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Abstract

Finding local features that are repeatable across multiple
views is a cornerstone of sparse 3D reconstruction. The clas-
sical image matching paradigm detects keypoints per-image
once and for all, which can yield poorly-localized features
and propagate large errors to the final geometry. In this pa-
per, we refine two key steps of structure-from-motion by a
direct alignment of low-level image information from multi-
ple views: we first adjust the initial keypoint locations prior
to any geometric estimation, and subsequently refine points
and camera poses as a post-processing. This refinement is
robust to large detection noise and appearance changes, as
it optimizes a featuremetric error based on dense features
predicted by a neural network. This significantly improves
the accuracy of camera poses and scene geometry for a wide
range of keypoint detectors, challenging viewing conditions,
and off-the-shelf deep features. Our system easily scales
to large image collections, enabling pixel-perfect crowd-
sourced localization at scale. Our code is publicly avail-
able at github.com/cvg/pixel-perfect-sfm as
an add-on to the popular SfM software COLMAP.

1. Introduction

Mapping the world is an important requirement for spatial
intelligence applications in augmented reality or robotics.
Tasks like visual localization or path planning can bene-
fit from accurate sparse or dense 3D reconstructions of
the environment. These can be built from images using
Structure-from-Motion (SfM), which associates observa-
tions across views to estimate camera parameters and 3D
scene geometry. Sparse reconstruction based on matching
local image features [10, 20, 22, 32, 48, 54, 56, 62] is the
most common due to its scalability and its robustness to
appearance changes introduced by varying devices, view-
points, and temporal conditions found in crowdsourced sce-
narios [2, 28, 33, 39, 45, 47, 55].

SfM assumes that sparse interest points [10, 20, 22, 32, 48,
56, 59, 81, 88] can be reliably detected across views. It typi-
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Figure 1: From sparse to dense. We improve the accu-
racy of sparse Structure-from-Motion by refining 2D key-
points, camera poses, and 3D points using the direct align-
ment of deep features. This featuremetric optimization lever-
ages dense image information but can scale to scenes with
thousands of images. Such refinement results in subpixel-
accurate reconstructions, even in challenging conditions.

cally selects such points for each image independently and
relies on these initial detections for the remainder of the
reconstruction process. However, detecting keypoints from
a single view is inherently inaccurate due to appearance
changes and discrete image sampling [30]. The advent of
convolutional neural network (CNNs) for detection has mag-
nified this issue, as they generally do not retain local image
information and instead favor global context.

Multi-view geometric optimization with bundle adjust-
ment [4, 40, 79] is commonly used to refine cameras and
points using reprojection errors. Dusmanu et al. [23] pro-
posed to refine keypoint locations prior to SfM via an analo-
gous geometric cost constrained with local optical flow. This
can improve SfM, but has limited accuracy and scalability.

In this work, we argue that local image information is
valuable throughout the SfM process to improve its accu-
racy. We adjust both keypoints and bundles, before and after
reconstruction, by direct image alignment [18, 25, 49] in a
learned feature space. Exploiting this locally-dense informa-
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Figure 2: Refinement pipeline. Our refinement works on
top of any SfM pipeline that is based on local features. We
perform a two-stage adjustment of keypoints and bundles.
The approach first refines the 2D keypoints only from tenta-
tive matches by optimizing a direct cost over dense feature
maps. The second stage operates after SfM and refines 3D
points and poses with a similar featuremetric cost.

tion is significantly more accurate than geometric optimiza-
tion, while deep, high-dimensional features extracted by a
CNN ensure wider convergence in challenging conditions.
This formulation elegantly combines globally-discriminative
sparse matching with locally-accurate dense details. It is
applicable to both incremental [67, 72] and global [9, 12, 51]
SfM irrespective of the types of sparse or dense features.

We validate our approach in experiments evaluating the
accuracy of both 3D structure and camera poses in vari-
ous conditions. We demonstrate drastic improvements for
multiple hand-crafted and learned local features using off-
the-shelf CNNs. The resulting system produces accurate
reconstructions and scales well to large scenes with thou-
sands of images. In the context of visual localization, it can,
in addition to providing a more accurate map, also refine
poses of single query images with minimal overhead.

For the benefit of the research community, we will release
our code as an extension to COLMAP [67, 68] and to the
popular localization toolbox hloc [60, 61]. We believe that
our featuremetric refinement can significantly improve the
accuracy of existing datasets [64] and push the community
towards sub-pixel accurate localization at large scale.

2. Related work

Image matching is at the core of SfM and visual SLAM,
which typically rely on sparse local features for their effi-
ciency and robustness. The process i) detects a small num-
ber of interest points, ii) computes their visual descriptors,
iii) matches them with a nearest neighbor search, and iv) ver-
ifies the matches with two-view epipolar estimation and
RANSAC. The correspondences then serve for relative or
absolute pose estimation and 3D triangulation. As keypoints
are sparse, small inaccuracies in their locations can result in
large errors for the estimated geometric quantities.

Differently, dense matching [13, 46, 58, 71, 74, 78, 80]
considers all pixels in each image, resulting in denser and
more accurate correspondences. It has been successful for
constrained settings like optical flow [38, 73] or stereo depth
estimation [86], but is not suitable for large-scale SfM due
to its high computational cost due to many redundant corre-
spondences. Several recent works [44, 57, 75, 92] improve
the matching efficiency by first matching coarsely and subse-
quently refining correspondences using a local search. This
is however limited to image pairs and thus cannot create
point tracks required by SfM.

Our work combines the best of both paradigms by leverag-
ing dense local information to refine sparse observations. It
is inherently amenable to SfM as it can optimize all locations
over multiple views in a track simultaneously.

Subpixel estimation is a well-studied problem in correspon-
dence search. Common approaches either upsample the input
images or fit polynomials or Gaussian distributions to local
image neighborhoods [27,34,37,48,66]. With the widespread
interest in CNNs for local features, solutions tailored to 2D
heatmaps have been recently developed, such as learning fine
local sub-heatmaps [36] or estimating subpixel corrections
with regression [14, 77] or the soft-argmax [52, 89]. Cleaner
heatmaps can also arise from aggregating predictions over
multiple virtual views using data augmentation [20].

Detections or local affine frames can be combined across
multiple views with known poses in a least-squares geo-
metric optimization [24, 79]. Dusmanu et al. [23] instead
refine keypoints solely based on tentative matches, without
assuming known geometry. This geometric formulation ex-
hibits remarkable robustness, but is based on a local optical
flow whose estimation for each correspondence is expen-
sive and approximate. We unify both keypoint and bundle
optimizations into a joint framework that optimizes a fea-
turemetric cost, resulting in more accurate geometries and a
more efficient keypoint refinement.

Direct alignment optimizes differences in pixel intensities
by implicitly defining correspondences through the motion
and geometry. It therefore does not suffer from geometric
noise and is naturally subpixel accurate via image interpola-
tion. Direct photometric optimization has been successfully
applied to optical flow [8,49], visual odometry [18,25,26,42],
SLAM [5, 69], multi-view stereo (MVS) [19, 21, 87], and
pose refinement [70]. It generally fails for moderate displace-
ments or appearances changes, and is thus not suitable for
large-baseline SfM. One notable work by Woodford & Ros-
ten [84] refines dense SfM+MVS models with a robust image
normalization. It focuses on dense mapping with accurate
initial poses and moderate appearance changes. Georgel et
al. [29] instead estimate more accurate relative poses by el-
egantly combining photometric and geometric costs. They
show that dense information can improve sparse estimation
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but their approach ignores appearance changes. Differently,
our work improves the entire SfM pipeline starting with
tentative matches and addresses larger, challenging changes.

To improve on the weaknesses of photometric optimiza-
tion, numerous recent works align multi-dimensional image
representations. Examples of this featuremetric optimization
include frame tracking with handcrafted [6, 53] or learned
descriptors [17,50,82,83,85], optical flow [7,11], MVS [90],
and dense SfM in small scenes [76]. Closer to our work,
PixLoc [63] learns deep features with a large basin of con-
vergence for wide-baseline pose refinement. It improves the
accuracy of sparse matching but is designed for single im-
ages and disregards the scalability to multiple images or large
scenes. Here we extend this paradigm to other steps of SfM
and propose an efficient algorithm that scales to thousands
of images. We show that learning task-specific wide-context
features is not necessary and demonstrate highly accurate
refinements with off-the-shelf features.

In conclusion, our work is the first to apply robust feature-
metric optimization to a large-scale sparse reconstruction
problem and show significant benefits for visual localization.

3. Background
Given N images {Ii} observing a scene, we are inter-

ested in accurately estimating its 3D structure, represented as
sparse points {Pj ∈ R3}, intrinsic parameters {Ci} of the
cameras, and the poses {(Ri, ti) ∈ SE(3)} of the images,
represented as rotation matrices and translation vectors.

A typical SfM pipeline performs geometric estimation
from correspondences between sparse 2D keypoints {pu}
observing the same 3D point from different views, collec-
tively called a track. Association between observations is
based on matching local image descriptors {du ∈ RD},
but the estimated geometry relies solely on the location of
the keypoints, whose accuracy is thus critical. Keypoints
are detected from local image information for each image
individually, without considering multiple views simultane-
ously. Subsequent steps of the pipeline discover additional
information about the scene, such as its its geometry or its
multi-view appearance. Two approaches leverage this infor-
mation to reduce the detection noise and refine the keypoints.

Global refinement: Bundle adjustment [79] is the gold stan-
dard for refining structure and poses given initial estimates.
It minimizes the total geometric error

EBA =
∑
j

∑
(i,u)∈T (j)

‖Π (RiPj + ti,Ci)− pu‖γ , (1)

where T (j) is the set the images and keypoints in track j,
Π(·) projects to the image plane, and ‖·‖γ is a robust
norm [31]. This formulation implicitly refines the keypoints
while ensuring their geometric consistency. It however ig-
nores the uncertainty of the initial detections and thus re-

quires many observations to reduce the geometric noise.
Operating on an existing reconstruction, it cannot recover
observations arising from noisy keypoints that are matched
correctly but discarded by the geometric verification.

Track refinement: To improve the accuracy of the key-
points prior to any geometric 3D estimation, Dusmanu et
al. [23] optimize their locations over tentative tracks formed
by raw, unverified matches. They exploit the inherent struc-
ture of the matching graph to discard incorrect matches with-
out relying on geometric constraints. Given two-view dense
flow fields {Tv→u} between the neighborhoods of matching
keypoints u and v, this keypoint adjustment optimizes, for
each tentative track j, the multi-view cost

EjKA =
∑

(u,v)∈M(j)

‖pv + Tv→u[pv]− pu‖γ , (2)

whereM(i) denotes the set of matches that forms the track
and [·] is a lookup with subpixel interpolation. A deep neu-
ral network is trained to regress the flow of a single point
from two input patches and the flow field is interpolated
from a sparse grid. This dramatically improves the keypoint
accuracy, but some errors remain as the regression and inter-
polation are only approximate.

Both bundle and keypoint adjustments are based on ge-
ometric observations, namely keypoint locations and flow,
but do not account for their respective uncertainties. They
thus require a large number of observations to average out
the geometric noise and their accuracy is in practice limited.

4. Approach
Summarizing dense image information into sparse points

is necessary to perform global data association and optimiza-
tion at scale. However, refining geometry is an inherently
local operation, which, we show, can efficiently benefit from
locally-dense pixels. Given constraints provided by coarse
but global correspondences or initial 3D geometry, the dense
information only needs to be locally accurate and invariant
but not globally discriminative. While SfM typically discards
image information as early as possible, we instead exploit
it in several steps of the process thanks to direct alignment.
Leveraging the power of deep features, this translates into
featuremetric keypoint and bundle adjustments that elegantly
integrate into any SfM pipeline by replacing their geometric
counterparts. Figure 2 shows an overview.

We first introduce the featuremetric optimization in Sec-
tion 4.1. We then describe our formulations of keypoint
adjustment, in Section 4.2, and bundle adjustment, in Sec-
tion 4.3, and analyze their efficiency.

4.1. Featuremetric optimization

Direct alignment: We consider the error between image
intensities at two sparse observations: r = Ii[pu]− Ij [pv].
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Local image derivatives implicitly define a flow from one
point to the other through a gradient descent update:

Tv→u[pv] ∝ −
∂Ij
∂p

[pv]
> r . (3)

This flow can be efficiently computed at any location in a
neighborhood around v, without approximate interpolation
nor descriptor matching. It naturally emerges from the direct
optimization of the photometric error, which can be mini-
mized with second-order methods in the same way as the
aforementioned geometric costs. Unlike the flow regressed
from a black-box neural network [23], this flow can be made
consistent across multiple view by jointly optimizing the
cost over all pairs of observations.

Learned representation: SfM can handle image collec-
tions with unconstrained viewing conditions exhibiting large
changes in terms of illumination, resolution, or camera mod-
els. The image representation used should be robust to such
changes and ensure an accurate refinement in any condition.
We thus turn to features computed by deep CNNs, which
can exhibit high invariance by capturing a large context, yet
retain fine local details. For each image Ii, we compute a D-
dimensional, L2-normalized feature map Fi ∈ RW×H×D
at identical resolution. We use the same representations for
keypoint and bundle adjustments, requiring a single forward
pass per image. Our experiments show that multiple off-the-
shelf dense local descriptors can result in highly accurate
refinements. However, our formulation can also be applied
to robust intensity representations, such as the normalized
cross-correlation (NCC) over local image patches [84].

4.2. Keypoint adjustment

Once local features are detected, described, and matched,
we refine the keypoint locations before geometrically verify-
ing the tentative matches.

Track separation: Connected components in the match-
ing graph define tentative tracks – sets of keypoints that
are likely to observe the same 3D point, but whose obser-
vations have not yet been geometrically verified. Because
a 3D point has a single projection on a given image plane,
valid tracks cannot contain multiple keypoints detected in
the same image. We can leverage this property to efficiently
prune out most incorrect matches using the track separation
algorithm introduced in [23]. This speeds up the subsequent
optimization and reduces the noise in the estimation.

Objective: We then adjust the locations of 2D keypoints
belonging to the same track j by optimizing its featuremetric
consistency along tentative matches with the cost

EjFKA =
∑

(u,v)∈M(j)

wuv
∥∥Fi(u)[pu]− Fi(v)[pv]

∥∥
γ
, (4)

where wuv is the confidence of the correspondence (u, v),
such as the similarity of its local feature descriptors d>u dv.

This allows the optimization to split tracks connected by
weak correspondences, providing robustness to mismatches.
The confidence is not based on the dense features since these
are not expected to disambiguate correspondences at the
global image level.

Efficiency : This direct formulation simply compares pre-
computed features on sparse points and is thus much more
scalable than patch flow regression (Eq. 2), which performs
a dense local correlation for each correspondence. All tracks
are optimized independently, which is very fast in practice
despite the sheer number of tentative matches.

Drift: Because of the lack of geometric constraints, the
points are free to move anywhere on the underlying 3D sur-
face of the scene. The featuremetric cost biases the updates
towards areas with low spatial feature gradients and with
better-defined features. This can result in a large drift if not
accounted for. Keypoints should however remain repeatable
w.r.t. unrefined detections to ensure the matchability of new
images, such as for visual localization. It is thus critical to
limit the drift, while allowing the refinement of noisier key-
points. For each track, we freeze the location of the keypoint
ū with highest connectivity, as in [23], and constrain the
location pu of each keypoint w.r.t. to its initial detection p0

u,
such that

∥∥pu − p0
u

∥∥ ≤ K.
Once all tracks are refined, the geometric estimation pro-

ceeds, typically using two-view epipolar geometric verifica-
tion followed by incremental or global SfM.

4.3. Bundle adjustment

The estimated structure and motion can then be refined
with a similar featuremetric cost. Here keypoints are implic-
itly defined by the projections of the 3D points into the 2D
image planes, and only poses and 3D points are optimized.

Objective: We minimize for each track j the error between
its observations and a reference appearance f j :

EFBA =
∑
j

∑
(i,u)∈T (j)

∥∥Fi [Π (RiPj + ti,Ci)]− f j
∥∥
γ
.

(5)
The reference is selected at the beginning of the optimization
and kept fixed from then on. This reduces the drift of the
points significantly, as also noted in [5], but is more flexible
than the common ray-based parametrization [25, 42, 84].

The reference is defined as the observation closest to the
robust mean µ over all initial observations f ju of the track:

f j = argmin
f∈{fju}

∥∥µj − f
∥∥ (6)

with µj = argmin
µ∈RD

∑
f∈{fju}

‖f − µ‖γ . (7)

This ensures robustness to outlier observations and accounts
for the unknown topology of the feature space.
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SfM features
ë Refinement

ETH3D indoor ETH3D outdoor

Accuracy (%) Completeness (%) Accuracy (%) Completeness (%)

1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm

SIFT [48] 75.62 85.04 92.45 0.21 0.87 3.61 57.64 71.92 85.23 0.06 0.34 2.45
ë Patch Flow 80.99 89.06 95.06 0.24 0.97 3.88 64.79 78.90 90.04 0.08 0.41 2.76
ë ours 82.82 89.77 94.77 0.25 0.96 3.75 68.43 80.73 91.28 0.08 0.42 2.75

SuperPoint [20] 75.76 85.61 93.38 0.59 2.21 8.89 50.45 65.07 80.26 0.10 0.55 3.92
ë Patch Flow 85.77 91.57 95.85 0.72 2.51 9.59 64.94 77.65 88.86 0.15 0.77 4.93
ë ours 89.33 93.58 96.58 0.74 2.53 9.51 71.27 82.58 92.08 0.16 0.83 5.06

D2-Net [22] 47.18 64.94 83.37 0.47 1.87 7.07 20.87 34.55 56.53 0.03 0.19 1.78
ë Patch Flow 79.10 86.64 93.26 1.45 4.53 12.95 57.34 70.71 84.12 0.21 1.06 6.02
ë ours 82.49 88.83 94.35 1.36 4.13 11.80 65.71 77.95 89.22 0.21 1.01 5.63

R2D2 [56] 66.30 79.21 90.00 0.53 2.06 8.62 49.32 66.10 83.10 0.11 0.55 3.63
ë Patch Flow 77.94 85.82 92.48 0.66 2.32 9.07 64.14 78.10 90.18 0.16 0.71 4.09
ë ours 80.67 87.61 93.42 0.67 2.31 8.95 67.77 80.85 91.91 0.16 0.73 4.09

SuperPoint - raw

SuperPoint - refined

correct/incorrect @ 1cm

Table 1: 3D sparse triangulation. Our refinement yields significantly more accurate and complete point clouds than the
common geometric SfM pipeline. It is more effective than the existing Patch Flow [23], especially at 1cm or with SIFT.

Efficiency: Compared to the keypoint adjustment (Eq. 4),
using a reference feature reduces the number of residuals
from O(N2) to O(N). On the other hand, all tracks need to
be updated simultaneously because of the interdependency
caused by the camera poses. To accelerate the convergence,
we form a reduced camera system based on the Schur com-
plement and use embedded point iterations [40]. The refine-
ment generally converges within a few camera updates.

4.4. Implementation

Dense extractor: Our refinement can work with any off-
the-shelf CNN that produces feature maps that are locally
discriminative. These should be of the same resolution as
the input (stride 1) to enable subpixel accuracy. The radius
of convergence, or context, of such features depends on the
amount of noise in the keypoints. Most detectors like SIFT
have at most a few pixels of error, while others like D2-Net
exhibit a much larger detection noise. In our experiments, we
use S2DNet [30] for dense feature extraction, as it computes
fine features very efficiently in only 4 convolutions, but also
produce, if required, deeper features with a larger context.
These can then be combined into a multi-level optimization
scheme [25, 63, 82] that sequentially refines based on coarse
to fine features. The convergence can thus be adjusted de-
pending on the detector and on the image resolution. We
show in Section 5.4 that other dense features work well too.

Optimization: The optimization problems of both key-
point and bundle adjustments are solved with the Levenberg-
Marquardt [43] algorithm implemented using Ceres [3].
Feature maps are stored as collections of 16×16 patches
centered around the initial keypoint detections. We thus
constrain points to move at most K= 8 pixels. The feature
lookup is implemented as bicubic interpolation. We use the
Cauchy loss γ with a scale of 0.25. The robust mean in Eq. 7

is computed with iteratively reweighted least squares [35].
Simultaneously storing all high-dimensional feature

patches incurs high memory requirements during BA. We
dramatically increase its efficiency by exhaustively precom-
puting patches of feature distances and directly interpolate
an approximate cost Ēij =

∥∥Fi − f j
∥∥
γ

[
pij
]
. To improve

the convergence, we store and optimize its spatial derivatives
∂Ēij/∂pij . This reduces the residual size from D to 3 with
no loss of accuracy. See Supplemental C for more details.

Run time and memory: S2DNet can extract 3-5 dense fea-
ture maps per second and both featuremetric adjustments run
in less than 5 minutes for 100 images. As these features are
128-dimensional, the memory consumption can be a bottle-
neck. We believe that much fewer dimensions are actually
required for refinement, and retraining a compact feature
extractor would improve the efficiency of the optimization.

5. Experiments
We evaluate our featuremetric refinement on various SfM

tasks with several handcrafted and learned local features
and show substantial improvements for all of them. We first
evaluate its accuracy on the tasks of triangulation and camera
pose estimation in Sections 5.1 and 5.2, respectively. We
then assess in Section 5.3 the impact of the refinement on
two-view and multi-view pose estimation for end-to-end
reconstruction in challenging conditions. Lastly, Section 5.4
analyzes the validity and scalability of our design decisions
through an ablation study.

5.1. 3D triangulation

We first evaluate the accuracy of the refined 3D structure
given known camera poses and intrinsics.

Evaluation: We use the ETH3D benchmark [70], which
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SfM features
ë Refinement

AUC (%)

1mm 1cm 10cm

• SIFT 16.92 56.08 81.65
ë Patch Flow 14.62 52.69 81.69
ë ours 25.38 60.22 84.07

• SuperPoint 15.38 51.20 82.33
ë Patch Flow 28.46 63.99 86.79
ë ours 40.00 71.97 86.86

• D2-Net 1.54 12.16 56.10
ë Patch Flow 16.92 54.70 75.16
ë ours 17.69 55.03 76.26

• R2D2 11.53 52.88 82.69
ë Patch Flow 25.38 61.42 84.14
ë ours 27.69 63.86 86.13

Table 2: Camera pose estimation. We plot the cumulative
translation error and report its AUC. Our refinement im-
proves the accuracy of the query camera poses for all local
features, even when for SIFT, whose detections are already
well-localized. It is generally more accurate than Patch Flow.

is composed of 13 indoor and outdoor scenes and provides
images with millimeter-accurate camera poses and highly-
accurate ground truth dense reconstructions obtained with
a laser scanner. We follow the protocol introduced in [23],
in which a sparse 3D model is triangulated for each scene
using COLMAP [67] with fixed camera poses and intrinsics.
Following the original benchmark setup, we report the ac-
curacy and completeness of the reconstruction, in %, as the
ratio of triangulated and ground-truth dense points that are
within a given distance of each other.

Baselines: We evaluate our featuremetric refinement with
the hand-crafted local features SIFT [48] and the learned
ones SuperPoint [20], D2-Net [22], and R2D2 [56], using the
associated publicly available code repositories. We compare
our approach to the geometric optimization of [23], referred
here as Patch Flow. We re-compute the numbers provided in
the original paper using the code provided by the authors.

Results: Table 1 shows that our approach results in sig-
nificantly more accurate and complete 3D reconstructions
compared to the traditional geometric SfM. It is more ac-
curate than Patch Flow, especially at the strict threshold of
1cm, and exhibits similar completeness. The improvements
are consistent across all local features, both indoors and
outdoors. The gap with Patch Flow is especially large for
SIFT, which already detects well-localized keypoints. This
confirms that our featuremetric optimization better captures
low-level image information and yields a finer alignment.
Patch Flow is more complete for larger thresholds as it partly
solves a different problem by increasing the keypoint re-
peatability with its large receptive field, while we focus on
their localization.

SfM features
(# keypoints)
ë Refinement

Task 1: Stereo Task 2: Multiview

AUC@K◦ AUC@5◦@N

5◦ 10◦ 5 10 25

SuperPoint+SuperGlue (2k) 58.78 71.01 63.02 77.36 86.76
ë ours 65.89 76.51 68.87 82.09 89.73

SIFT (2k) 38.09 48.05 25.12 50.82 77.28
ë ours 40.59 50.87 28.01 53.59 79.49

D2-Net (4k) 16.83 22.40 16.52 33.07 49.35
ë ours 25.89 33.32 21.33 40.69 57.93

Table 3: End-to-end SfM. The proposed refinement im-
proves the accuracy of poses estimated by epipolar geometry
(stereo) or a complete SfM pipeline (multiview) with crowd-
sourced imagery. Improvements are substantial for both stan-
dard (SIFT) and recent (SuperGlue) matching configurations,
especially when few images N observe the scene.

5.2. Camera pose estimation

We now evaluate the impact of our refinement on the task
of camera pose estimation from a single image.

Evaluation: We again follow the setup of [23] based on the
ETH3D benchmark. For each scene, 10 images are randomly
selected as queries. For each of them, the remaining images,
excluding the 2 most covisible ones, are used to triangu-
late a sparse 3D partial model. Each query is then matched
against its corresponding partial model and the resulting
2D-3D matches serve to estimate its absolute pose using
LO-RANSAC+PnP [15] followed by geometric refinement.
We compare the 130 estimated query poses to their ground
truth and report the area under the cumulative translation
error curve (AUC) up to 1mm, 1cm, and 10cm.

Baselines: Patch Flow performs multi-view optimization
over each partial model independently as well as over the
matches between each query and its partial model. Simi-
larly, we first refine each partial model as in Section 5.1. We
then adjust the query keypoints using its tentative matches,
estimate an initial pose, and refine it with featuremetric BA.

Results: The AUC and its cumulative plot are shown in
Table 2. Our refinement substantially improves the local-
ization accuracy for all local features, including SIFT, for
which Patch Flow does not show any benefit. At all error
thresholds, featuremetric optimization is consistently more
accurate than its geometric counterparts. The accuracy of
SuperPoint is raised far higher than other detectors, despite
the high sparsity of the 3D models that it produces. This
shows how more accurate keypoint detections can result in
much more accurate visual localization.

5.3. End-to-end Structure-from-Motion

While the previous experiments precisely quantify the ac-
curacy of the refinement, they do not contain any variations
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of appearance or camera models. We thus turn to crowd-
sourced imagery and evaluate the benefits of our featuremet-
ric optimization in an end-to-end reconstruction pipeline.

Evaluation: We use the data, protocol, and code of the
2020 Image Matching Challenge [1, 41]. It is based on large
collections of crowd-sourced images depicting popular land-
marks around the world. Pseudo ground truth poses are ob-
tained with SfM [67] and used for two tasks. The stereo
task evaluates relative poses estimated from image pairs by
decomposing their epipolar geometry. This is a critical step
of global SfM as it initializes its global optimization. The
multiview task runs incremental SfM for small subsets of
images, making the SfM problem much harder, and eval-
uates the final relative poses within each subset. For each
task, we report the AUC of the pose error at the threshold
of 5◦, where the pose error is the maximum of the angular
errors in rotation and translation. As the evaluation server
accepts at most correspondences, we cannot evaluate our
method using the test data. We instead test on a subset of the
publicly available validation scenes, and tune the RANSAC
and matching parameters on the remaining scenes. More
details on this setup are provided in the Supplemental.

Baselines: We evaluate our refinement in combination with
SIFT [48], D2-Net [22], and SuperPoint+SuperGlue [20,62].
We limit the number of detected keypoints to 2k for computa-
tional reasons, but increase this number to 4k for D2-Net as
it otherwise performs poorly. In the stereo task, we adjust the
keypoints using the entire exhaustive tentative match graph
(4950 pairs per scene). We use LO-DEGENSAC [15, 16]
for match verification, the ratio test for SIFT, and the mu-
tual check for SIFT and D2-Net. In the multiview task, we
adjust keypoints for each subset independently, considering
only the matches between images in the subset, and run our
bundle adjustment after SfM.

Results: Table 3 summarizes the results. For stereo, our
featuremetric keypoint adjustment significantly improves
the accuracy of the two-view epipolar geometries across
all local features and despite the challenging conditions. In
multiview setting, it also improves the accuracy of the SfM
poses, especially for small sets of images. Featuremetric
optimization is particularly effective in this situation, as
geometric optimization cannot fully suppress the detection
noise due to the small number of observations. We visualize
tracks of a 5-image reconstruction in Figure 4 and highlight
the accuracy of the refined SfM model.

5.4. Additional insights

Ablation study: Table 4 shows the performance of sev-
eral variants of our featuremetric optimization on ETH3D
in terms of triangulation (scene Facade only) and localiza-
tion (all scenes). We compare both types of adjustments,
minor tweaks, and different image representations, including

SuperPoint
ë Refinement

Acc. (%) Compl. (%) track
length

AUC

1cm 2cm 1cm 2cm 1cm

K
A

vs
.B

A unrefined 18.42 32.23 0.06 0.49 4.17 51.20
ë Patch Flow [23] 37.00 55.18 0.15 0.93 5.24 63.53
ë F-KA 36.85 54.48 0.15 0.90 5.02 69.84
ë F-BA 43.65 62.44 0.18 1.06 4.17 67.61
ë F-KA+BA (full) 46.46 65.41 0.19 1.14 5.02 71.97

bo
nu

s w/ F-BA drift 47.93 66.52 0.20 1.17 5.02 64.51
Patch Flow + F-BA 46.30 65.22 0.19 1.13 5.24 -
higher resolution 47.67 65.39 0.21 1.21 5.12 -

de
ns

e
fe

at
s photometric BA [84] 28.43 45.87 0.11 0.72 4.17 -

VGG-16 ImageNet 36.86 54.99 0.15 0.90 4.61 -
DSIFT [46] 38.78 56.46 0.16 0.96 4.73 -
PixLoc [63] 29.49 46.60 0.12 0.74 4.48 -

Table 4: Ablation study on ETH3D. i) Featuremetric key-
point and bundle adjustments (KA and BA) both largely
improve the triangulation and localization accuracy. Patch
Flow produces a longer track length because of its larger
receptive field but is less accurate. ii) Letting the BA drift by
updating reference features or increasing the image resolu-
tion both improve the triangulation, at the expense of poorer
localization and increased run time, respectively. iii) Dif-
ferent image representations are better than the unrefined
detections but S2DNet (our default) works best.
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Figure 3: Run-times. We show the duration, in logarithmic
scale, of the refinement for varying numbers of images. Our
refinement is more than ten times faster than Patch Flow [23],
whose run-time is dominated by the computation of the
pairwise flow, which scales quadratically. Thanks to our
precomputed cost patches, the featuremetric BA is fast. The
KA amounts for the majority of the refinement time.

NCC-normalized intensity patches with fronto-parallel warp-
ing. Our final configuration, based on on the dense features
of S2DNet [30], performs best across all metrics. We will
now show that it is also fairly efficient.
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Figure 4: Refined SfM tracks. We show patches centered around reprojections of 3x 3D points observed in 4 images of the St.
Peter’s Square scene. Deep features and their correlation maps with a reference are robust to scale or illumination changes, yet
preserve local details required for fine alignment. Points refined with our approach (in green) are consistent across multiple
views while those of a standard SfM pipeline (in red) are misaligned because the initial keypoint detections (in blue) are noisy.

Scalability: We run SfM on subsets of images of the Aachen
Day-Night dataset [64, 65, 91]. Figure 3 shows the run times
of the refinement for subsets of 10, 100 and 1000 images.
The featuremetric refinement is an order of magnitude faster
than Patch-Flow [23]. Precomputing distance maps reduces
the peak memory requirement of the bundle adjustment from
80 GB to less than 10GB for 1000 images. As storing feature
maps only requires 50 GB of disk space, this refinement can
easily run on a desktop PC. We thus refined the entire Aachen
Day-Night v1.1 model, composed of 7k images, in less than
2 hours. Scene partitioning [67] could further reduce the
peak memory. See Supplemental D for more details.

6. Conclusion

In this paper we argue that the recipe for accurate large-
scale Structure-from-Motion is to perform an initial coarse
estimation using sparse local features, which are by neces-
sity globally-discriminative, followed by a refinement using
locally-accurate dense features. Since the dense feature only
need to be locally-discriminative, they can afford to capture
much lower-level texture, leading to more accurate corre-

spondences. Through extensive experiments we show that
this results in more accurate camera poses and structure; in
challenging conditions and for different local features.

While we optimize against dense feature maps, we keep
the sparse scene representation of SfM. This ensures not
only that the approach is scalable but also that the result-
ing 3D model is compatible with downstream applications,
e.g. mapping for visual localization. Since our refinement
works well even with few observations, as it does not need to
average out the keypoint detection noise, it has the potential
to achieve more accurate results using fewer images.

We thus believe that our approach can have a large impact
in the localization community as it can improve the accuracy
of the ground truth poses of standard benchmark datasets, of
which many are currently saturated. Since this refinement is
less sensitive to under-sampling, it enables benchmarking
for crowd-sourced scenarios beyond densely-photographed
tourism landmarks.
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