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Abstract

Cracks are irregular line structures that are of interest in
many computer vision applications. Crack detection (e.g.,
from pavement images) is a challenging task due to inten-
sity in-homogeneity, topology complexity, low contrast and
noisy background. The overall crack detection accuracy
can be significantly affected by the detection performance
on fine-grained cracks. In this work, we propose a Crack
Transformer network (CrackFormer) for fine-grained crack
detection. The CrackFormer is composed of novel atten-
tion modules in a SegNet-like encoder-decoder architecture.
Specifically, it consists of novel self-attention modules with
Ix1 convolutional kernels for efficient contextual informa-
tion extraction across feature-channels, and efficient posi-
tional embedding to capture large receptive field contextual
information for long range interactions. It also introduces
new scaling-attention modules to combine outputs from the
corresponding encoder and decoder blocks to suppress non-
semantic features and sharpen semantic ones. The Crack-
Former is trained and evaluated on three classical crack
datasets. The experimental results show that the Crack-
Former achieves the Optimal Dataset Scale (ODS) values of
0.871, 0.877 and 0.881, respectively, on the three datasets
and outperforms the state-of-the-art methods.

1. Introduction

Pavement crack detection from images is a challenging
issue due to intensity inhomogeneity, topology complexity,
low contrast, and noisy texture background [18]. In addi-
tion, crack’s diversity (thin, grid or thick crack etc.) makes
it more difficult.

There are a large number of studies on crack detec-
tion [6, 22, 2, 36, 37, 35, 10]. Recent studies have employed
convolutional neural networks (CNNs) to boost detection
accuracy to a higher level. In this study, we consider the
problem of detecting thin cracks from the image of an as-
phalt surface. In general, it is much easier to detect thick
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Figure 1. Crack prediction from our CrackFormer model (Best
viewed in color). The upper left is a classical crack image. The
upper right is the predicted result. The bottom shows a profile slice
with normalized grey scale, its ground truth and corresponding
crack predicted probabilities.

cracks than thin cracks. Thus, crack detection performance
is largely affected by how well one method can detect thin
cracks.

The state-of-the-art (SOTA) methods heavily rely on
Fully Convolutional Networks (FCNs) [9], such as Seg-
Net [31], U-Net [27] and their variants [21]. SegNets
and U-Nets use an encoder-decoder architecture, where
the encoder extracts high-level semantic representations
by using a cascade of convolution and pooling layers,
and the decoder leverages memorized pooling indices or
skip connections to re-use high-resolution feature maps
from the encoder in order to recover lost spatial informa-
tion from high-level representations. Despite their out-
standing performance, these methods suffer from limita-
tion in complex segmentation tasks, e.g. when dealing
with thin cracks or when there exists low contrast between
crack and background. In general, these models rely on
stacked 3 x 3 convolution and pooling operations, and
could not achieve pixel-level segmentation precision in the
convolution-pooling pipeline, resulting in blur and coarse
crack segmentation. Moreover, suffering from the limited
receptive field by using 3 x 3 convolutional kernels, these
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methods tend to fail in detecting long cracks, resulting in
discontinuous crack detection.

In this work, we propose a Crack Transformer net-
work (CrackFormer) by combining novel self-attention and
scaling-attention mechanisms for crack detection. It ex-
plores to leverage the merits of Transformer models [30]
to capture long-range interactions and simultaneously adopt
small convolution kernels for fine-grained attentive percep-
tion. CrackFormer keeps the regular layout by using a
SegNet-like architecture, but introduces attention mecha-
nisms in two different ways. Fig. 2 shows our network
structure. The main contribution of this paper can be sum-
marized as follows,

1. A new self-attention block (Self-AB) is proposed
(Fig. 3). The Self-AB can fully extract contextual in-
formation across feature-channels by leveraging the
1x1 convolution kernels, and capture large receptive
field contextual information across spatial-domain by
an efficient position embedding.

2. A new scaling-attention block (Scal-AB) is proposed
(Fig. 4), where a set of scaling-attention masks are
generated by nonlinearizing the encoder’s feature
maps, and used to suppress non-semantic features and
sharpen the semantic cracks.

3. We propose a Transformer encoder-decoder structure
integrating the proposed Self-AB and Scal-AB blocks,
where the Self-AB is embedded into different levels
of the encoder and decoder modules, and the Scal-AB
is introduced between the encoder feature maps and
corresponding decoder ones.

A crack prediction result by our method is shown in
Fig. 1, where the original image is shown in the upper left,
the predicted result shown in the upper right. In the lower
row, we can observe from the profile that the cracks are pre-
dicted precisely.

2. Related Work

Crack detection via classification - Since CNNs were
introduced to pavement crack detection, research in this
field has achieved significant progress [6, 22, 2, 36, 37,
35, 10]. Earlier works on crack detection are based on
object detection pipeline for damage region-proposal and
damage classification. For instance, the Faster R-CNN [6],
YOLO [2], SSD Inception and SSD MobileNet [22] etc
have ever been used for pavement damage-region extrac-
tion. Although these bounding-box based methods can de-
tect crack regions reasonably well, they do not provide as
precise information, e.g., crack’s width and shape etc, as
pixel-wise segmentation methods do.

Crack detection via segmentation - Since Zhang et
al. [36] proposed pixel-level asphalt crack detection based

on CNN models, some more accurate methods analyze
pavement damage using deep neural networks [37, 35, 10].
For example, Liu et al. [21] proposed a pyramid fea-
tures aggregation network and a Condition Random Fields
(CRFs) post-processing scheme for crack segmentation.
Zou et al. [37] provided a multi-stage fusion on the Seg-
Net encoder-decoder architecture for crack segmentation.
Yang et al. [35] proposed a feature pyramid and hierarchical
boosting network for pavement crack detection, which inte-
grates context information to low-level features for crack
detection in a feature-pyramid way. Fei et al. [10] proposed
the CrackNet-V model, which stacks several 3 x 3 convo-
lutional layers and a 15 x 15 convolution kernel for deep
abstraction to achieve a high performance for crack seg-
mentation. Although these segmentation-based crack detec-
tion methods have obtained promising results, they cannot
afford to achieve satisfying performance at the pixel-level
segmentation precision and result in blur and coarse seg-
mentation.

Self attention - Very recently, the Transformer [30]’s
self-attention mechanism [28, 4, 7, 26, 3] has been
adopted or improved on image segmentation task. The
DANet [11] proposed a parallel position-attention and
channel-attention enhanced FCN, but its computational
complexity O((HW)2C) + O(HW C?) is high. The CC-
Net [15] harvests the contextual information in horizon-
tal and vertical directions to enhance pixel-wise represen-
tative capability and works more efficient than non-local
block [33]. The Axial-attention [32] shows that self-
attention layers alone could be stacked to form a fully at-
tentional model by restricting the receptive field of self-
attention to a local square region for panoptic segmentation.

Moreover, it has been shown [7] that multi-head self-
attention layer with sufficient number of heads is at least
as expressive as any convolutional layer. Exploration
on replacing 3 x 3 convolution kernels in popular back-
bones, such as the ResNet [13] etc, by a self-attention
augmented convolution model [4], a stand-alone self-
attention model [26] or a Lambda-attention layer [3] has
yielded remarkable gains. These self-attention works, with
merits of long-distance interaction, local receptive field,
computation- and memory-efficiency, have inspired us to
explore more efficient and effective self-attention mecha-
nism for crack segmentation task.

Scaling attention - The self attention is effective for
global-dependency modeling, and it is likely to be valuable
for connected and long-range crack segmentation. How-
ever, the self-attention only might not be enough for fine-
grained cracks, which can be strongly affected by noisy
background. Therefore, we seek the help from scaling-
attention mechanism.

Scaling attention focuses on emphasizing semantic fea-
tures and suppressing non-semantic ones. For example, the
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Figure 2. The structure of Crack Transformer network.

attention-gate mechanism [23] identifies salient image re-
gions and prune feature responses to preserve only the ac-
tivation relevant to the specific task to boost segmentation
performance. The squeeze-and-excitation (SE) [14] mod-
ule uses global average pooling and a linear layer to com-
pute a scaling factor for each channel and then scales the
channels accordingly. Convolutional block attention mod-
ule (CBAM) [24] added global max pooling in addition to
global average pooling and an extra spatial attention sub-
module to compute scaling factors on channel and spatial
domain separately. The Spatial attention [12] and multi-
scale attention on the U-Net [5] combine local features with
their corresponding global dependencies, explicitly model-
ing the dependencies between channels and different scale
spatial information in segmentation task. Oktay et al. [23]
propose a soft-attention mechanism to softly weight the en-
coder and decoder features at each pixel location. These
scaling-attention or attention-gate methods operate on a lo-
cal receptive field is helpful for sharpening semantic feature
and suppress non-semantic ones by a soft mask after Sig-
moid normalization.

3. Our work
3.1. Overview

The CrackFormer adopts the basic structure of the Seg-
Net [31], shown in Fig.2. To establish long-range interac-
tion between the low-level feature maps, we propose novel
self-attention blocks as the basic module. To enhance crack
crispness, we introduce a local attention block between en-
coder and the corresponding decoder features to generate at-
tention masks. Finally, multi-stage side fusion is exploited
between feature maps of different stages to fuse coarse to
fine cracks to obtain a refined result.

Similar to the SegNet, the CrackFormer’s encoder con-
sists of the first 13 convolutional layers of the VGG16 [29]
network, and they are deployed in 5 stages according to the
layout of {2,2,3,3,3}. Meanwhile, the corresponding de-
coder has a symmetrical layout of {3,3,3,2,2}. In con-

trast, the 3 x 3 convolution module at each layer of SegNet
is replaced by the self-attention block in the CrackFormer
(Sec.3.2).

At the end of each stage, a maximum pooling with a 2 x 2
window and stride of 2 (non-overlapping window) is used
to reduce the size of feature maps by one half. The max-
pooling indices, i.e, the locations of the maximum feature
value in each pooling window, are memorized for each en-
coder feature map. The appropriate decoder upsamples its
input feature map(s) using the memorized max-pooling in-
dices from the corresponding encoder feature map(s). At
each stage, the corresponding encoder and decoder features
are concatenated to generate an attentive mask by a scaling-
attention block to refine each tensor of each stage (Sec.3.3).

The predicted results in all stages are then fused to gen-
erate the final result. The predicted results in each stage and
fused features are resized to the original dimension of the
input image, and the model is supervised by a multi-loss
function in training phase.

3.2. Self Attention for Long Range Capture

In the CrackFormer, the self-attention block (Self-AB) in
encoder and decoder is a bottleneck module with two CBR
(Conv-BatchNorm-ReLU) blocks, composed of 1 x 1 conv,
BatchNorm and ReL.U, and a self-attention layer (SAL in
short) between them (Fig.3(b)).

.
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Figure 3. The self-attention block and self-attention layer.
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The self-attention layer is a position embedded self-
attention block simultaneously with large receptive field
and 1x1 convolution kernels, which is shown as Fig. 3(a).
Let X € R4nxWH pe g input tensor, where W and H
represent the width and height of image and d;,, denotes the
channel of input tensor. This layer applies three 1 x 1 convo-
lutions to generate the keys, queries, and values to generate
new features F¢ € RowtxWH (g . denotes the channel
of output features) using the following content-based multi
head self-attention operation,

FC:Q®(U(KT)®V), (1)

where ® is a matrix multiplication operation. Let h be
the number of head, d,, be intra-depth dimension, r be the
receptive field size, dj and d, be the dimension of tensor
K and V, respectively. Then we have Q € R *hxWH
K € RéxduXWH 45 vV ¢ RdbvxduXWH [ et 5 denote
the operation of applying softmax normalization on the ten-
sor. This attention operation can be interpreted as first ag-
gregating the pixel features in V' into global context vectors

using the weights in o (K T) , and then redistributing the

global context vectors back to individual pixels using the
weights in Q. We notice its similarity to the one used in
Bello [3], but it does not use batch normalization on queries
and values. Softmax normalizing on the keys constrains the
output features to be convex combinations of the global con-
text vectors.

The relative position embedding can make the global
context vector obtain an effective receptive field in a neigh-
bour region. A relative positional embedded kernel E;,, €
Rk xduxrxr jq defined as learnable weight parameters,
where r indexes the possible relative positions for all (n, m)
pairs. The contextual vector E;  as a convolutional kernel
is embedded to the context vectors according to the follow-
ing equation,

FP =Q @ (2p; (V)) )

nm

Finally, the output context vector of the self-attention
layer is the element-wise addition of the global content vec-
tor and position embedded vector, F"* = F° @ F?, where
@ is the matrix element-wise addition operator. Note that
the computational and memory complexities of this layer
are O(NN) in the number of pixels.

3.3. Scaling Attention for Sharpening Crack

At each stage, the feature vectors in the encoder and de-
coder are connected and combined according to the scaling-
attention block (Scal-AB) to generate the salient and crisp
crack boundary map (Fig. 4). The attention-gate mechanism
in Attention U-Net [23] inspires that the feature vectors in a
specific decoder block can boost segmentation performance

by combining the feature vectors in the corresponding en-
coder block. In essence, the attention-gate mechanism gen-
erates an attentive mask, which is normalized to o; € [0, 1]
by a Sigmoid activation function, and multiplies element-
wise to those features to be refined. In this way, it acts as
a filter to activate some features within a region of interest
and simultaneously suppress other irrelevant features.
Thus, we propose a scaling-attention block on the en-
coder and decoder features. Specifically, at each stage of
the CrackFormer, we use features in encoder to generate an
attentive mask as attention coefficients and multiply them
element-wise to the corresponding features in decoder to
active crack features and suppress the non-crack ones.

Encoder Decoder

Stage k = Stage k
input 5 output
—> —> —> e o o 3 —> —> —
2
H
‘ | -
‘ -
(- »(c)«
S ;
Conv Conv ;@ Concatenation |
BatchNorm BatchNorm, ReLU | !
¥ l Multiplication !
° 1 Element-wise !
1

Figure 4. The scaling-attention block.

Let’s take the k'"-stage fusion as an example, fea-
tures from the encoder and decoder are { X¥, X5, X%} and
{Y{,YF YF}, respectively. Based on Fig. 4, the mask is
generated according to

Lk rase = 0 (BN (@343 (T (XT, X5, X5)))) O

where I'(-) denotes a tensor concatenation operation, and
®3x3(+) denotes a 3 X 3 convolution operation and followed
by a BatchNorm BN, and 4(-) is a Sigmoid activation func-
tion. Subsequently, side output of the k' stage is predicted
by the scaling-attention mechanism as follows,

side

S¥ie = Liask © BN (®3x3 (T (Y, Y5, YF))) @)

where ® denotes an element-wise multiplication oper-
ation. The scaling-attention maps at each stage are visu-
alised as Fig. 5, which is an attention coefficient mask from
high-level features. Around the semantic crack, there is a
stronger response. From the output features of different
stages, we can see a coarse to fine semantic crack response,
which can be used to refine more crisp boundary.

After the feature in each stage is upsampled in order to
make its dimension the same as that of the input image, we
get five predicted results S*., |k = 1,2,--- 5, which are

side)
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Figure 5. From left to right: the scaling-attention maps from stage
1 to stage 5, respectively.

concatenated and fused to generate the final output Sy
like the HED [34], RCF [19] and DeepCrack [37] etc. Fi-
nally, all sides and fused output are fully supervised by the
crack ground truth labels.

3.4. Loss Function

The balanced weight cross-entropy loss function ever
used in the RCF network [20] is adopted with a small mod-
ification for training, where the pixels in the label whose
normalized intensities y; are higher than 7 are considered as
positive samples, and the pixels with probability between 0
and 0.05 as negative samples, and pixels in between as ne-
glected.

alog (1 —P(X;W)) 0<y; <0.05
[(X;; W) = 0 0.05 < y; <
Blog P (Xi; W) Yi >
&)

L S L I

where o = )\W, and § = AT with [V
and |Y | representing the number of positive and negative
samples, respectively. A is used to balance the loss ratio of
positive and negative samples. Let X; be the value of pixel
i, and y; be the probability of pixel ¢ in the labeled image,
and P (X;; W) representing the predicted probability of the
pixel being crack, and W the weight of the model.

To reweigh each side output in training process, we
weigh the loss on different side outputs, and increase the
weights in the last two sides and the fusion side. The total
loss function is

n 5
L(W) = Z ( Sfide -l (Xlk’ W) + Sfuse -1 (Xifuse ; W))
k=1

i=1 =

(6)
where S,k € {1,2,3,4,5}, represents the loss
weight of the k., stage, Syyuqe the loss weight of the fu-
sion layer, n the total number of pixels in each sample, and

k the number of side outputs, respectively.

4. Implementation Details

Data Augmentation - We augment the training set by
random clipping, flipping, and rotation operations. We also

use Gamma transformation on the training images to reduce
the influence of brightness. In the end, we expand each
training set by 228 times of the original samples.

Training & Validation Parameters - To improve the
robustness of the model, the images in the training set
hold its original dimension and have not been resized. The
BatchSize in the experiment is set to 1, and the Shuffle strat-
egy is set True. We choose the Stochastic Gradient Descent
(SGD) as optimizer and set the MOMENTUM to 0.9.

Due to the data augmentation, the total training epoch
is set to 500 and the initial learning rate is set to le-3. We
adopt the StepLR strategy to adjust the learning rate at epoch
20, 50 and 100. At each epoch milestone, the learning rate
will decay 1/10 times of the previous one.

5. Experiments
5.1. Datasets

Our model is trained and evaluated on three pub-
lic benchmarks, the CrackTree260, CracklLS315 and
Stone331.

The CrackTree260 [25] contains 260 road pavement
images. These pavement images are captured by an area-
array camera under visible-light illumination, and the size
of each sample is 800 x 600. 200 samples are chosen for
training, 20 samples for validation and 40 samples for test-
ing.

The CrackLS315 [37] contains 315 images of asphalt
pavement captured under laser illumination by a line-array
camera. Each image has a size of 512 x 512. Among them,
265 samples are selected for training, and the remaining 10
samples for validation and 40 samples for testing.

The Stone331 [17] contains 331 images of the stone sur-
face, captured by an area-array camera under visible-light
illumination. Original image size is 1024 x 1024, because
of the irregularity of cutting surface, original images are
center-cropped to 512 x 512 clipped samples. 261 images
of them are chosen for training, 20 for validation and 50 for
testing.

5.2. Performance Metrics

The performance metrics of Precision (abbre. as PR)

and Recall (abbre. as RE) are calculated as PR = ——-L

TP+FP
_ _ TP : P
and RE = 755 for binary classification tasks.

Specifically, for each image, PR and RE can be calcu-
lated by comparing the detected cracks against the human
annotated ground truth. Then, the F-measure (i,%i'gg)
can be computed as an overall metric for performance eval-
uation. Specifically, three different F-measure-based met-
rics are employed in the evaluation, the best F-measure on
the data set for a fixed threshold - Optimal Dataset Scale
(ODS), the aggregate F-measure on the data set for the best

threshold on each image - Optimal Image Scale (OIS), and
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the average precision (AP), which is equivalent to the area
under the precision-recall curve [8].

5.3. Comparison with the SOTA methods

To evaluate our model’s performance, some classical
models, such as the SE [8], HED [34], RCF [20], Seg-
Net [31], SRN [16], U-Net [27], FPHBN [35] and Deep-
Crack [37] are compared with ours on crack detection task.
The SE [8] is a classical method based on random decision
forest used for edge detection. The HED [34] is a model
based on the VGG16, whose feature maps are generated at
each stage of the VGG16 and aggregated for multi-stage
fusion. The RCF [20] and SRN [16] are similar with the
HED, which is an extension of the HED. The SegNet [31]
and U-Net [27] are encoder and decoder architecture with
symmetrical structures. The DeepCrack [37] is an exten-
sion to the SegNet for crack detection.

5.3.1 The Results on the CrackTree260

The CrackTree260 is a thin crack dataset labeled with a sin-
gle pixel width or extremely tiny edges. On the asphalt
surface and under visible-light illumination, the crack ex-
hibits extreme weak contrast between the ”crack” and non-
crack” pixels.

Model | ODST OISt AP{ [ FLOPs| mParal
SE [8] 0.662 0.673 0.683 - -
FPHBN [35] | 0.517 0579 - - -
SRN [16] 0.774 0.781 0.779 | 451.3G  28.5M
HED [34] 0.816 0.820 0.831 | 146.9G 14.7M
SegNet [1] 0.844 0.851 0.862 | 311.3G  29.5M
U-Net [27] 0.847 0.832 0.869 | 400.0G  31.0M
RCF [20] 0.857 0.863 0.861 | 187.9G 14.8M
DeepCrack [37] | 0.852 0.864 0.875 | 1001.7G  30.9M
CrackFormer | 0.881 0.883 0.896 | 123.0G  7.35M

Table 1. Performance on the CrackTree260.

From the precision-recall curves in Fig. 9(a) and statis-
tical performance in Tab. 1, it can be seen that the Crack-
Former outperforms the compared SOTA methods on the
CrackTree260, with 0.881 on ODS, 0.883 on OIS and 0.896
on AP, respectively. We obtain a gain of 2.9% on ODS,
2.3% on OIS and 2.1% on AP, respectively. compared
with the DeepCrack. Visualized results in Fig. 6 show that
the CrackFormer’s results are more continuous and crisp
than the compared deep learning models. The crack pro-
file shows that the CrackFormer can achieve high prediction
accuracy even for cracks with one-pixel width or tiny edge.

5.3.2 The Results on the CrackLS315

The images of this dataset are captured under laser illumi-
nation. The training on this dataset is more difficult than on

Figure 6. Predicted results on the CrackTree260. From top to bot-
tom row: the original crack images, the ground truth, the results
by the proposed CrackFormer, the results by DeepCrack [37], the
results by RCF [19], respectively.

the other datasets because of the extreme low contrast. The
precision-recall curves are shown in Fig. 9(b).

Model [ ODSt OISt APt [ FLOPs| mParal

SE [8] 0.459 0521 0.495 - -
U-Net [27] 0.672  0.703 0.740 | 218.6G  31.0M
SRN [16] 0.755 0.789 0.795 | 246.6G  28.5M
SegNet [1] 0.761 0780 0.780 | 170.1G  29.5M
HED [34] 0.763 0.798 0.829 | 803G  14.M
RCF [20] 0.788 0.816 0.829 | 102.7G  14.8M
DeepCrack [37] | 0.853 0.867 0.877 | 547.4G  30.9M
CrackFormer 0.871 0.879 0.883 | 67.2G 7.35M

Table 2. Performance on the CracklLS315.

It can be seen from Tab. 2 that the CrackFormer achieves
the best performance on the CrackL.S315. It obtains a gain
of 1.8% on ODS, 1.2% on OIS, 0.6% on AP, respectively,
compared with the DeepCrack. The ODS of the HED, SRN,
SegNet and U-Net, is 10.8%, 11.6%, 11.0% and 19.9%
lower than the CrackFormer, respectively. Compared with
the method SE, the DeepCrack obtains an improvement of
41.2% in terms of ODS. The HED, SRN, RCF and SegNet
show comparable results, while the CrackFormer has bet-
ter performance than these methods. Visualized results in
Fig. 7 (seen as the middle row) show that the CrackFormer
can predict more detailed thin crack from low contrast as-
phalt pavements.
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Figure 7. Predicted results on the CrackL.S315. From top to bottom
row: the original crack images, the ground truth, the results by the
CrackFormer, the results by the DeepCrack [37], the results by the
RCF [19], respectively.

5.3.3 The Results on the Stone331

This dataset is from stone cutting surface and its smooth
surface makes the crack texture too weak to be observed
even by human eyes. The visualized results in Fig. 8 (seen
as the first row) show that the CrackFormer can predict the
most continuous and complete crack detection results. It
can be seen from precision-recall curves in Fig. 9(c), the
CrackFormer outperforms the other compared methods.

Model | ODST OISt APt | FLOPs| mPara]

SE [8] 0.557 0.623 0.605 - -
HED [34] 0.719 0.763 0.758 | 80.3G  14.7M
SRN [16] 0.735 0.776 0.741 | 246.6G  28.5M
U-Net [27] 0.757 0.776 0.809 | 218.6G 31.0M
RCF [20] 0.789 0.829 0.820 | 102.7G  14.8M
SegNet [1] 0.794 0.815 0.787 | 170.1G  29.5M
DeepCrack [37] | 0.856 0.875 0.888 | 547.4G  30.9M
CrackFormer | 0.877 0.885 0.894 | 67.2G  7.35M

Table 3. Performance on the Stone331.

From statistical performance in Tab. 3, the CrackFormer
achieves an ODS of 0.877, 0.885 OIS and 0.894 AP, respec-
tively, on the test dataset. The CrackFormer obtains a gain
of 2.1% on ODS, 1.0% on OIS and 0.6% on AP, respec-
tively, compared with the DeepCrack. Compared with the
mainstream deep learning models, it outperforms by 8.3%,

8.8%, 12.0% and 14.2% on ODS over the SegNet, RCF,
U-Net and SRN, respectively. Compared with traditional
method SE, the CrackFormer obtains an improvement of
32% in terms of ODS.

Figure 8. Predicted results on the Stone331. From top to bot-
tom: the original crack images, the ground truth, the results by
the CrackFormer, the results by the DeepCrack [37], the results by
the RCF [19], respectively.

5.4. Multi-scale Analysis

The multi-scale fusion scheme has proven to be an effec-
tive way to enhance crack detection performance [18]. In
fact, because crack images exhibit different characteristics
at different scales. At a large-scale stage, crack detection
is reliable, but its localization is poor and may miss thin
cracks. At a small-scale stage, details are preserved, but
detection suffers a lot from clutters in background texture.
Therefore, we quantitatively analyze output of different-
scale stage and scale-wise fusion performance on the three
datasets. The statistical results are shown in Tab. 4. Over-
all, the ODS and OIS values increase step by step from
stage S1 to S5, and we obtain a 9.4% ODS gain in aver-
age. This means that the output of the CrackFormer from
coarse to fine scale (stage) gradually matches the true scale
of this kind of thin crack benchmark. From the viewpoint
of multi scale fusion, it can be found that the incremental
fusion experiments from S1+S2 to S1+S2+S3+S4, or even
to all scale fusion (S1+S2+S3+S4+S5) could increase the
ODS and OIS values over the output of each single scale.
Moreover, the final fused results can further obtain the ODS
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2* Scale CrackTree260  CrackL.S315 Stone331
ODST OISt ODS 1 OISt ODST OISt
S1 0.680 0.702 0.648 0.671 0.760 0.771
S2 0.709 0.723 0.691 0.632 0.769 0.775
S3 0.740 0.742 0.746 0.652 0.779 0.812
S4 0.756 0.761 0.755 0.661 0.796 0.821
S5 0.799 0.801 0.761 0.665 0.809 0.815
S1+S2 0.768 0.772 0.735 0.742 0.815 0.820
S1+S2+S3 0.802 0.818 0.809 0.821 0.821 0.823
S1+S2+S3+S4 | 0.854 0.857 0.828 0.835 0.851 0.867
Fused 0.881 0.883 0.871 0.879 0.877 0.883

Table 4. Multi-the scale analysis on the three datasets.

gain over the finest scale (S5) by 8.7% in average.

5.5. Efficiency Analysis

The FLOPs test and parameters calculation on the com-
pared models are shown from Tab. 1 to Tab. 3 with dif-
ferent inference image sizes (600 x 800, 512 x 512 and
512 x 512, respectively). It shows that the CrackFormer
is more efficient and requires fewer parameters. Specifi-
cally, the CrackFormer achieves higher accuracy than the
the DeepCrack [37] with 8.1x fewer FLOPs and 4.2x fewer
parameters. Compared to the other classical models, the
CrackFormer achieves a higher ODS value, 2x to 3x faster
in average and 2x to 3x fewer parameters.

5.6. Ablation Study

To further check the gain of each module of our model,
ablation study is done on the CrackL.S315. The experimen-
tal results are shown in Tab. 5. We first select the SegNet
as the baseline. After the conv 3 x 3 is replaced by the
Self-AB in the encoder and decoder, the gain on ODS and
OIS is 9.8% and 8.9%, respectively, showing that the self-
attention block is effective for fine-grained crack represen-
tation. Similarly, the Scal-AB can get a 9.7% ODS gain
and an 8.9% OIS gain independently. Furthermore, com-
pared with the DeepCrack, after the Self-AB is applied to
the DeepCrack, the gain on ODS and OIS is 1.1% and 0.3%,

respectively. In addition, the Scal-AB block can get a gain
0f 0.9% and 0.5% on ODS and OIS, respectively, indicating
that the model works better on multi-scale fusion architec-
ture as well. Finally, the Self-AB and Scal-AB modules
further achieve a gain of 0.7% — 0.9% and 0.7% — 0.9% on
ODS and OIS, respectively, indicating that the two attention
mechanisms are compatible in crack detection task.

Model | Self-AB Scal-AB MSF | ODS 1 OIS 1
SegNet 0.761  0.780
DeepCrack v 0.853  0.867
- v 0.859  0.869

- v 0.858  0.869

- v v 0.864  0.870

- v v 0.862  0.872
CrackFormer v v v 0.871  0.879

Table 5. Ablation study on the CrackLS315.

6. Conclusion

The proposed CrackFormer aims at detecting fine-
grained cracks. We derive our model from the Seg-
Net basic architecture and novel attention mechanisms.
The proposed self-attention modules are embedded in the
encoder-decoder blocks, where the 1x1 convolutional ker-
nels are adopted for extracting contextual information
across feature-channels, and efficient positional embedding
to capture large receptive field spatial contextual informa-
tion for long range interactions. The proposed scaling-
attention modules combine output from the correspond-
ing encoder and decoder, and enable to obtain crisp crack
boundary. On three classical crack detection benchmark
datasets, the CrackTree, CrackLS315 and Stone331, we
can obtain pixel-level crack detection accuracy and achieve
SOTA performance.
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