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Abstract

Hypergraph matching is a useful tool to find feature cor-
respondence by considering higher-order structural infor-
mation. Recently, the employment of deep learning has
made great progress in the matching of graphs, suggest-
ing its potential for hypergraphs. Hence, in this paper, we
present the first, to our best knowledge, unified hypergraph
neural network (HNN) solution for hypergraph matching.
Specifically, given two hypergraphs to be matched, we first
construct an association hypergraph over them and convert
the hypergraph matching problem into a node classification
problem on the association hypergraph. Then, we design
a novel hypergraph neural network to effectively solve the
node classification problem. Being end-to-end trainable,
our proposed method, named HNN-HM, jointly learns all
its components with improved optimization. For evalua-
tion, HNN-HM is tested on various benchmarks and shows
a clear advantage over state-of-the-arts.

1. Introduction
Feature correspondence is essential for many computer

vision tasks, such as shape matching [2], image registra-
tion [17], and object recognition [26]. Given two sets of fea-
tures, feature correspondence aims to match each feature in
one set to a feature in the other set. Usually, features in the
same set are related and have an inherent structure, which
can benefit the corresponding task. Using the pairwise re-
lations between features (second-order structure), one can
build two graphs from the two feature sets (nodes represent
features, and edges represent relations) and convert the cor-
responding problem into a graph matching problem [14,33].
Similarly, to incorporate higher-order structural information
(i.e. relations involving more than two features), one can
build two hypergraphs and convert the problem into a hy-
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Figure 1. A hypergraph. This hypergraph has five nodes (A, B, C,
D, and E) and two hyperedges ({A,B,C} and {C,D,E}).

pergraph matching problem [10, 44].
A hypergraph (illustrated in Fig. 1) is a generalization of

a graph, stimulated by the idea that each hyperedge captures
the relation among multiple (usually more than two) nodes.
The task of hypergraph matching is to find the node corre-
spondence between two given hypergraphs by considering
the affinities of their corresponding nodes and hyperedges.
Given the affinities of nodes and hyperedges, a hypergraph
matching problem can be formulated as a challenging com-
binatorial optimization problem. Most hypergraph match-
ing algorithms focus on how to approximately solve that op-
timization problem [10, 19, 20, 27, 28, 40, 44]. While these
algorithms have kept pushing the frontier of performance,
they are practically limited due to the hand-crafted affini-
ties and task-agnostic combinatorial solver. Recently, the
employment of deep learning has made great progress in the
research of graph matching problems [12,30,36,39,41,42],
suggesting its potential for hypergraph matching problems.

Inspired by the work mentioned above, in this paper, we
present the first, to our best knowledge, unified hypergraph
neural network (HNN) solution for hypergraph matching
(illustrated in Fig. 2). Specifically, given two hypergraphs
G1 and G2 to be matched, we first construct an association
hypergraph Ga over them. Each node in Ga represents a
pair of nodes from G1 and G2, and each hyperedge in Ga

captures the higher-order relationship between two hyper-
edges from G1 and G2. With Ga, the matching between G1

and G2 is converted to a node selection problem on Ga.
Then, we propose a novel hypergraph neural network to
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Figure 2. An illustration of our proposed hypergraph neural network (HNN-HM). To match hypergraphs G1 and G2, we first construct
an association hypergraph Ga over them and convert the matching problem into a node classification problem on Ga. The classification
problem is then solved by our proposed HNN-HM, which comprises several hypergraph neural network blocks (the encoder module, the
core module, and the decoder module). The encoder module transforms Ga from the input space to an embedding space, using update
functions (ϕr

enc , ϕc
enc , ϕe

enc , ϕv
enc , and ϕg

enc) for each attribute independently. Then the core module is applied multiple times to update
the state of the Ga in the embedding space, in which the update functions for hyperedges (ϕr

core , ϕc
core , ϕe

core), the update function for
nodes (ϕv

core), and the update function for the global attribute (ϕg
core) are applied sequentially. Finally, the decoder module transforms the

association hypergraph from the embedding space to the desired probability space, using an update function for nodes (ϕv
dec).

solve the node selection/classification problem. The pro-
posed network is comprised of several hypergraph neural
network blocks. Each block accepts an association hyper-
graph as input and returns an updated version as output.
Concretely, in each block, node attributes related to a hyper-
edge will be aggregated to update the hyperedge attributes;
and the updated hyperedge attributes will also be aggregated
to update the attributes of related nodes. This way, the struc-
ture of the association hypergraph will be utilized to update
its attributes dynamically. Both the node and hyperedge up-
date operations are shift-invariant, thus waiving the limita-
tion of the size of the association hypergraph. Finally, we
can decode the updated state of the association hypergraph,
and reinterpret the attribute of each node as the probability
that the node will be selected.

The proposed method, denoted by HNN-HM, is end-to-
end trainable and hence allows all components to be jointly
optimized. In particular, it allows affinity learning and com-
binatorial optimization to be learned together to assimilate
their interaction. For evaluation, HNN-HM is tested on four
benchmarks in comparison with seven state-of-the-art hy-
pergraph matching algorithms. The results clearly show the
advantage of our method over previous solutions.

In summary, our main contributions include

• we present the first unified hypergraph neural network
(HNN) solution for hypergraph matching;

• we convert the problem of hypergraph matching into a
node classification problem and develop a hypergraph
neural network to solve it; and

• we test our proposed HNN-HM on various bench-
marks and achieve state-of-the-art results.

The source code of our work is made available at https:
//github.com/xwliao/HNN-HM.

2. Related work

2.1. Graph matching

Algorithms of graph matching can be roughly divided
into two categories: non-learning-based (e.g., [7–9, 16, 21,
22, 25, 38, 43, 45]) and learning-based (e.g., [5, 6, 12, 23, 30,
36, 39, 41, 42]).

Non-learning-based algorithms typically treat graph
matching as a quadratic assignment problem (QAP), which
is known to be NP-hard, and pursue an approximate solu-
tion often by relaxing either the loss function or the con-
straints. Among them, SM [21] relaxes the permutation
matrix constraint to matrices with unit Frobenius norm,
hence solving the simplified problem by finding the princi-
pal eigenvector of the affinity matrix. Based on that, further
consideration of the affine constraint leads to SMAC [9].
To obey the discrete constraints, IPFP [22] injects linear as-
signment solver and line search method into the power iter-
ation algorithm. RRWM [7] transforms the graph match-
ing problem into a random walk problem on an associa-
tion graph and introduces constraints in its iterative subpro-
cess. PATH [43] relaxes the graph matching problem to a
convex optimization problem and a concave optimization
problem (which has the same optimal solution) and uses a
path-following strategy to approximately solve a sequence
of weighted combined problems. BPF [38] improves the
path following strategy by detecting singular points and
switching to a better solution path. FGM [45] decom-
poses the affinity matrix in the graph matching problem into
smaller components and follows the path-following strat-
egy to solve it iteratively. GNCCP [25] follows a convex-
concave relaxation procedure without explicitly expressing
the relaxations.

Learning-based algorithms parametrize some or all com-
ponents of the graph matching problem and learn these
components in a data-driven way. Considering the construc-
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tion of the input graphs, [6] suggests learning task-driven
graphs for different graph matching tasks. GMN [42] de-
signs the first end-to-end deep learning framework to solve
graph matching problems. PCA-GM [36] adopts the graph
convolutional network [18] to embed the graph structure
into node features. However, both deep learning algorithms
learn only graph attributes and use a fixed Sinkhorn algo-
rithm to find the feature correspondence solution. To learn
also the combinatorial solver, [39] transforms the graph
matching problem into a node classification problem on
an association graph and adopts a graph neural network to
solve the transformed problem. Although it has achieved
significant success, it is limited to second-order graphs. Our
work is inspired by [39] but breaks its limitation of second-
order graphs and performs comparably to or better than it.
DGMC [12] uses graph neural networks (GNNs) and the
Sinkhorn algorithm to estimate and refine node correspon-
dence iteratively, and with the help of SplineCNN [13],
it performs quite well. Instead of learning a combinato-
rial solver, BB-GM [30] embeds an existing well-designed
combinatorial solver and learns appropriate feature extrac-
tors in an end-to-end way by computing differentiable inter-
polation of the combinatorial solver based on their previous
work [35]. By using SplineCNN [13] to extract node em-
bedding, BB-GM [30] obtains very impressive results.

2.2. Hypergraph matching

Compared with graph matching, the research on hyper-
graph matching is relatively new [10, 19, 20, 24, 27, 28, 37,
40, 44], and many of these methods are direct extensions of
previous graph matching algorithms.

TM [10], which is an extension of SM [21], finds an
approximate solution of the hypergraph matching prob-
lem by estimating the rank-1 approximation of the affin-
ity tensor. The work in [24] introduces learning to hyper-
graph matching and presents a hypergraph matching algo-
rithm that performs sequential second-order approximation
(based on IPFP [22]). RRWHM [20] transforms the hyper-
graph matching problem into a random walk problem on
an association hypergraph and solves it in a similar way to
RRWM [7]. From the perspective of probability, and as-
suming that the matchings between nodes are independent
after the structure of the two hypergraphs to be matched
are known, HGM [44] simplifies the problem as a linear
assignment problem that can be solved exactly and effi-
ciently. HADGA [40] approximates the hypergraph match-
ing problem as sequential linear assignment problems us-
ing previous solutions. Although it can avoid the post dis-
cretization step and has the promise of convergence, it is
bothered about the suboptimal approximation. Specific to
the matching problem between two 3-uniform hypergraphs,
BCAGM [27] promotes the third-order problem to a fourth-
order multilinear problem with the same solution and then

solves that problem by dealing with iterative first-order or
second-order subproblems. Its successor [28] eliminates
the need for order promotion and can also guarantee con-
vergence. ADGM [19] rewrites the graph matching prob-
lem to an equivalent one with several decomposed variables
respecting different constraints and solves it based on the
ADMM [4] algorithm. In [31], a multi-hypergraph match-
ing solution was proposed based on the rank-1 tensor ap-
proximation originally used for multi-target tracking [32].
Recently, [37] extended the PCA-GM [36] method to hy-
pergraph and multiple-graph matching.

3. Hypergraph matching problem
This section presents the formalization of hypergraphs

and hypergraph matching problems.

3.1. Hypergraph

For an attributed hypergraph1 with Nv nodes and Ne

hyperedges, we denote its i-th node and associated attribute
vector by Vi and vi, and its j-th hyperedge and associated
attribute vector by Ej and ej . Thus an attributed hypergraph
can be indicated by a 5-tuple G = (V, E ,V,E,g), where

• V = {Vi}1≤i≤Nv indicates the set of nodes;
• E = {Ej}1≤j≤Ne indicates the set of hyperedges;
• V = {vi}1≤i≤Nv indicates the multiset of attribute

vectors associated with each node;
• E = {ej}1≤j≤Ne indicates the multiset of attribute

vectors associated with each hyperedge; and
• g indicates a global attribute vector associated with the

entire hypergraph.

In addition, there are some related concepts as follows
• K-uniform hypergraph: each hyperedge is associ-

ated with exactly K nodes;
• undirected hypergraph: each hyperedge is a subset

of V , e.g., E1 = {V1, V2, V3};
• directed hypergraph2: each hyperedge is a tuple con-

taining elements from V , e.g., E1 = (V1, V2, V3).

In this paper, we define a hyperedge (Ej) as a K-tuple
whose elements are subsets of V:

Ej = (E(1)

j , E(2)

j , . . . , E(K)

j ) ∀ 1 ≤ j ≤ Ne, (1)

where
E(k)

j ⊆ V ∀ 1 ≤ k ≤ K. (2)

Thus an undirected hyperedge is the special case when
K = 1, and can be denoted by ({Vi1 , Vi2 , . . . , Vin}), or
{Vi1 , Vi2 , . . . , Vin} for simplicity. And we can denote a K-
uniform directed hyperedge by ({Vi1} , {Vi2} , . . . , {ViK}),
or (Vi1 , Vi2 , . . . , ViK ) for simplicity. Therefore, this nota-
tion is flexible to express a variety of hyperedges.

1We use hypergraphs and attributed hypergraphs indiscriminately.
2The directed hypergraph defined here is different from [15].
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3.2. Hypergraph matching problem

Given two K-uniform directed hypergraphs G1 =
(V1, E1,V1,E1,g1) and G2 = (V2, E2,V2,E2,g2), we
want to find the node correspondence between them by con-
sidering the node affinities (cij = θv(v1

i ,v
2
j )) and hyper-

edge affinities (dIJ = θe(e1I, e
2
J )). Without loss of gener-

ality, we assume that
∣∣V1

∣∣ ≤ ∣∣V2
∣∣.

The node correspondence can be represented by an as-
signment matrix X ∈ {0, 1}|V

1|×|V2| that is defined as

Xi,j =

{
1 if V 1

i matches V 2
j ,

0 otherwise.
(3)

And all affinities can be represented by an affinity tensor3

Ai1j1,...,iKjK =


cij if i = ik ∧ j = jk ∀k,
dIJ if ∃E1

I ∈ E1 ∧ E2
J ∈ E2,

0 otherwise,
(4)

where I is an index corresponding to (i1, i2, . . . , iK) (one
to one), E1

I = (V 1
i1
, V 1

i2
, . . . , V 1

iK
) is any possible K-tuple of

nodes from G1, and so do J and E2
J = (V 2

j1
, V 2

j2
, . . . , V 2

jK
).

Given the affinity tensor, the hypergraph matching prob-
lem can be formalized as an optimization problem:

max
X∈P

∑
i1,...,iK ,
j1,...,jK

Ai1j1,...,iKjKXi1,j1 · · ·XiK ,jK , (5)

where P is the space of (partial) permutation matrices cor-
responding to the one-to-(at most)-one constraint.

There are two main challenges for hypergraph matching
solvers. One is the imperfect affinity tensor (usually hand-
crafted), and the other is the intrinsic hardness of the opti-
mization problem. Most of the previous hypergraph match-
ing algorithms focused on the second challenge to find an
approximate solution. However, we deal with these two
challenges by jointly learning the affinities and the combi-
natorial solver in a unified hypergraph neural network.

4. The proposed hypergraph neural networks
This section presents a general hypergraph neural net-

work (HNN-HM) framework. Details of how to apply it in
hypergraph matching problems are explained in Section 5.

4.1. Hypergraph neural network block

The proposed hypergraph neural networks are composed
of a stack of hypergraph neural network blocks (HNN-HM
blocks). Each HNN-HM block accepts an attributed hyper-
graph G = (V, E ,V,E,g) as input and returns an updated

3For simplicity, all nodes of any hyperedge are not exactly the same.
Note that the affinity tensor is of size

(∣∣V1
∣∣ · ∣∣V2

∣∣)K , but it is usually sparse.

attributed hypergraph G′ = (V, E ,V′,E′,g′) as output. It
use the hypergraph structure (V, E) to update the attributes
(V,E,g) and keep the hypergraph structure untainted.

Suppose that every hyperedge is a K-tuple of subsets
(defined in Eq. (1)), we can define the update functions of a
HNN-HM block as

e′j = Φe(ej ,V(1)

j ,V
(2)

j , . . . ,V
(K)

j , {g}), (6a)

v′
i = Φv(vi,E(1)

′

i ,E(2)
′

i , . . . ,E(K)
′

i , {g}), (6b)
g′ = Φg(g,V′,E′), (6c)

where (∀ 1 ≤ k ≤ K)

V(k)

j =
{
vi | Vi ∈ E(k)

j ∀ 1 ≤ i ≤ Nv
}
, (7)

E(k)
′

i =
{
e′j | Vi ∈ E(k)

j ∀ 1 ≤ j ≤ Ne
}
, (8)

V′ = {v′
i | ∀ 1 ≤ i ≤ Nv} , (9)

E′ =
{
e′j | ∀ 1 ≤ j ≤ Ne

}
. (10)

Eq. (7) states that for the k-th node set E(k)

j in a hyper-
edge Ej , we collect all associated node attributes into a
multiset V(k)

j . Similarly, Eq. (8) states that for each node
Vi, we first find all hyperedges that contain this node in its
k-th node set and then collect all associated hyperedge at-
tributes (which have been updated in Eq. (6a)) into a mul-
tiset E(k)

′

i . Thus the update function Eq. (6a) aggregates all
node attributes that are related to a hyperedge, then uses
them (combined with the global attribute) to update the at-
tribute of that hyperedge. After that, by using Eq. (6b), each
node will update its attribute by aggregating all related hy-
peredge attributes and the global attribute. Finally, using
Eq. (6c), the global attribute will be updated by aggregating
all updated attributes of nodes and hyperedges.

Note that all update functions in Eq. (6) share the form

y′ = Φ(y,X1,X2, . . . ,XN ) (11)

where each Xt is a multiset containing vectors with the
same dimension. By introducing reduction functions

xt = Ψt(y,Xt) ∀ 1 ≤ t ≤ N, (12)

we can further restrict Eq. (11) to have the form

y′ = ϕ(y,x1,x2, . . . ,xN ), (13)

where ϕ is usually a learnable neural network. Some useful
reduction functions for Ψ(y,X) (ignore the subscript t) are

Ψsum(y,X) = ψsum(X) =
∑
x∈X

x; (14)

Ψmean(y,X) = ψmean(X) =
1

|X|
∑
x∈X

x; (15)

Ψatten(y,X) =
∑
x∈X

attention(y,x) · x. (16)
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Figure 3. An encode-process-decode model with recurrence.

For a 2-uniform directed hypergraph (i.e. a directed
graph), if we let Ej = ({j-th tail node} , {j-th head node})
denote each hyperedge and let Ψ(y,X) = ψ(X), then our
HNN-HM block degenerates to the GN block [1].

Since all hyperedges share the same update function
Eq. (6a) and all nodes share the same Eq. (6b), our pro-
posed HNN-HM block have the same benefit as the GN
block [1]: it does not assume the specific structure of the
hypergraph and can be applied to arbitrary K-fixed 4 hyper-
graphs. Moreover, by adding different kinds of hyperedges
and let each kind owns its update function, the proposed
HNN-HM block can incorporate more types of information.

4.2. The hypergraph neural networks

The HNN-HM block is the core of our HNN-HM. We
can run a block multiple times or stack different blocks
to control different types/levels of information aggregation.
Following [1], we use an encode-process-decode model
with recurrent structure (see Fig. 3). All components (the
encoder module, the core module, and the decoder module)
in the architecture are HNN-HM blocks. The encoder mod-
ule transforms the input hypergraph from the input space
to an embedding space suitable for later processing. After
that, the core module is applied multiple times to update the
state of the hypergraph in the embedding space. Finally, the
decoder module transforms the hypergraph from the embed-
ding space to the desired output space.

5. Hypergraph neural networks for hyper-
graph matching

There is still a gap between the hypergraph matching
problem and the proposed HNN-HM: we have two hyper-
graphs to be matched while the proposed network accepts
only one. One may use HNN-HM to update each hyper-
graph separately, then pass them to a combinatorial solver.
However, this may suffer from the sub-optimality of the
combinatorial solver. Instead, we convert the matching
problem into a node classification problem on an associa-
tion hypergraph and deliver it to our HNN-HM. In this sec-
tion, we first explain the creation of association hypergraphs
and then detail all components of our HNN-HM framework.

4It does require that K is the same for all input hypergraphs.

5.1. Association hypergraph

Consider a pair of K-uniform directed hyperedges (from
two hypergraphs G1 and G2, separately):(

E1
I , E

2
J

)
=

((
V 1
i1 , . . . , V

1
iK

)
,
(
V 2
j1 , . . . , V

2
jK

))
, (17)

we can rearrange it to

Ea
IJ =

((
V 1
i1 , V

2
j1

)
,
(
V 1
i2 , V

2
j2

)
, . . . ,

(
V 1
iK , V 2

jK

))
(18)

The insight behind the concept of association hypergraph is
that: we can regard V a

ij =
(
V 1
i , V

2
j

)
as a node in a new

hypergraph and regard Ea
IJ =

(
V a
i1j1

, V a
i2j2

, . . . , V a
iKjK

)
as

a hyperedge (with K nodes) in the new hypergraph. The
created new hypergraph is an association hypergraph.

More specifically, the association hypergraph over two
K-uniform directed hypergraphs (G1 and G2) can be
defined as an K-uniform directed hypergraph Ga =
(Va, Ea,Va,Ea,ga) with the following components:

Va =
{
V a
ij | ∀ V 1

i ∈ V1 ∧ V 2
j ∈ V2

}
, (19)

Ea =
{
Ea

IJ | ∀ E1
I ∈ E1 ∧ E2

J ∈ E2
}
, (20)

Va =
{
θv(v1

i ,v
2
j ) | ∀ V 1

i ∈ V1 ∧ V 2
j ∈ V2

}
, (21)

Ea =
{
θe(e1I, e

2
J ) | ∀ E1

I ∈ E1 ∧ E2
J ∈ E2

}
, (22)

ga = θg(g1,g2), (23)

where θv , θe and θg are task-specific functions for merg-
ing attributes from both hypergraphs. For the hypergraph
matching problems, one may use the predefined node affin-
ity function and edge affinity function as θv and θe respec-
tively. 5 In this paper, we simply merge attributes by con-
catenation following [39].

If for each hyperedge (Ea
IJ ) in a directed association hy-

pergraph, all of its permutation of nodes are also hyperedges
in the association hypergraph and all these hyperedges have
the same attribute, then the directed association hypergraph
can be reduced to an undirected association hypergraph.

Since we have an association hypergraph constructed
from the two hypergraphs to be matched, we can turn the
hypergraph matching problem into a node selection prob-
lem on the association hypergraph. In particular, if a node
V a
ij =

(
V 1
i , V

2
j

)
in the association hypergraph is selected,

then we recognize that node V 1
i is matched to node V 2

j .
This node selection/classification problem can be learned
and solved using the proposed HNN-HM.

Moreover, to encode the constraint of the assignment
matrix, we add two new types of hyperedges: the row hy-
peredges and the column hyperedges. According to Eq. (3),
each Xij corresponds to a node V a

ij in the association hy-
pergraph. So for each set of nodes related to the same

5From this perspective, a sparse affinity tensor can also be considered
as a representation of an association hypergraph.
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row or column of the assignment matrix, we add an undi-
rected hyperedge (row hyperedge or column hyperedge) to
indicate it (e.g.

{
V a
i1j1

, V a
i1j2

, . . . , V a
i1jK

}
is a row hyper-

edge). Therefore, for two K-uniform hypergraphs to be
matched, the association hypergraph used in this paper is
Ga = (Va, Ea,Ra, Ca,Va,Ea,Ra,Ca,ga), where Ra and
Ca are row and column hyperedges, and Ra and Ca are their
attributes. As mentioned in Section 4.1, the proposed HNN-
HM framework can handle different types of hyperedges,
and each type may have its own update function.

5.2. The encoder module

The encoder module is used to transform attributes in the
input space to a new embedding space suitable for the core
module. In this module, each attribute is self-updated by a
multilayer perceptron (MLP), i.e.,

ra
′

l = ϕr
enc(r

a
l ) for each association hyperedge, (24a)

ca
′

k = ϕc
enc(c

a
k) for each row hyperedge, (24b)

ea
′

j = ϕe
enc(e

a
j ) for each column hyperedge, (24c)

va′

i = ϕv
enc(v

a
i ) for each association node, (24d)

ga′
= ϕg

enc(g
a) for the global attribute, (24e)

where ϕr
enc, ϕ

c
enc, ϕ

e
enc, ϕ

v
enc, and ϕg

enc are different MLPs.

5.3. The core module

The same core module is applied multiple times in the
proposed HNN-HM framework. For each step, we merge
the output of the encoder and the last output of the core
module by concatenating corresponding attribute vectors,
and process it using the core module again. The number
of steps controls how far the messages are passing among
nodes and hyperedges in the hypergraph. In our experi-
ments, we found that ten steps are enough for our task.

We propose two different update strategies: one for the
K-uniform directed association hypergraphs and the other
for the undirected association hypergraphs.

For the K-uniform directed association hypergraph 6, the
update functions (ignore superscript a) are

r′l = ϕr
core (rl,ψ

vr(Vr
l ),g) , (25a)

c′k = ϕc
core (ck,ψ

vc(Vc
k),g) (25b)

e′j = ϕe
core(ej ,vE(1)

j
,vE(2)

j
, . . . ,vE(K)

j
,g), (25c)

v′
i = ϕv

core

(
vi,

(
ψev(E(k)

′

i )
)

∀k

,ψrv(R′
i),ψ

cv(C′
i),g

)
, (25d)

g′ = ϕg
core (g,ψ

vg(V′),ψeg(E′),ψrg(R′),ψcg(C′)) . (25e)

The notations used here are similar to those in Eq. (6) with
additional labels to distinguish different hyperedges: r for

6Remember that it is an association hypergraph, of which each hyper-
edge has K nodes and the order of these K nodes matters.

row hyperedges, c for column hyperedges, and e for associ-
ation hyperedges. In this paper, all update functions (ϕr

core ,
ϕc

core , ϕ
e
core , ϕ

v
core and ϕg

core) are different MLPs, and all re-
duction functions (ψvr , ψvc, ψev , ψrv , ψcv , ψvg , ψeg , ψrg and
ψcg) are the sum reduction function Eq. (14).

For the undirected association hypergraph, the following
update functions are used:

r′l = ϕr
core (rl,ψ

vr(Vr
l ),g) , (26a)

c′k = ϕc
core (ck,ψ

vc(Vc
k),g) (26b)

e′j = ϕe
core (ej ,ψ

ve(ej ,Vi),g) , (26c)

v′
i = ϕv

core (vi,ψ
ev(vi,E′

i),ψ
rv(R′

i),ψ
cv(C′

i),g) , (26d)
g′ = ϕg

core (g,ψ
vg(V′),ψeg(E′),ψrg(R′),ψcg(C′)) . (26e)

Different from Eq. (25), for the association nodes and
the association hyperedges, we use the reduction function
Eq. (16) extended with multi-head [34] for ψve and ψev . By
using this reduction function, we can differentiate the con-
tributions from different elements in the same multiset. All
update functions and other reduction functions are the same
as Eq. (25).

5.4. The decoder module

Contrary to the encoder module, the decoder module is
used to extract the desired information from the embedding
space. Since we are solving a node classification problem,
we only use the node attributes from the hypergraph re-
turned by the core module and update them as follows:

va′

i = ϕv
dec(v

a
i ), (27)

where ϕdec is an MLP in our experiments.
After that, to approximate the one-to-(at most)-one con-

straint in a relaxed form, we use a row-wise softmax layer as
the output layer, i.e., each row of the prediction assignment
matrix is normalized by a softmax function. In testing, the
Hungarian algorithm is further used for post-processing.

5.5. Optimization

Since all components of our HNN-HM are differentiable,
it can be trained in an end-to-end manner, and all compo-
nents can be jointly optimized. The assignment matrix in-
dicates whether two nodes from different hypergraphs are
matched or not, thus serves as the ground truth for all nodes
in the association hypergraph. The loss used in our exper-
iments is binary cross-entropy, and it is optimized by the
AMSGrad [29] algorithm with learning rate decay.

6. Experiments
We compare our HNN-HM with seven state-of-the-art

third-order algorithms on a synthetic dataset and three real
datasets. In particular, we use these algorithms: TM [10] 7,

7We use a bug-fixed version of TM (https://duchenne.net/
publications/code/codeCVPR09fixed.zip).
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Table 1. Accuracy (%) on the Willow object dataset.
(a) Without outliers

Algorithm Car Duck Face Motor. Wine. AVG
TM [10] 69.0 83.3 96.0 82.9 100 86.2
IPFP-HM [24] 66.9 77.6 94.7 82.5 100 84.3
RRWHM [20] 68.6 79.7 97.6 82.8 100 85.7
BCAGM [27] 67.4 77.9 98.1 88.3 100 86.3
BCAGM3 [28] 67.3 77.7 97.4 88.6 100 86.2
ADGM1 [19] 72.0 76.5 91.9 90.7 98.9 86.0
ADGM2 [19] 72.2 77.4 94.5 91.9 99.3 87.1
HNN-HM 91.5 92.3 100 99.9 100 96.8

(b) With outliers (#outliers=5)
Algorithm Car Duck Face Motor. Wine. AVG
TM [10] 40.3 48.2 56.2 50.1 91.7 57.3
IPFP-HM [24] 40.6 47.3 60.1 49.3 91.9 57.9
RRWHM [20] 41.6 50.0 64.5 53.3 91.5 60.2
BCAGM [27] 42.3 49.0 69.0 54.5 94.6 61.9
BCAGM3 [28] 41.8 49.1 68.4 54.4 94.5 61.6
ADGM1 [19] 41.9 46.4 46.9 50.6 86.1 54.4
ADGM2 [19] 41.6 45.7 52.8 52.0 85.8 55.6
HNN-HM 76.7 72.9 97.5 85.6 93.3 85.2

Table 2. Accuracy (%) on the Pascal VOC dataset.
Algorithm aero bike bird boat botl bus car cat chai cow dtab dog hors mbk prsn plnt shp sofa trn tv AVG
TM [10] 29.1 35.5 42.6 43.3 93.2 32.7 40.8 39.8 31.9 36.5 44.7 34.2 35.7 34.3 31.7 65.0 39.3 45.6 75.1 39.8 43.5
IPFP-HM [24] 26.9 34.6 41.4 42.1 87.0 32.8 40.0 37.8 30.9 34.9 50.2 32.4 33.7 33.6 30.2 63.4 37.0 44.5 72.8 38.1 42.2
RRWHM [20] 28.0 36.2 42.7 43.3 91.1 33.8 40.9 38.6 32.2 35.6 49.2 34.0 35.9 34.5 31.4 63.2 38.9 46.5 75.3 39.9 43.6
BCAGM [27] 28.0 38.1 41.7 44.3 90.2 36.1 41.5 39.4 32.8 35.4 49.3 33.6 34.4 34.8 31.8 63.0 39.5 47.3 76.8 39.9 43.9
BCAGM3 [28] 28.3 38.6 41.9 45.0 90.3 36.1 42.3 38.6 33.5 35.7 51.4 33.6 34.0 35.0 31.1 62.6 39.1 47.9 77.5 39.6 44.1
ADGM1 [19] 26.5 38.5 37.3 38.2 91.4 38.3 38.6 35.4 31.8 35.9 53.3 32.9 33.3 35.2 30.3 63.4 34.9 51.3 45.2 29.5 41.1
ADGM2 [19] 26.8 38.5 38.1 39.6 91.1 40.0 38.4 35.6 31.4 36.1 54.1 33.3 32.5 34.8 29.5 63.6 35.0 50.5 57.0 31.0 41.8
HNN-HM 39.6 55.7 60.7 76.4 87.3 86.2 77.6 54.2 50.0 60.7 78.8 51.2 55.8 60.2 52.5 96.5 58.7 68.4 96.2 92.8 68.0

IPFP-HM (the algorithm 3 in [24]), RRWHM [20], the best
two in the BCAGM variants: BCAGM+MP [27] (BCAGM
for short) and Adapt-BCAGM3+MP [28] (BCAGM3 for
short), and two variants of the ADGM [19] algorithm:
ADGM1 and ADGM2. The recommended or default hyper-
parameters are used in our experiments. To obtain a proper
assignment matrix, we use the Hungarian algorithm to dis-
cretize the output of all methods.

Following [10, 20, 27], we only use geometric informa-
tion (i.e. the coordinates of each point) to construct hyper-
graphs for matching and evaluate all algorithms on the third-
order hypergraph matching problems. The node affinity is
set to zero. And the hyperedge affinity (used by other algo-
rithms, not by ours) is computed by

dIJ = exp(
1

γ

∥∥e1I − e2J
∥∥
2
) (28)

where γ is the mean of all distances, and e1I and e2J are the
hyperedge attributes 8 computed following [10].

The association hypergraph used in our algorithm is con-
structed in the same way as RRWHM [20]. But instead of
using the affinity (derived from the point coordinates) as at-
tributes, we directly use the point coordinates as attributes
for our algorithm. The initial values of the global attribute
vector, the row attribute vectors, and the column attribute
vectors are set to zero in our experiments.

Just like [10, 19, 20, 27, 28], we follow the same sam-
pling strategy proposed in TM [10] to reduce the number of

8Each hyperedge attribute is a vector concatenated by the sine values
of the three angles of the corresponding triangle (constructed by the triplet
of points in that hyperedge).

non-zero values in the affinity tensor, which in fact reduces
the number of association hyperedges. To further reduce the
number of association hyperedges, we also convert directed
association hyperedges to undirected hyperedges and aver-
age their outputs from the encoder to get order-insensitive
attributes. For example, all the following six association hy-
peredges: (V a

11, V
a
22, V

a
33), (V

a
11, V

a
33, V

a
22), (V

a
22, V

a
11, V

a
33),

(V a
22, V

a
33, V

a
11), (V

a
33, V

a
11, V

a
22), and (V a

33, V
a
22, V

a
11), will be

converted to one undirected hyperedge {V a
11, V

a
22, V

a
33}, and

the average of all their outputs from the encoder will be re-
garded as the attribute vector of the new undirected hyper-
edge. This makes sense if we consider each of their asso-
ciated attribute vectors as an affinity feature vector between
two triplets of nodes: (V 1

1 , V
1
2 , V

1
3 ) and (V 2

1 , V
2
2 , V

2
3 ), thus

we can expect that all these attribute vectors should be the
same. After this operation, all hyperedges of the association
hypergraph are undirected. Hence we can use the update
functions for the undirected association hypergraph in the
core module. On the Willow dataset, we have tried both the
undirected and directed versions and found that their accu-
racies are comparable: 96.8% (undirected) and 96.5% (di-
rected). Since the undirected version is memory-efficient,
we prefer it in all our experiments.

Synthetic dataset We first evaluate our algorithm on
matching 2D point sets. Following [27], we randomly sam-
ple ninlier points from the Gaussian distribution N (0, 1) as
the nodes in the first hypergraph and obtain nodes in an-
other hypergraph by scaling these points, adding Gaussian
noise taken from N (σ, 1), and appending noutlier points
drawn from N (0, 1) as outliers. Hyperedges of the first
hypergraph are randomly generated by choosing triplets of
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Figure 4. Evaluation on the synthetic dataset.
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Figure 5. Evaluation on the CMU house dataset.

nodes, and hyperedges in the second hypergraph are fully
connected. After that, the sampling strategy in TM [10] is
applied to reduce non-zero values in the affinity tensor.

Two settings of experiments are conducted. One is for
testing the robustness against noise (controlled by σ), so we
set ninlier = 20 and vary the noise level σ from 0 to 0.2,
without scaling or outliers. Another one is for the evaluation
of stability to outliers, thus we set ninlier = 10, and increase
the number of outliers noutlier from 0 to 100, with 1.5 times
the scaling and σ = 0.03. The results in Fig. 4 (each curve
is averaged over 100 runs) show that our method performs
well on noise and outliers and is similar to or better than the
state-of-the-art methods.

CMU house dataset The CMU house dataset is popular
for evaluating hypergraph matching algorithms [10, 19, 20,
27, 28]. It consists of a sequence 111 frames taken from
the same moving toy house. The larger the sequence gap
between two frames, the more deformation of the house ob-
ject. Each frame is labeled with 30 keypoints. To simulate
the outlier scenario, we keep all 30 points in one frame and
remove noutlier points in another frame. For training our
method, we sample 23 frames uniformly from the dataset.

The algorithms are evaluated in two settings: the defor-
mation setting and the outlier setting. For the deformation
setting, we choose 20 points in the first frame and all 30
points in the second frame (i.e. noutlier = 10), and increase
the sequence gap from 10 to 100 with the step size of 10.
Results are averaged over all frame pairs that have the same
sequence gap. For the outlier setting, we set the sequence

gap to 50, and increase the value of noutlier from 0 to 10.
Again, results are averaged over all frame pairs that have
the same sequence gap (gap=50). In this dataset, the accu-
racy of our HNN-HM is nearly 100% (see Fig. 5), which
shows its power over other state-of-the-art algorithms.

Willow object dataset The Willow object dataset [6] con-
tains five categories, each with at least 40 images, and each
image is labeled with ten landmarks. We select 20 images
per category for training and let the remaining for testing.
All algorithms are evaluated on 1000 pairs of images (ran-
domly selected from the test set) per category. To test their
performance under outliers, we use SIFT to detect five key-
points and append them as outliers to the ten labeled points.

Results on the Willow object dataset are shown in Ta-
ble 1. Without any outliers (see Table 1a), ADGM2 [19]
is superior to its predecessors. With five outliers (see Ta-
ble 1b), BCAGM [27] performs quite well for its usage
of MPM [8] which is robust to outliers. Nevertheless, our
method significantly outperforms all rivals in both cases.

Pascal VOC dataset The Pascal VOC dataset [11] with
labeled keypoints [3] has 20 classes and is challenging for
its variety of scale, pose, and illumination. Following [36],
we use the filtered dataset (7020 training and 1682 test im-
ages). For evaluation, we randomly select 1000 image pairs
(at least three common points) from each class in the test
set. Table 2 summarize the results. Except for the bottle
class, our method surpasses almost all other methods, which
clearly shows the advantage of our method.

7. Conclusion
In this paper, we propose the HNN-HM algorithm, which

is the first unified hypergraph neural network (HNN) solu-
tion for hypergraph matching. We first convert the hyper-
graph matching problem into a node classification problem
on an association hypergraph and then develop an HNN so-
lution to solve the node classification problem. Experiment
results clearly show the advantage of our method over state-
of-the-art hypergraph matching algorithms.
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[5] Tibério S. Caetano, Julian J. McAuley, Li Cheng, Quoc V.
Le, and Alex J. Smola. Learning graph matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 31(6):1048–1058, 2009.

[6] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning
graphs to match. In IEEE International Conference on Com-
puter Vision (ICCV), 2013.

[7] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted
random walks for graph matching. In European Conference
on Computer Vision, 2010.

[8] Minsu Cho, Jian Sun, Olivier Duchenne, and Jean Ponce.
Finding matches in a haystack: A max-pooling strategy for
graph matching in the presence of outliers. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2014.

[9] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Bal-
anced graph matching. In Advances in Neural Information
Processing Systems, 2006.

[10] Olivier Duchenne, Francis Bach, In-So Kweon, and Jean
Ponce. A tensor-based algorithm for high-order graph
matching. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 33(12):2383–2395, 2011.

[11] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pascal
visual object classes (VOC) challenge. International Journal
of Computer Vision, 88(2):303–338, 2010.

[12] Matthias Fey, Jan Eric Lenssen, Christopher Morris,
Jonathan Masci, and Nils M. Kriege. Deep graph matching
consensus. In International Conference on Learning Repre-
sentations (ICLR), 2020.

[13] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-
rich Müller. SplineCNN: Fast geometric deep learning with
continuous B-spline kernels. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[14] Pasquale Foggia, Gennaro Percannella, and Mario Vento.
Graph matching and learning in pattern recognition in the
last 10 years. International Journal of Pattern Recognition
and Artificial Intelligence, 28(1), 2014.

[15] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang
Nguyen. Directed hypergraphs and applications. Discrete
Applied Mathematics, 42(2):177–201, 1993.

[16] Steven Gold and Anand Rangarajan. A graduated assignment
algorithm for graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 18(4):377–388,
1996.

[17] Arthur Ardeshir Goshtasby. 2-D and 3-D Image Registration
for Medical, Remote Sensing, and Industrial Applications.
John Wiley & Sons, 2005.

[18] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.
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