video processing, we consider the past frames
with object masks (either given in the first frame or esti-
mated in subsequent frames) as the memory frames and the
current frame without the object mask as the query frame.
Our framework is easy-to-extend because of the modular

design. Each of the 5 modules (base feature extractor, ob-
ject proposal generator, object template generator, aligned
matcher and mask refinement network) can be indepen-
dently modified or replaced. Meanwhile, all the 4 modules
are end-to-end trained, except for the pre-trained object pro-
posal generator. These modules are introduced as follows.

Base Feature Extractor. The base feature extractor
takes the frames as input. We use ResNet-50 [6] as our
backbone. The output features of the stage-2 to stage-4
(res2, res3, res4) of the backbone are used as our base fea-
tures. To reduce the dimension of the features, we add a
bottleneck layer over the last layer of every stage. Object
features are extracted by performing ROI pooling on the
base features using the corresponding bounding boxes.

Object Proposal Generator. Object proposals are gen-
erated by an off-the-shelf instance segmentation model for
each frame independently. We typically use a COCO-
pretrained Mask R-CNN [5] with ResNeXt-101-FPN [14,
32] as the backbone for this task. By default, we collect top-
30 output instances (including bounding boxes and masks)
as object proposals for each frame to ensure a high recall.

Object Template Generator. The object template gen-
erator takes object features and object masks of the past
frames as memories and takes target object features of the
current frame as query. Using the memories and the query,
an object template is generated adaptively for the current
frame, which is then used for the object matching. In this
work, we use the proposed dynamic memory network as an
effective and efficient object template generator. The details
of the module will be introduced in Section 3.2.

Aligned Matcher. The matcher takes features of all ob-
ject proposals and features of the object template as input.
Distances from the proposals to the template are computed
by the cosine similarities between their features. Taking
the distances as input, a differentiable matching layer [36]
is adopted to generate an assignment matrix A ∈ R1×n,
where n is the number of object proposals. A coarse mask
for the target object is generated by a summation (weighted
by A) of masks of all the object proposals. In this work,
to avoid misalignment, we use the proposed adaptive ob-
ject alignment module to align the proposals towards the
template in a shared feature space. As a result, the afore-
mentioned distances are computed between the aligned pro-
posals and the template. The details of the module will be
introduced in Section 3.3.

Mask Refinement Network (RefineNet). Base features
(res2 − res4) and object masks of the first frame, the pre-
vious frame and the current frame are fed into RefineNet
as input. For the two reference frames (the first and the
previous frames), we use the output (or given) probability
masks. For the query frame, we use the aforementioned
coarse mask. Notably, to handle the spatial drifting of ob-
jects across frames, the features of the reference frames are

8067



Memories: Past frames with object masks Query: Current frame with object proposals and a previous object box

Template

Aligned Matcher

Proposals

RefineNet

Coarse Mask

Base Feature Extractor

Frame & Mask Frame & Mask FramePrevious Box Proposals

masks

boxes

Object Proposal Generator

Output Mask

Object Template Generator (Dynamic Memory Network)

…

…

Object-specific Memories Object-specific Query

Generated
Template

Figure 2. Overview of our framework. We use the proposed dynamic memory network (DMN) as our object template generator. Specif-
ically, DMN takes past frames with object instances (object features and masks) to form object-specific memories, and takes the features
of current frame and the object box of previous frame to construct an object-specific query. Using the memories and query, DMN dynam-
ically generates a object template for the current frame. The template is then matched with all proposals by the proposed adaptive object
alignment method. A coarse mask is produced from the matching result and then refined by a mask refinement network (RefineNet).

aligned towards the features of the current frame in the same
manner as AOA before they are fed to RefineNet. The ar-
chitecture of RefineNet is the same as in [20, 24, 31], which
contains 3 blocks. Each block of this network takes as input
the corresponding current features (res-i), the correspond-
ing reference features (res-i), and the output features from
the previous block (spatially upsampled by 2×). The out-
put feature maps of the last block is reduced to 2-channel
feature maps by a 1× 1 convolutional layer. The final prob-
ability mask is obtained by applying softmax on these 2-
channel feature maps.

3.2. Dynamic Memory Network (DMN)

As shown in Figure 3, the proposed DMN module con-
sists of a memory encoder, a query encoder and a template
decoder. They are introduced as follows.

Memory Encoder. The memory encoder takes the ob-
ject features and the object mask of a memory frame as in-
put. Suppose we have a past frame m with its object fea-
tures and its object mask as a new memory frame. The ob-
ject features and the object mask are concatenated along the
channel dimension and encoded into pairs of key and value
feature maps through two parallel 3 × 3 convolutional lay-
ers. Notably, to use in later steps, the key feature maps and
the value feature maps of all memory frames are stacked
along the temporal axis to 4D tensors. Here we denote the
key feature maps as K ∈ RT×H×W×C/4 and the value fea-
ture maps as V ∈ RT×H×W×C , where T is the number of
memory frames, and H , W and C are the height, the width
and the number of channels of the object features.

Query Encoder. The query encoder takes the target ob-
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Figure 3. The dynamic memory network. Fc and Fm are object
features of the current frame c and the memory frame m, respec-
tively. Mm is the object mask of m.

ject features of the current frame as input. Notably, the tar-
get object features are obtained by ROI pooling on the base
features of the current frame using the object box from the
previous frame. The target object features are encoded as
the query feature map through a 3 × 3 convolutional layer.
Here, we denote the query feature map asQ ∈ RH×W×C/4.

Template Decoder. The template decoder takesK and V
of all memory frames and Q of the current frame as input.
Since Q is a coarse representation of the object’s appear-
ance in the current frame, the module learns to use K to ad-
dress target object-specific memories V with respect to Q.
Specifically, the relevance score between every pixel of Q
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Figure 4. The adaptive object alignment module. The template
feature map T and the proposal feature map P are projected to a
shared feature space with CD dimensions. In the feature space,
the proposal is translated to align with the template using the non-
local correspondences between their projected feature maps.

andK is computed densely to determine when-and-where to
retrieve V from. By a summation weighted by the relevance
scores, values of the corresponding space-time locations are
combined as the template feature map T ∈ RH×W×C as
follows:

T = softmax
(Q ◦ K√

C/4

)
◦ V, (1)

where ◦ indicates the matrix multiplication. Notably, all 4D
tensors are transformed to 2D matrix before performing the
matrix multiplication. The decoding process can be seen
as an instantiation of the scaled dot-product attention [27].
This operation can be efficiently implemented using tensor
operations in modern deep learning libraries [21].

Notably, to endow DMN with temporal perception, we
add positional embeddings [27] to the object features before
the memory/query encoding. Specifically, the positional
embeddings are encoded using the relative positions (i.e.
offsets) of the memory/query frame w.r.t. the first frame.

There are two significant differences between the pro-
posed DMN module for objects and the memory networks
in PVOS (e.g. [20, 24]). Firstly, our memory encoding and
query encoding are conducted on the object-centric features
other than the features of a complete memory frame. As a
result, we eliminate a great deal of redundant information
while retaining high-resolution object semantics. Secondly,
the base features in our work are computed only once for
a frame and all object features of this frame are extracted
through ROI pooling on the shared base features. This de-
sign makes our model much more efficient than previous
works, where the base features for n different objects are
computed repeatedly for n times.

3.3. Adaptive Object Alignment (AOA)

A main challenge of the object alignment is that the ob-
jects in the VOS task come with weak prior knowledge. As
a result, it is difficult to apply the alignment methods that

require strong prior knowledge, such as the part-part align-
ment in person re-identification [40]. Furthermore, objects
in videos suffer from huge appearance variations due to ob-
ject movements, camera movements and occlusions. These
variations could involve complex non-rigid deformation so
that the conventional alignment methods like affine trans-
formation are inapplicable.

The proposed adaptive object alignment method works
by translating an object proposal to align with a given tem-
plate in the feature space (shown in Figure 4). Suppose we
have a template feature map T ∈ RH×W×C and a proposal
feature map P ∈ RH×W×C . Firstly, both of the feature
maps are projected to a shared feature space by two parallel
convolutional blocks (i.e. projectors). Each projector con-
sists of two 3× 3 convolutional layers and a nonlinear layer
between them. The output feature maps of the two projec-
tors are denoted as T ′ ∈ RH×W×CD andP ′ ∈ RH×W×CD ,
where CD is the number of channels of the projected fea-
ture maps. Secondly, we use a region translation function
to align the proposal to appear like the template. Specif-
ically, the non-local cosine similarity is adopted to com-
pute the dense correspondences between all positions of
T ′ and P ′. Inspired by [37, 38], the correspondence map
S ∈ RHW×HW is sharpened by a parameter α and a soft-
max operation:

Si,j =
exp

(
α · cos(i, j)

)∑
∀k exp

(
α · cos(i, k)

) , (2)

where i is the position index of the template feature map,
j is the position index of the proposal feature map and
cos(i, j) is the cosine similarity score between features of
location i in T ′ and location j in P ′. The feature vector
in position i of the aligned proposal feature map P ′′ ∈
RH×W×CD is finally obtained by:

P ′′i =
∑
∀j

Si,j · P ′j (3)

The final matching is conducted between the feature
maps T ′ and P ′′. Additionally, the region translation func-
tion (Equations (2) and (3)) could be computed using the
matrix multiplication in modern deep learning libraries with
high efficiency [21].

3.4. Multi-object Segmentation

The description of our framework is based on having one
target object in the video. However, on VOS benchmarks
[22, 33], models are required to process multiple objects. In
our framework, all steps before RefineNet support multiple
objects in a single forward pass. Thus, the only extra opera-
tion is to perfrom the mask refinement individually for each
object. Once we obatin the refined masks, we adopt the soft
aggregation method in [20, 31] to merge the predicted prob-
ability masks for all objects.
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4. Experiments
In this section, we evaluate our method on DAVIS 2017

[22] and YouTube-VOS 2018 (YTVOS) [33] benchmarks.
DAVIS has 60 videos for training, 30 videos for valida-
tion and 60 videos for testing. Each video in DAVIS is at
24fps and per-frame annotated, containing either single or
multiple objects. YTVOS is a relatively large-scale VOS
dataset which has 3471 training videos and 474 validation
videos. Each video in YTVOS is at 30fps and annotated
every 5 frames, containing single or multiple objects. For
each benchmark, we train an individual model on its train-
ing set. And for evaluation, we use the classic VOS metrics:
the region similarity J , the contour accuracy F and their
average G.

To make a fair comparison, except the necessary mod-
ifications introduced by the proposed modules, all other
modules of our framework use the same architectures as in
previous works. Specifically, Base Feature Extractor uses
the same backbone as STM (ResNet-50) [20] or optionally
as CFBI (ResNet-101) [35]. Object Proposal Generator is
from DMM-Net [36]. The memory encoder and the query
encoder of DMN use the same architectures as the two en-
coders in STM. The template decoder works in the same
manner as the memory read module in STM . The matching
layer of Aligned Matcher is from DMM-Net. The structure
of RefineNet is from STM.

4.1. Implementation Details

Pre-training on images. For a fair comparison, we
adopt a similar pre-training strategy on images as previous
works [12, 13, 16, 20, 24, 29, 34]. Since our method does
not necessarily require long videos for training, we simu-
late video clips by applying random affine transformations
on static images from the COCO dataset [15]. Each pre-
training clip contains an annotated first frame for reference
and three following frames for segmentation.

Main training on videos. Our model is firstly initial-
ized from pre-trained weights, and then trained on the VOS
benchmarks. On both benchmarks, a training clip is gen-
erated by sampling 4 temporally ordered frames from each
training video with a random skipping stride from 1 to 5.
And the first frame is an annotated reference frame and the
following frames are to be segmented.

Training Details. We set the batch size to 12 for the pre-
training and to 4 for the main training. To avoid the perfor-
mance degradation caused by the small batch size, we keep
the batch normalization layers [9] of the backbone frozen
and use group normalization (G = 32) [30] for all other
modules. The cross entropy loss with Adam Optimizer [10]
is used for optimization. In the pre-training, the initial learn-
ing rates are set to 1e− 5 for the backbone and set to 1e− 4
for the rest. In the main training, they are set to 1e− 7 and
1e − 6, respectively. With 2 NVIDIA Tesla V100 GPUs,

our pre-training stage takes 5 days for 30 epochs. The main
training takes 0.5 day for 150 epochs on DAVIS and takes 2
days for 40 epochs on YTVOS.

Object Proposal Generation. Following [36], we fine-
tune the COCO-pretrained object proposal generator on
YTVOS. The batch size is set to 8 and the learning rate is
set to 1e − 6. Due to the small number of training videos
on DAVIS, we omit its fine-tuning stage to avoid overfit-
ting. Before feeding proposals into our VOS framework,
non-maximum suppression (NMS) [19] with a ratio of 0.4
is utilized to remove proposals with high overlap.

Inference. On both datasets, encoding all past frames
into memory is allowed in our method, thanks to the effi-
cient dynamic memory network. However, for a fair com-
parison with the state-of-the-art PVOS models, we follow
the same memory frame sampling strategy as in [20, 24].
Specifically, the first and the previous frames are always
used and other past frames are sampled with a stride of 5.

4.2. Comparison with State-of-the-Art Methods

DAVIS 2017. Results of our method and the SOTA
methods are presented in Table 1. On both the validation
set and the test-dev set, our method outperforms all these
methods with a significant margin. Notably, the inference
time of our method is much less than the SOTA methods
like GraphMem [16] and CFBI [35]. This is mainly because
in our method, base feature maps are computed only once
for each frame and features of all objects in the frame are
extracted through ROI pooling on this shared base feature
maps. Visualized cases on DAVIS 2017 can be found in the
supplementary material.

YouTube-VOS 2018 (YTVOS). The validation set of
YTVOS contains 474 videos in total, with 65 seen object
categories and 26 unseen object categories. On this dataset,
our model is pre-trained but is not fine-tuned online. Re-
sults of our method and the SOTA methods are presented
in Table 2. Our method again outperforms all SOTA meth-
ods with a significant margin. The superior performance on
this large-scale dataset verifies that our method generalizes
better than current methods.

4.3. Ablation Studies

In this section, we analyze our method under different
settings on DAVIS 2017 validation set. These settings can
be categorized into four kinds: architecture, memory sam-
pling, training and object proposal generator tuning. The
ablation results are shown in Table 3. Notably, the Full
model (F0) is the best variant of our method, which uses the
settings of these four kinds as follows: (a) both DMN and
AOA are used, (b) the pre-training and the main training are
applied successively, (c) the first and previous frames are
always used as the memory frames and other past frames
are sampled with a stride of 5, and (d) the object proposal
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Models Backbone OL Pre YV Jval Fval Gval Jtest Ftest Gtest t/s
FRTM [23] (CVPR20) R101 X X - - 76.7 - - - 0.09
DMM-Net [36] (ICCV19) R101 68.1 73.3 70.7 - - - 0.12
FEELVOS [28] (CVPR19) DL3+ X 69.1 74.0 71.5 55.2 60.5 57.8 0.54
SAT [2] (CVPR20) R50 68.6 76.0 72.3 - - - 0.03
TVOS [39] (CVPR20) R50 69.9 74.7 72.3 58.8 67.4 63.1 0.03
TAN-DTTM [8] (CVPR20) R50 72.3 79.4 75.9 61.3 70.3 65.4 0.14
CFBI [35] (ECCV20) R101 X 79.1 84.6 81.9 71.1 78.5 74.8 0.37 †
GC [12] (ECCV20) R50 X 69.3 73.5 71.4 - - - 0.08 †
AFB-URR [13] (NeuIPS20) R50 X 73.0 76.1 74.6 - - - -
Siam R-CNN [29] (CVPR20) R101 X X 69.3 80.2 74.8 57.3 66.9 62.1 1.0
STM [20] (ICCV19) R50 X 69.2 74.0 71.6 - 62.1 0.32 †
STM [20] (ICCV19) R50 X X 79.2 84.3 81.8 69.3 75.2 72.2 0.32 †
GraphMem [16] (ECCV20) R50 X X 80.2 85.2 82.8 - - - 0.40 †
KMN [24] (ECCV20) R50 X X 80.0 85.6 82.8 74.1 80.3 77.2 0.24 †
Ours R50 X 78.6 84.0 81.3 - - - 0.15
Ours R50 X X 81.0 87.0 84.0 - - - 0.15
Ours R101 X X 81.4 87.5 84.5 74.8 81.7 78.3 0.16

Table 1. Quantitative results On DAVIS 2017. R50, R101 and DL3+ denotes ResNet-50, ResNet-101 and DeepLabv3+ [1]. OL indicates
fine-tuning on first frames. Pre indicates pre-training on image datasets. YV indicates an extra use of YTVOS for training. val and test
denote the validation set and the test-dev set, respectively. t/s denotes inference time per frame in seconds on DAVIS 2017 validation set,
and † denotes the time extrapolated from single-object inference time on DAVIS 2016 validation set.
.

Models JS JU FS FU G
DMM-Net [8] 60.3 50.6 63.5 57.4 58.0
SAT [2] 67.1 55.3 70.2 61.7 63.6
PReMVOS [17] 71.4 56.5 75.9 56.5 66.9
TVOS [39] 67.1 63.0 69.4 71.6 67.8
FRTM [23] 72.3 65.9 76.2 74.1 72.1
SiamRCNN [29] 73.5 66.2 - - 73.2
GC [12] 72.6 68.9 75.6 75.7 73.2
STM [20] 79.7 72.8 84.2 80.9 79.4
AFB-URR [13] 78.8 83.1 74.1 82.6 79.6
GraphMem [16] 80.7 74.0 85.1 80.9 80.2
CFBI [35] 81.1 75.3 85.8 83.4 81.4
KMN [24] 81.4 75.3 85.6 83.3 81.4
Ours (R50) 82.5 76.2 86.9 84.2 82.5
Ours (R101) 82.6 76.7 87.0 84.8 82.7

Table 2. Quantitative results on YTVOS validation set. S and U
denote the seen and unseen object categories in the training set.

generator is additionally tuned on YTVOS. When one kind
of ablation settings is studied, the other settings are kept the
same as the Full model.

Architecture. In (A) of Table 3, we investigate the con-
tributions of our proposed DMN and AOA modules. The
base model takes annotations in the first frame as a fixed
template. By replacing the fixed template with the tem-
plate generated from DMN, a 2.7% improvement on G is
achieved (A1 vs. A2). This indicates that exploiting the ob-
ject memories helps handle large appearance changes while

being robust to error accumulation. Meanwhile, the AOA
module brings in a 1.1% performance gain (A1 vs. A3). This
indicates that the misalignment between the object propos-
als and templates degrades the performance of VOS signifi-
cantly. The misalignment problem in VOS is not touched by
previous works and we take a first try to shed some light on
it. Moreover, combining DMN and AOA leads to an addi-
tional improvement (F0 vs. A2+A3), indicating that object
memories and adaptive alignment boost each other. Specif-
ically, on one hand, more appearance cues of the target ob-
ject encoded in memories brings in a more accurate align-
ment. On the other, more robust similarity measurement
between templates and aligned proposals provides better in-
formation for the learning of preceding modules including
DMN. When the memory encoder in DMN uses the frame
features instead of the object features, a 1.9% performance
drop is observed (A4 vs. F0). This reveals that the object se-
mantics are retained better in object-based memories com-
pared with frame-based memories. Removing the matcher
(i.e. not use AOA and proposals at all) and decoding masks
from the DMN results in a significant performance drop of
11.3% (A5 vs. F0). This is because the model does not take
the advantages of either PVOS (e.g. foreground-background
integration) or OVOS (e.g. proposals as coarse estimates).
Finally, our coarse masks achieve a fairly good performance
of 69.2%, and introduce RefineNet upon the coarse masks
further improves this result by 12.1% (A6 vs. F0).

Memory Sampling. Results of different memory sam-
pling strategies are shown in (B) of Table 3. The first and
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Ablation Settings J F G t/s
F0 Full 78.6 84.0 81.3 0.15

(A) Architecture
A1 Base 75.2 80.3 77.8 0.13
A2 Base w/ DMN 77.9 83.1 80.5 0.14
A3 Base w/ AOA 76.4 81.4 78.9 0.14
A4 Full w/ FrameMem 76.8 82.0 79.4 0.15
A5 Full w/o Matcher 67.5 72.5 70.0 0.11
A6 Full w/o RefineNet 67.1 71.2 69.2 0.11

(B) Memory Samspling
B1 First frame only 77.3 82.5 79.9 0.14
B2 Previous frame only 77.8 82.6 80.2 0.15
B3 First+previous frames 77.7 83.0 80.4 0.15
B4 All past frames 79.2 84.3 81.8 0.19

(C) Training
C1 Main training only 70.3 74.7 72.5 0.15
C2 Pre-training only 65.8 70.0 67.9 0.15

(D) Object Proposal Generator Tuning
D1 Tuning w/ DAVIS 76.3 81.7 79.0 0.15
D2 Tuning w/o YTVOS 77.5 82.7 80.1 0.15

Table 3. The ablation results on DAVIS 2017 validation set. Refer
to Section 4.3 for details about the Full model. Notably, in ablation
studies, we use ResNet-50 as the backbone and the YTVOS dataset
is not used for training.

previous frames are believed to provide important informa-
tion for object segmentation of the current frame. Compar-
ing B1 and B2, the previous frame looks more useful to han-
dle failure cases. In addition to first and previous frame, we
sample a new intermediate memory frame at every 5 frames
in our Full model. Utilization of these intermediate frames
leads to an improvement of 0.9% (B3 vs. F0). Having the
intermediate-frame memories further boosts performance in
providing more information about the object appearances.
In addition, an interesting observation is that the B1 model
is slightly better than the A3 model. All configurations and
inputs of the two models are the same, except for the use
of DMN in the previous model. This result indicates that
the template decoding with memory addressing mechanism
itself is beneficial for object matching. Last but not least,
our method is capable of exploiting all past frames thanks
to the efficient dynamic memory network. By doing so, a
slightly better performance (+0.5%) is achieved while the
inference time is increased by 27% approximately.

Training. As shown in (C) of Table 3, the C1 model
drops by 8.8%, indicating that the amount of training video
data is not enough to bring out the potential of our method.
However, previous works perform much worse (e.g. 43.0%
of [20] vs. 72.5% of C1) on DAVIS without pre-training.
This verifies that our method is rather robust and generalizes
well on datasets in various scales. The C2 model achieves a
result of 67.9% on G with a drop of 13.4%. This is because

BFE OPG OTG AM MRN
0.009 0.020 0.015 0.044 0.066

Table 4. The inference time per frame (t/s) of the 5 modules of
our method on DAVIS-17 validation set. These modules are re-
spectively base feature extractor (w/ ResNet-50), object proposal
generator, object template generator, aligned matcher and mask
refinement network.

the object categories are quite different between DAVIS and
COCO. Lastly, maximum performance is obtained by using
both training strategies.

Object Proposal Generator Tuning. As shown in (D)
of Table 3, we test the performance of our method un-
der different object proposal generator tuning strategies.
Specifically, tuning the generator on images of a small-scale
dataset like DAVIS results in a degradation of performance
(D1 vs. F0/D2). The degradation is mainly caused by the
overfitting problem and we suggest not to tune the genera-
tor on the small-scale datasets. Actually, in most cases, an
instance segmentation model pre-trained on COCO works
well on generating high-recall object proposals for our
method (D2). This means that our method can be easily
transferred to a new dataset with an end-to-end training on
the VOS task only. To further boost the performance, we
tune the generator on the large-scale dataset YTVOS. This
extra tuning brings a 1.2% improvement on G (F0 vs. D2).

Inference Time. On DAVIS 2017 validation set, we run
the inference of each module independently and the detailed
processing time is shown in Table 4. Our method is fast for
three reasons. Firstly, the object proposal generator module
is efficient since it can be performed for multiple frames
concurrently. Secondly, the base features in our work are
computed once for a frame while in previous works [13, 16,
20, 24] they are repeatedly computed for every target object.
Lastly, the DMN module and the AOA module are hugely
accelerated by matrix multiplication.

5. Conclusion

In this paper, we present a novel object-matching frame-
work for semi-supervised video object segmentation. Our
model alleviates the mismatches between object templates
and proposals by incorporating two key components. The
first one is a dynamic memory network that learns to read
relevant object information from multiple past frames, and
the second is an adaptive object alignment module that
aligns proposals towards templates in the feature space. The
experimental results show that our method outperforms all
state-of-the-art methods on VOS benchmarks with a very
efficient inference time.
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