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Abstract

Accuracy predictor is a key component in Neural Ar-
chitecture Search (NAS) for ranking architectures. Build-
ing a high-quality accuracy predictor usually costs enor-
mous computation. To address this issue, instead of us-
ing an accuracy predictor, we propose a novel zero-shot
index dubbed Zen-Score to rank the architectures. The Zen-
Score represents the network expressivity and positively
correlates with the model accuracy. The calculation of
Zen-Score only takes a few forward inferences through a
randomly initialized network, without training network pa-
rameters. Built upon the Zen-Score, we further propose
a new NAS algorithm, termed as Zen-NAS, by maximiz-
ing the Zen-Score of the target network under given infer-
ence budgets. Within less than half GPU day, Zen-NAS is
able to directly search high performance architectures in
a data-free style. Comparing with previous NAS methods,
the proposed Zen-NAS is magnitude times faster on multi-
ple server-side and mobile-side GPU platforms with state-
of-the-art accuracy on ImageNet. Searching and train-
ing code as well as pre-trained models are available from
https://github.com/idstcv/ZenNAS.

1. Introduction

The design of high-performance deep neural networks
is a challenging task. Neural Architecture Search (NAS)
methods facilitate this progress. There are mainly two key
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Figure 1. ZenNets top-1 accuracy v.s. inference latency (millisec-
onds per image) on ImageNet. Benchmarked on NVIDIA V100
GPU, half precision (FP16), batch size 64, searching cost 0.5 GPU
day.

components, architecture generator and accuracy predictor,
in existing NAS algorithms. The generator proposes po-
tential high-performance networks and the predictor pre-
dicts their accuracies. Popular generators include uniform
sampling [13], evolutionary algorithm [41] and reinforce-
ment learning [30]. The accuracy predictors include brute-
force methods [42, 57, 3, 41], predictor-based methods
[30, 56, 29] and one-shot methods [26, 61, 69, 62, 57, 59,
6, 66, 54, 5].

A major challenge of building a high-quality accuracy
predictor is the enormous computational cost. Both brute-
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forced methods and predictor-based methods require to
train considerable number of networks. The one-shot meth-
ods reduce the training cost via parameter sharing. Albeit
being more efficient than brute-forced methods, the one-
shot methods still need to train a huge supernet which is still
computationally expensive. Recent studies also find that
nearly all supernet-based methods suffer from model inter-
fering [5, 63] which degrades the quality of accuracy predic-
tor [46]. In addition, since the supernet must be much larger
than the target network, it is difficult to search large target
networks under limited resources. These issues make the
one-shot methods struggling in designing high-performance
networks.

To solve these problems, instead of using an expensive
accuracy predictor, we propose an almost zero-cost proxy,
dubbed Zen-Score, for efficient NAS. The Zen-Score mea-
sures the expressivity [39, 31] of a deep neural network and
positively correlates with the model accuracy. The com-
putation of Zen-Score only takes a few forward inferences
on randomly initialized network using random Gaussian in-
puts, making it extremely fast, lightweight and data-free.
Moreover, Zen-Score deals with the scale-sensitive prob-
lem caused by Batch Normalization (BN)[4, 35], making it
widely applicable to real-world problems.

Based on Zen-Score, we design a novel Zen-NAS al-
gorithm. It maximizes the Zen-Score of the target net-
work within inference budgets. Zen-NAS is a Zero-Shot
method since it does not optimize network parameters dur-
ing search '. We apply Zen-NAS to search optimal net-
works under various inference budgets, including inference
latency, FLOPs (Floating Point Operations) and model size,
and achieve the state-of-the-art (SOTA) performance on
CIFAR-10/CIFAR-100/ImageNet, outperforming previous
human-designed and NAS-designed models by a large mar-
gin. Zen-NAS is the first zero-shot method that achieves
SOTA results on large-scale full-resolution ImageNet-1k
dataset [12] by the time of writing this work [32, 1, 7].

Our approach is inspired by recent advances in deep
learning studies [34, 11, 23, 39, 9, 28, 31, 44, 47, 14, 60]
which show that deep models are superior than shallow ones
since deep models are more expressive under the same num-
ber of neurons. According to the bias-variance trade-off in
statistical learning theory [19], increasing the expressivity
of a deep network implies smaller bias error. When the size
n of training dataset is large enough, the variance error will
diminish as O(1/4/n) — 0. This means that the gener-
alization error is dominated by the bias error which could
be reduced by more expressive networks. These theoreti-
cal results are well-aligned with large-scale deep learning
practices[36, 52, 37].

We summarize our main contributions as follows:

'Obviously, the final searched architecture must be trained on the target
dataset before deployment.

* We propose a novel zero-shot proxy Zen-Score for
NAS. The proposed Zen-Score is computationally effi-
cient and is proved to be scale-insensitive in the present
of BN. A novel NAS algorithm termed Zen-NAS is
proposed to search for networks with maximal Zen-
Score in the design space.

e Within half GPU day, the ZenNets designed by Zen-
NAS achieve up to 83.6% top-1 accuracy on ImageNet
that is as accurate as EfficientNet-B5 with inference
speed magnitude times faster on multiple hardware
platforms. To our best knowledge, Zen-NAS is the
first zero-shot method that outperforms training-
based methods on ImageNet.

2. Related Work

We briefly review the related works. For comprehensive
review of NAS, the monograph [43] is referred to.

In the early days of NAS, brute-force methods are
adopted to search architectures by directly training a net-
work to obtain its accuracy. For example, the AmoebaNet
[41] conducts structure search on CIFAR-10 using Evolu-
tionary Algorithm (EA) [20] and then transfers the structure
to ImageNet. It takes about 3150 GPU days of searching
and achieves 74.5% top-1 accuracy on ImageNet. Inspired
by the success of AmoebaNet, many EA-based NAS al-
gorithms are proposed to improve the searching efficiency,
such as EcoNAS [69], CARS [62], GeNet [57] and PNAS
[25]. These methods search on down-sampled images or
reduce the number of queries. Reinforced Learning is an-
other popular generator (sampler) in NAS, including NAS-
Net [70], Mnasnet [49] and MetaQNN [3].

Both EA and RL based methods require lots of network
training. To address this problem, the predictor-based meth-
ods encode architectures into high dimensional vectors. A
number of architectures are trained to obtain their accura-
cies [30, 29] and then are used as training data for learning
accuracy predictor. The one-shot methods further reduce
the training cost by training a big supernet. This framework
is widely applied in many efficient NAS methods, including
DARTS [26], SNAS [59], PC-DARTS [61], ProxylessNAS
[6], GDAS [66], FBNetV2 [54], DNANet [21], Single-Path
One-Shot NAS [13].

Although the above efforts have greatly reduced the
searching cost, their top-1 accuracies on ImageNet are be-
low 80.0%. The authors of OFANet [5] noted that weight-
sharing suffers from model interfering. They propose a
progressive-shrinking strategy to address this issue. The
resultant OFANet achieves 80.1% accuracy after searching
for 51.6 GPU days. EfficientNet [50] is another high pre-
cision network designed by NAS. It takes about 3800 GPU
days to search EfficientNet-B7 whose accuracy is 84.4%.
In comparison, Zen-NAS achieves 83.6% accuracy while
using magnitude times fewer resources.
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A few on-going works are actively exploring zero-shot
proxies for efficient NAS. However, these efforts have not
delivered the SOTA results. In a recent empirical study, [1]
evaluates the performance of six zero-shot pruning proxies
on NAS benchmark datasets. The synflow [51] achieves
best results in their experiments. We compare synflow
with Zen-Score under fair settings and show that Zen-Score
achieves +1.1% better accuracy on CIFAR-10 and +8.2%
better accuracy on CIFAR-100. The concurrent work TE-
NAS [7] uses a combination of NTK-score and network
expressivity as NAS proxy. Specifically, the TE-NAS es-
timates the expressivity by directly counting the number of
active regions Ry on randomly sampled images. In com-
parison, Zen-Score not only considers the distribution of
linear regions but also considers the Gaussian complexity
of linear classifier in each linear region, giving a more ac-
curate estimation of network expressivity. The computation
of Zen-Score is 20 to 28 times faster than TE-NAS score. In
terms of performance, TE-NAS achieves 74.1% top-1 ac-
curacy on ImageNet, lagging behind SOTA baselines. Zen-
NAS achieves +9.5% better accuracy within similar search-
ing cost. Another concurrent work NASWOT [33] com-
putes the architecture score according to the kernel matrix
of binary activation patterns between mini-batch samples. It
achieves similar top-1 accuracies on CIFAR-10/CIFAR-100
as TE-NAS.

It is important to distinguish Zen-NAS from unsuper-
vised NAS (UnNAS) [24]. In UnNAS, the network is
trained to predict the pre-text tasks therefore it still requires
parameter training. In Zen-NAS, no parameter training is
required during the search.

In this work, we mostly focus on the vanilla network
space described in the next section. Several previous works
design networks in a more general irregular design space,
such as DARTS [26] and RandWire [58]. Zen-NAS can-
not be applied to these irregular design spaces since Zen-
Score is not mathematically well-defined in irregular design
spaces. In practice, the vanilla network space is a large
enough space which covers most SOTA networks, includ-
ing but not limited to ResNet, MobileNet and EfficientNet.
Particularly, Zen-NAS outperforms DARTS-based methods
by a significant margin on ImageNet.

3. Expressivity of Vanilla Network

In this section, we discuss how to measure the expressiv-
ity of vanilla convolutional neural network (VCNN) family,
an ideal prototype for theoretical studies. We show that the
expressivity of a network can be efficiently measured by its
expected Gaussian complexity, or ®-score for short. In the
next section, we further show that for very deep networks,
directly computing ®-score incurs numerical overflow. This
overflow can be addressed by adding BN layers and then re-
scaling the ®-score by a constant. This new score is named

as Zen-Score in Section 4.

3.1. Notations

An L-layer neural network is formulated as a function
f:R™0 — R™L where my is the input dimension and m,
is the output dimension. o € R denotes the input image.
Correspondingly, the output feature map of the t¢-th layer
is denoted by ;. The ¢-th layer has m;_; input channels
and m; output channels. The convolutional kernel is 8; €
R™eXmi-1xkxE  The image resolution is H x W. The
mini-batch size is B. The Gaussian distribution of mean p
and variance o2 is denoted by N (i1, o).

3.2. Vanilla Convolutional Neural Network

The vanilla convolutional neural network (VCNN) is
a widely used prototype in theoretical studies [39, 47, 14].
The main body of a vanilla network is stacked by multi-
ple convolutional layers. Each layer consists of one convo-
lutional operator followed by RELU activation. All other
components are removed from the backbone, including
residual link and Batch Normalization. After the main body,
global average pool layer (GAP) reduces the feature map
resolution to 1x1, followed by a fully-connected layer. At
the end a soft-max operation converts the network output to
label prediction. Given the input  and network parame-
ters 0, f(x|@) refers to the output of the main body of the
network, that is the feature map before the GAP layer (pre-
GAP layer). We measure the network expressivity with re-
spect to pre-GAP because it contains most of the informa-
tion we need.

Modern networks use auxiliary structures such as resid-
ual link , Batch Normalization and self-attention block [16].
These structures will not significantly affect the represen-
tation power of networks. For example, BN layer can be
merged into convolutional kernel via kernel fusion. Self-
attention linearly combines existing feature maps hence
spans the same subspace. Therefore, these structures are
temporarily removed when measuring network expressivity
and then added back in training and testing stages. For non-
RELU activation functions, they are replaced by RELU in a
similar way. These simple modifications make our method
applicable to a majority of non-VCNN models widely used
in practice. In fact, nearly all single-branch feed-forward
networks can be converted to vanilla network by the afore-
mentioned modifications.

3.3. &-Score as Proxy of Expressivity

Given a VCNN f(x|@0), we propose a novel numerical
index ®-score as a proxy of its expressivity. The defini-
tion of ®-score is inspired by recent theoretical studies on
deep network expressivity [47, 60]. A key observation in
these studies is that a vanilla network can be decomposed
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into piece-wise linear functions conditioned on activation
patterns [34]:

Lemma 1 ([34, 31]). Denote the activation pattern of the
t-th layer as A¢(x). Then for any vanilla network f(-),

f(@]6) = > T(S)Ws, )

S;eS

where S; is a convex polytope depending on
{A1(z), Az(x), -, Ar(x)}; S is a finite set of con-
vex polytopes in R™; T,(S;) = 1 if ¢ € S; otherwise
zero; W g, is a coefficient matrix of size R™L >0,

According to Lemma 1, any vanilla network is an en-
semble of piece-wise linear functions segmented by convex
polytopes S = {S1,8s,---,S|s|} where |S] is the num-
ber of linear-regions (see Figure 2 in [14]. The number of
linear regions |S| has been used as expressivity proxy in
several theoretical studies [34, 47, 14, 67, 60]. However, di-
rectly using |S| incurs two limitations: a) Counting |S| for
large network is computationally infeasible; b) The repre-
sentation power of each W, is not considered in the proxy.
The first limitation is due to fact that the number of lin-
ear regions grow exponentially for large networks [34, 60].
To understand the second limitation, we recall the Gaussian
complexity [18] of linear classifiers:

Lemma 2 ([18]). For linear function class {f : f(X) =
WX st. |W|r < G}, its Gaussian complexity is upper
bounded by O(G).

In other words, Lemma 2 says that the expressivity of
linear function class measured by Gaussian complexity is
controlled by the Frobenius norm of its parameter matrix
W. Inspired by Lemma 1 and Lemma 2, we define the fol-
lowing index for measuring network expressivity :

Definition 1 (®-score for VCNN). The expected Gaussian
complexity for a vanilla network f(-) is defined by

®(f) =logEz,e { > LL(8)|Ws, F} (2)
S;€S

— 103 Eq 0| Vo f(]0))] - 3)

In Definition 1, we measure the network expressivity
by its expected Gaussian complexity, or ®-score for short.
Since any VCNN is ensemble of linear functions, it is na-
ture to measure its expressivity by averaging the Gaussian
complexity of linear function in each linear region. To this
end, we randomly sample = and 6 from some prior distribu-
tions and then average ||Ws, || . This is equivalent to com-
pute the expected gradient norm of f with respect to input
. In our implementation,  and € are sampled from stan-
dard Gaussian distribution which works well in practice. It

is important to note that in ®-score, only the gradient of «
rather than @ is involved. This is different to zero-cost prox-
ies in [1] which compute gradient of 6 in their formulations.
These proxies measure the trainability [S5, 7] instead of the
expressivity of networks.

4. Zen-Score and Zen-NAS

In this section, we show that directly computing ®-score
for very deep networks incurs numerical overflow due to
the gradient explosion without BN layers. The gradient ex-
plosion could be resolved by adding BN layers back but
the ®-score will be adaptively re-scaled, making it difficult
to compare ®-score between different networks. The same
phenomenon has been known as ‘scale-sensitive’ problem
in deep learning complexity analysis [4, 35]. To address
this open question, we propose to re-scale the ®-score one
more time by the product of BN layers’ variance statistics.
This new score is denoted as Zen-Score in order to distin-
guish from the original ®-score. The Zen-Score is proven
to be scale-insensitive. Finally, we present Zen-NAS algo-
rithm built on Zen-Score and demonstrate its effectiveness
in the next section.

4.1. Overflow and BN-rescaling

When computing ®-score for very deep vanilla net-
works, numerical overflow incurs almost surely. This is
because BN layers are removed from the network and the
magnitude of network output grows exponentially along
depth. To see this, we construct a set of vanilla networks
Py, /o~ without BN layers. All networks have the same
widths but different depths. Figure 2(a) plots the ®-scores
for Py, /opN- After 30 layers, ®-score overflows. To address
the overflow, we add BN layers back and compute the ®-
scores in Figure 2(b). This time the overflow dismisses but
the ®-scores are scaled-down by a large factor. This phe-
nomenon is termed as BN-rescaling.

To demonstrate that BN-rescaling disturbs architecture
ranking, we construct another two set of networks, Q) /oBN
and N, with and without BN respectively. All networks
have two layers and have the same number of input and final
output channels. The number of bottleneck channels, that
is the width of the hidden layer, varies from 2 to 60. The
corresponding ®-score curves are plotted in Figure 2(d) and
(e) respectively. When BN layer is presented, the ®-score
becomes nearly constant for all networks. This will confuse
the architecture generator and drive the search to a wrong
direction.

4.2. From ®-Score to Zen-Score

In the above subsection, we showed that BN layer is nec-
essary to prevent numerical overflow in computing ®-score
but comes with the side-effect of re-scaling. In this subsec-
tion, we design a new Zen-Score which is able to calibrate
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parameter o;. Az, {f(20)} is the differential of pre-GAP feature map f(xo) with respect to .

Algorithm 1 Zen-Score
Require: Network F(-) with pre-GAP feature map f(-);
a = 0.01.
Ensure: Zen-Score Zen(F).
1: Remove all residual links in F.
Initialize all neurons in F by A/(0, 1).
Sample x, e ~ N (0, 1).
Compute A £ E,, (|| f(z) — f(x + ae)||r
For the i-th BN layer with m output channels, compute

gi = \/>_; 07 ,;/m where o ; is the mini-batch stan-

dard deviation statistic of the j-th channel in BN.
6: Zen(F) £ log(A) + Y, log(:).

re-scaling when BN layer is present. The computation of
Zen-Score is described in Algorithm 1. Figure 3 visualizes
the computational graph of Algorithm 1.

In Algorithm 1, all residual links are removed from the

network as pre-processing. Then we randomly sample input
vectors and perturb them with Gaussian noise. The pertur-
bation of the pre-GAP feature map is denoted as A in Line
4. This step replaces the gradient of & with finite differen-
tial A to avoid backward-propagation. To get Zen-Score,
the scaling factor 57 is averaged from the variance of each
channel in BN layer. Finally, the Zen-Score is computed by
the log-sum of A and ;. The following theorem guarantees
that the Zen-Score of network with BN layers approximates
the ®-score of the same network without BN layers. The
proof is postponed to Supplementary 1.

Theorem 1. Let f(xo) = &1 be an L-layer vanilla net-
work without BN layers. f(xo) = xp is its sister net-
work with BN layers. For some constants 0 < § < 1,
Ko < O[\/log(1/6)], when BHW > O|[(LKy)?] is large
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enough, with probability at least 1 — §, we have

(I o) Eo{ |2}
Eollz.?

where ¢ = O(2Ko /v BHW).

Informally speaking, Theorem 1 says that to compute
| £()|l, we only need to compute || f(-)|| then re-scale with
HtL:l o¢. The approximation error is bounded by Le. By
taking gradient of = on both f(-) and f(-), we obtain the
desired relationship between Zen-Score and ®-score.

(1-Le? < <(1+Le> (@)

4.3. Zen-NAS For Maximizing Expressivity

Algorithm 2 Zen-NAS
Require: Search space S, inference budget B, maximal
depth L, total number of iterations 7, evolutionary pop-
ulation size N, initial structure Fj.
Ensure: NAS-designed ZenNet F'™*.
1: Initialize population P = {Fy}.
2: fort=1,2,--- ,T do
3:  Randomly select F; € P.
4. Mutate F; = MUTATE(F;, S)
5. if F, exceeds inference budget or has more than L
layers then

6: Do nothing.
7:  else
8: Get Zen-Score z = Zen(F}).
9: Append FytoP.
10:  end if
11:  Remove network of the smallest Zen-Score if the size
of P exceeds B.
12: end for

13: Return F'*, the network of the highest Zen-Score in P.

Algorithm 3 MUTATE
Require: Structure F}, search space S.
Ensure: Randomly mutated structure Fy.
1: Uniformly select a block & in F;.
2: Uniformly alternate the block type, kernel size, width
and depth of h within some range.
3: Return the mutated structure Ft.

We design Zen-NAS algorithm to maximize the Zen-
Score of the target network. The step-by-step description
of Zen-NAS is given in Algorithm 2. The Zen-NAS uses
Evolutionary Algorithm (EA) as architecture generator. It
is possible to choose other generators such as Reinforced
Learning or even greedy selection. The choice of EA is due
to its simplicity.

In Algorithm 2, we randomly generate IV structures. At
each iteration step ¢, we randomly select a structure in the

population P and mutate it. The mutation algorithm is pre-
sented in Algorithm 3. The width and depth of the selected
layer is mutated in a given range. We choose [0.5,2.0] as
the mutation range in this work, that is, within half or dou-
ble of the current value. The new structure F} is appended
to the population if its inference cost does not exceed the
budget. The maximal depth of networks is controlled by L,
which prevents the algorithm generate over-deep structures.
Finally, we maintain the population size by removing net-
works with the smallest Zen-Scores. After T iterations, the
network with the largest Zen-Score is returned as the output
of Zen-NAS. We name the found architectures as ZenNets.

5. Experiments

In this section, experiments on CIFAR-10/CIFAR-100
[20] and ImageNet-1k [12] are conducted to validate the su-
periority of Zen-NAS. We first compare Zen-Score to sev-
eral zero-shot proxies on CIFAR-10 and CIFAR-100, using
the same search space, search policy and training settings.
Then we compare Zen-NAS to the state-of-the-art methods
on ImageNet. Zen-NAS on CIFAR-10/CIFAR-100 can be
found in Supplementary D. Finally, we compare the search-
ing cost of Zen-NAS with SOTA methods in subsection 5.3.

Due to space limitation, the inference speed on NVIDIA
T4 and Google Pixel2 is reported in Supplementary C. The
Zen-Scores of ResNets and accuracies under fair training
settings are reported in Supplementary E. We enclose one
big performance table of networks on ImageNet in Supple-
mentary J.

To align with previous works, we consider the following
two search spaces:

» Search Space I Following [15, 40], this search space
consists of residual blocks and bottleneck blocks de-
fined in ResNet.

» Search Space II Following [45, 38], this search space
consists of MobileNet blocks. The depth-wise expan-
sion ratio is searched in set {1,2,4,6}.

Please see Supplementary A for datasets description and de-
tail experiment settings.

In each trial, the initial structure is a randomly selected
small network which is guaranteed to satisfy the inference
budget. The kernel size is searched in set {3, 5, 7}. Follow-
ing conventional designs, the number of stages is three for
CIFAR-10/CIFAR-100 and five for ImageNet. The evolu-
tionary population size is 256, number of evolutionary iter-
ations 7' = 96,000. The resolution is 32x32 for CIFAR-
10/CIFAR-100 and 224x224 for ImageNet.

5.1. Zen-Score v.s. Other Zero-Shot Proxies

Following [1, 7], we compare Zen-Score to five zero-
shot proxies: FLOPs, gradient-norm (grad) of network pa-
rameters, synflow [51], TE-NAS score (TE-Score) [7] and
NASWOT [33]. For each proxy, we replace Zen-Score by
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proxy CIFAR-10  CIFAR-100
Zen-Score 96.2 % 80.1%
FLOPs 93.1% 64.7%
grad 92.8% 65.4%
synflow 95.1% 75.9%
TE-Score 96.1% 77.2%
NASWOT 96.0% 77.5%
Random 93.5+0.7% 71.1£3.1%

Table 1. Top-1 accuracies on CIFAR-10/CIFAR-100 for five zero-
shot proxies. Budget: model size N < 1M. ‘Random’: average
accuracy = std for random search.

proxy model N time speed-up
TE-Score ResNet-18 16  0.34 1/28x
ResNet-50 16 0.77 1/20x
NASWOT} ResNet-18 16 0.040 1/3.3x
ResNet-50 16 0.059 1/1.6x
Zen-Score  ResNet-18 16 0.012 1.0

ResNet-50 16 0.037 1.0

Table 2. Time cost (in seconds) of computing Zen/TE-Score for
ResNet-18/50 at resolution 224x224. The statistical error is within
5%. ‘time’: time for computing Zen/TE-score for N images, mea-
sured in seconds, averaged over 100 trials. ‘speed-up’: speed-up
rate of TE-Score v.s. Zen-Score.

: The official implementation outputs Inf score for ResNet-18/50.

44% Reduction
< 80.0 /
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Figure 4. ZenNets optimized for FLOPs.

that proxy in Algorithm 2 and then run Algorithm 2 for 1" =
96, 000 iterations to ensure convergence. Since synflow is
the smaller the better, we use its negative value in Algo-

NAS Method Top-1(%) GPU Day
AmoebaNet-A [41] EA 74.5 31507
EcoNAS [69] EA 74.8 8
CARS-I [62] EA 75.2 0.4
GeNet [57] EA 72.1 17
DARTS [26] GD 73.1 4
SNAS [59] GD 72.7 1.5
PC-DARTS [61] GD 75.8 3.8
ProxylessNAS [6] GD 75.1 8.3
GDAS [66] GD 74 0.8
FBNetV2-L1 [54] GD 77.2 25
NASNet-A [70] RL 74 1800
Mnasnet-A [49] RL 75.2 -
MetaQNN [3] RL 77.4 96
PNAS [25] SMBO 74.2 224
SemiNAS [29] SSL 76.5 4
TE-NAS [7] ZS 74.1 0.2
OFANet [5] PS 80.1 51.6
EfficientNet-B7 [S0]  Scaling 84.4 3800z
Zen-NAS 7S 83.6 0.5

Table 3. NAS searching cost comparison. *Top-1’: top-1 accuracy
on ImageNet-1k. "Method’: "EA’ is short for Evolutionary Algo-
rithm; *GD’ is short for Gradient Descent; "RL’ is short for rein-
forcement Learning; *ZS’ is short for Zero-shot; ’SMBO’, *SSL’,
’PS’ and ’Scaling’ are special searching methods/frameworks. 7:
Running on TPU; {: The cost is estimated by [54];

rithm 2. Following convention, we search for best network
on CIFAR-10/CIFAR-100 within model size N < 1M.
The convergence curves are plotted in Supplementary C. In
these figures, all six scores improves monotonically along
iterations.

After the above NAS step, we train the network of the
best score for each proxy under the same training setting. To
provide a random baseline, we randomly generate networks.
The width of the layer varies in range [4, 512], and the depth
of each stage varies in range [1, 10]. If the network size is
larger than 1M, we shrink its width by factor 0.75 each
time until it satisfies the budget. 32 random networks are
generated and trained in total.

The top-1 accuracy is reported in Table 1. Zen-Score
significantly outperforms the other five proxies on both
CIFAR-10 and CIFAR-100. TE-Score and NASWOT are
the runner-up proxies with similar performance, followed
by synflow. It is not surprise to see that naive proxies, such
as FLOPs and gradient-norm, perform poorly, even worse
than random search.

To compare the computational efficiency of Zen-Score
and TE-score, we compute two scores for ResNet-18 and
ResNet-50 at 224x224 resolution. The expected time cost
is averaged over 100 trials. We find that averaging Zen/TE-
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Score over N = 16 random images is sufficient to reduce
the statistical error below 5%. The results are reported in
Table 2. The computation of Zen-Score is 20 ~ 28 times
faster than TE-Score.

We tried our best to benchmark NASWOT for ResNet-
18/50 using the official code. However, the official code
always outputs Inf for ResNet-18/50 at resolution 224. De-
spite of the Inf issue, Zen-Score is 3.3x times faster than
NASWOT on ResNet-18 and 1.6x times faster on ResNet-
50.

5.2. Zen-NAS on ImageNet

We use Zen-NAS to search efficient network (ZenNet)
on ImageNet. We consider the following popular networks
as baselines: (a) manually-designed networks, including
ResNet [15], DenseNet [17], ResNeSt [65], MobileNet-
V2 [45] (b) NAS-designed networks for fast inference on
GPU, including OFANet-9ms/11ms [5], DFNet [22], Reg-
Net [40]; (c) NAS-designed networks optimized for FLOPs,
including OFANet-389M/482M/595M [5], DNANet [21],
EfficientNet [50], Mnasnet [49].

Among these networks, EfficientNet is a popular base-
line in NAS-related works. EfficientNet-BO/B1 are suitable
for mobile device for their small FLOPs and model size.
EfficientNet-B3~B7 are large models that are best to be de-
ployed on a high-end GPU. Although EfficientNet is opti-
mized for FLOPs, its inference speed on GPU is within top-
tier ones. Many previous works compare to EfficientNet by
inference speed on GPU [65, 5, 40].

Searching Low Latency Networks Following previous
works [5, 22, 40], we use Zen-NAS to optimize network in-
ference speed on NVIDIA V100 GPU. We use Search Space
I in this experiment. The inference speed is tested at batch
size 64, half precision (float16). We search for networks
of inference latency within 0.1/0.2/0.3/0.5/0.8/1.2 millisec-
onds (ms) per image. For testing inference latency, we set
batch-size=64 and do mini-batch inference 30 times. The
averaged inference latency is recorded. The top-1 accuracy
on ImageNet v.s. inference latency is plotted in Figure 1.
Clearly, ZenNets outperform baseline models in both ac-
curacy and inference speed by a large margin. The largest
model ZenNet-1.2ms achieves 83.6% top-1 accuracy which
is between EfficientNet-B5 and B6. It is about 4.9x faster
than EfficientNet at the same accuracy level.

Searching Lightweight Networks Following previous
works [5, 50], we use Zen-NAS to search lightweight net-
works with small FLOPs. We use Search Space II in this
experiment. We search for networks of computational cost
within 400/600/900 M FLOPs. Similar to OFANet and Ef-
ficientNet, we add SE-blocks after convolutional layers.
The top-1 accuracy v.s. FLOPs is plotted in Figure 4.

Again, ZenNets outperform most models by a large margin.
ZenNet-900M-SE achieves 80.8% top-1 accuracy which
is comparable to EfficientNet-B3 with 43% fewer FLOPs.
The runner-up is OFANet whose efficiency is similar to
ZenNet.

5.3. Searching Cost of Zen-NAS v.s. SOTA

The major time cost of Zen-NAS is the computation of
Zen-Score. The network latency is predicted by an in-house
latency predictor whose time cost is nearly zero. Accord-
ing to Table 2, the computation of Zen-Score for ResNet-50
only takes 0.15 second. This means that scoring 96,000 net-
works similar to ResNet-50 only takes 4 GPU hours, or 0.17
GPU day.

We compare Zen-NAS searching cost to SOTA NAS
methods in Table 3. Since every NAS method uses differ-
ent settings, it is difficult to make a fair comparison that
everyone agrees with. Nevertheless, we only concern about
the best model reported in each paper and the correspond-
ing searching cost. This gives us a rough impression of the
efficiency of these methods and their practical ability of de-
signing high-performance models.

From Table 3, for conventional NAS methods, it takes
hundreds to thousands GPU days to find a good structure
of accuracy better than 78.0%. Many one-shot methods are
very fast. For most one-shot methods, the best accuracy is
below 80%. In comparison, Zen-NAS achieves 83.6% top-
1 accuracy within 0.5 GPU day. Among methods achieving
above 80.0% top-1 accuracy in Table 3, the searching speed
of Zen-NAS is nearly 100 times faster than OFANet and
7800 times faster than EfficientNet. TE-NAS uses less GPU
day than Zen-NAS in Table 3. This does not conflict with
Table 2 because the total number of networks evaluated by
the two methods are different.

6. Conclusion

We proposed Zen-NAS, a zero-shot neural architecture
search framework for designing high performance deep im-
age recognition networks. Without optimizing network pa-
rameters, Zen-NAS ranks networks via network expressiv-
ity which can be numerically measured by Zen-Score. The
searching speed of Zen-NAS is dramatically faster than pre-
vious SOTA methods. The ZenNets automatically designed
by Zen-NAS are significantly more efficient in terms of in-
ference latency, FLOPs and model size, in multiple recog-
nition tasks. We wish the elegance of Zen-NAS will inspire
more theoretical researches towards a deeper understanding
of efficient network design.
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