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Abstract

Knowledge Distillation has shown very promising abil-
ity in transferring learned representation from the larger
model (teacher) to the smaller one (student). Despite
many efforts, prior methods ignore the important role of
retaining inter-channel correlation of features, leading to
the lack of capturing intrinsic distribution of the feature
space and sufficient diversity properties of features in the
teacher network. To solve the issue, we propose the
novel Inter-Channel Correlation for Knowledge Distillation
(ICKD), with which the diversity and homology of the fea-
ture space of the student network can align with that of
the teacher network. The correlation between these two
channels is interpreted as diversity if they are irrelevant
to each other, otherwise homology. Then the student is
required to mimic the correlation within its own embed-
ding space. In addition, we introduce the grid-level inter-
channel correlation, making it capable of dense prediction
tasks. Extensive experiments on two vision tasks, includ-
ing ImageNet classification and Pascal VOC segmentation,
demonstrate the superiority of our ICKD, which consis-
tently outperforms many existing methods, advancing the
state-of-the-art in the fields of Knowledge Distillation. To
our knowledge, we are the first method based on knowl-
edge distillation boosts ResNet18 beyond 72% Top-1 ac-
curacy on ImageNet classification. Code is available at:
https://github.com/ADLab-AutoDrive/ICKD.

1. Introduction
It is widely witnessed that larger networks are superior in

learning capacity compared to smaller ones. Nevertheless,
due to the great amount of energy consumption and compu-
tation costs, a large network (e.g., ResNet-50 [9]), though
powerful, is difficult to deploy on mobile systems. Hence,
there is a growing interest in reducing the model size while
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Figure 1: Illustration of inter-channel correlation. The
channels orderly extracted from the second layer of
ResNet18 have been visualized. The channels denoted by
red boxes are homologous both perceptually and mathemat-
ically (e.g., inner-product), while the channels denoted by
orange boxes are diverse. We show the inter-channel corre-
lation can effectively measure that each channel is homolo-
gous or diverse to others, which further reflects the richness
of the feature spaces. Based on this insightful finding, our
ICKD can enforce the student to mimic this property from
the teacher.

preserving comparable performance, which bridges the gap
between small networks and large networks.

Knowledge distillation is one of the promising meth-
ods to this problem. It is acknowledged that Bucila et al.
[1] introduced the idea of knowledge distillation and Hin-
ton et al. [12] further popularized this concept. The key
idea of knowledge distillation is to let the student network
mimic the teacher model. The underlying principle is that
teachers can provide the knowledge that ground truth la-
bels can not tell. Despite its success, this technique, de-
voted to instance-level classification, may lead the student
to mainly learn the instance-level information but not struc-
tural information, which limits its application. Prior works
[19, 20, 21, 27, 28] have been proposed to help the student
network learn the structural representation for better gener-
alization ability. These methods generally utilize the cor-
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relation of the instances to describe the geometry, similar-
ity, or dissimilarity in the feature space. We call this fash-
ion layer-wise relational knowledge distillation since they
mainly focus on exploring the correlation between feature
maps in the level of layer. Conversely, we pay more atten-
tion to the inter-channel correlation.

Previous works [16, 25] make use of knowledge distil-
lation to reduce the homology (i.e., redundancy) of the stu-
dent’s feature space. Nevertheless, the success of Ghost-
Net [7] suggests that small neural networks benefit from in-
creased feature homology. The rich representation can em-
power the downstream tasks and both the diversity and ho-
mology can reflect the richness. Existing literature neglects
the importance of feature diversity and homology, yield-
ing an issue that the proportion of feature diversity versus
homology may be unbalanced against our expectation that
student can learn the representation as rich as the teacher is
for better generalization. In Fig. 1, the visualized feature
maps show that feature diversity and homology co-exist in
the networks. This property can be disclosed by the cor-
relation between channels, where high relevance represents
homology and low relevance represents diversity. In this
paper, we adopt the Inter-Channel Correlation (ICC) as the
indicator of the diversity and homology of the feature dis-
tribution. However, figuring out the optimal inter-channel
correlation manually is impractical. An intuitive solution is
to let the student learn better inter-channel correlation from
the teacher, as shown in Fig. 2. Due to the discrepancy of
learning capacities [4], it is not viable to force the student
to mimic the whole feature map of the teacher. Instead,
we let the student model learn the inter-channel correlation
from the teacher, namely inter-channel correlation knowl-
edge distillation (ICKD).

The correlation between the two channels is evaluated
by the inner product in this paper. As the inner product col-
lapses the spatial dimension, it naturally does not need to
constrain the feature map spatial size of the teacher network
and student network to be the same. On the other hand,
when it comes to a large feature map, e.g. semantic seg-
mentation models, the mapping between the inter-channel
correlation measured by the inner product and the original
feature space is of high freedom. Thus it will be more dif-
ficult to distill the inter-channel correlation distribution to
anchor the teacher’s feature space distribution. To alleviate
this problem, we propose a grid-level inter-channel corre-
lation distillation method. By dividing the feature map of
size h × w × c by a pre-defined grid into n × m patches
of size hG × wG × c. Distillation on patch-level is more
controllable and we can perform the distillation on the en-
tire feature map by aggregating the inter-channel correlation
distillation across these patches. In addition, the local spa-
tial information can be preserved since each patch can keep
the knowledge in specific region.

In our experiments, we have evaluated our proposed
method in different tasks including classification (Cifar-100
and ImageNet) and semantic segmentation (Pascal VOC).
The proposed method shows a performance superior to
the existing state-of-the-arts methods. To our knowledge,
we are the first knowledge distillation method that boosts
ResNet18 beyond 72% Top-1 accuracy on ImageNet clas-
sification. And on Pascal VOC, we achieved 3% mIoU im-
provement compared to the baseline model.

To summarize, our contributions are:

• We introduce the inter-channel correlation, with the
characteristic of being invariant to the spatial dimen-
sion, to explore and measure both the feature diversity
and homology to help the student for better represen-
tation learning.

• We further introduce the grid-level inter-channel cor-
relation to make our framework capable of dense pre-
diction task, like semantic segmentation.

• To validate the effectiveness of the proposed frame-
work, extensive experiments have been conducted on
different (a) network architectures, (b) downstream
tasks and (c) datasets. Our method consistently outper-
forms the state-of-the-arts methods by a large margin
across a wide range of knowledge transfer tasks.

2. Related Works
Knowledge Distillation. Given by [12], the student net-
work is required to minimize the KL-divergence between
the logits (before softmax) output by the student and
teacher, where a temperature τ is applied to soften the log-
its. This procedure, making it different from the ground
truth label, will increase the low probability in the logits,
which is referred to dark knowledge.

To learn more generic representation, recent works [19,
20, 21, 27, 28] explored the structural information within
the feature space of the teacher and transferred it to the stu-
dent. Tung and Mori [28] measured the similarity among
the given instances in the teacher’s feature space and asked
the student to match the same similarity. Peng et al. [21]
presented the kernel-based correlation congruence. A ker-
nel function was employed to measure the correlation met-
ric of each paired instances in the feature space. Similarly,
the student is required to share the same correlation metric
with the teacher. RKD [19] further introduced the angle-
wise relation given a triplet of instances. More recently,
Tian et al. [27] introduced contrastive learning to maxi-
mized the mutual information between the representation
of the student and teacher.

Romero et al. [22] proposed the distillation in the in-
termediate layers between the student (i.e., guided layer)
and the teacher (i.e., hints layer). The student is taught to
minimize the Euclidean distance of the feature maps from
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Figure 2: Illustration of the proposed ICKD. We measure the inter-channel correlation of the teacher feature and ask the
student to share with the same property. The cubes represent the 3D feature tensors extracted from the teacher and student.
They are flattened to the corresponding 2D matrices which are used to compute the ICC matrices. We minimize the MSE
between the ICC matrices associated with the feature tensors. The student is also asked to minimize the KL-divergence
between the logits of the teacher and student. Finally the cross-entropy loss is applied on the student.

guided layer and hints layer. Because the semantic informa-
tion contained within the feature varies from layer to layer
according to depth and width, existing works [15, 34, 2] has
shown that layer-wisely match a pair of guided layer and
hints layer may not be an optimal choice. AT [34] proposed
a statistical method to highlight the attention, compressing
the 3D feature tensor to a 2D feature map. Chen et al. [2]
proposed semantic calibration to assign the target teacher
layer to the student layer across layers depending on the
inner-products of the teacher layers and the student layers.
Ji et al. [15] measured the similarities, bounded to 1 with a
softmax function, between the teacher and student features,
which was used as the weights to balance the feature match-
ing.
Semantic Segmentation. In spite of great challenge, some
approaches based on knowledge distillation had been pro-
posed in semantic segmentation. He et al. [10] pre-trained
an auto-encoder to match the features between the student
and teacher, which also measured the affinity matrix of the
paired instances in the teacher network and transferred it to
the student network. Liu et al. [17] proposed the structured
knowledge distillation consisting of the pair-wise similarity
transfer and pixel-wise distillation like [12]. Liu et al. also
transferred the holistic knowledge via adversarial learning.
Wang et al. [30] proposed the Intra-class Feature Variation
Distillation that also measured the pair-wise similarity be-
tween the features of each pixel and that of the correspond-
ing class-wise prototype. Heo et al. [11] proposed a distil-
lation loss with a designed margin ReLU to boost the per-
formance of a student on semantic segmentation.

We further extend the framework with the grid-level
inter-channel correlation for stabilizing the distillation pro-
cess and preserving the spatial information. Perhaps our
work is most close to Huang and Wang [13] which utilizes
the Gram Matrix [6]. Yim et al. [32] proposed the flow of

solution procedure that computed the Gram matrix across
layers. The difference is that [13, 32] measure the relation
between pixel-wise positions and we explore the correlation
between two channels.

3. Method
In this section, we first briefly introduce the preliminary

of knowledge distillation. Then we formulate the proposed
method to show how we can compute the ICC matrix. Fi-
nally, we extend the framework with the grid-level inter-
channel correlation.

3.1. Preliminary

Let XN denote a set of distinct examples with cardi-
nality N . Suppose that we have a teacher model T and
a student model S, which are denoted by fT and fS , re-
spectively. In practice, fT and fS can be any differential
function and we parameterize them as convolutional neural
network (CNN) here. FT ∈ Rc×h×w represents the em-
bedding in the teacher network, where c is the number of
output channels, h and w represents the height and width of
the feature map. Similarly, let FS ∈ Rc′×h′×w′ denote the
embedding in the student network. In general, traditional
knowledge distillation attempts to minimize the divergence
between the embedding of the student and the teacher, in
[12] the formulation can be described as:

LKL =
1

N

N∑
i=1

DKL(σ(
fT (xi)

τ
), σ(

fS(xi)

τ
)), (1)

whereDKL(·, ·) measures the Kullback-Leibler divergence,
σ(·) is the softmax function, τ is the temperature factor,
fT (x) and fS(x) represent the outputs of the penultimate
layer (before softmax) in the teacher network and the stu-
dent network, respectively.
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3.2. Formulation

In this section we introduce the formulation of inter-
channel correlation. Given two channels, the correlation
metric should return a value reflecting their relevance. A
high value indicates homologous otherwise diverse. Ulti-
mately all the correlation metrics are gathered sequentially
to represent the holistic diversity of the channels. The inter-
channel correlation can be defined by

GF
T

m,n = K(v(FT
m), v(FT

n )), (2)

where FT
m ∈ Rh×w denotes the m-th channel of the fea-

ture FT , v(·) vectorizes a 2D feature map into a vector with
length hw, andK(·) is a function that measures the correla-
tion of a input pair, where inner product is employed. Note
that Eq. 2 returns a scalar in spite of the spatial dimensions
of the channel. This can be rewritten in a manner of matrix
multiplication, forming our ICC matrix:

GF
T

= f(FT ) · f(FT )>, (3)

where f(FT ) ∈ Rc×hw flattens the spatial dimensions. The
resulting ICC matrix has a size of c × c regardless of the
spatial dimensions h and w. Following the empirical set-
ting [29, 10], we add a linear transformation layer Cl on top
of the feature of the student, which consists of a convolution
layer with 1 × 1 kernels and a BN layer without activation
function. In case that the output dimension c′ of the stu-
dent mismatches with that of the teacher, Cl can adapt FS

to match the output dimension c of FT . This procedure
would not change the spatial dimensions. We penalize the
L2 distance between the ICC matrices of the student and
the teacher, allowing the student to obtain similar feature
diversity.

LCC =
1

c2
||GCl(F

S) − GF
T

||22. (4)

We refer the method described above as ICKD-C, which
is mainly developed for image classification. Finally, the
objective of our method is given by

LICKD−C = LCE + β1LKL + β2LCC, (5)

where LCE is the cross-entropy loss, β1 and β2 are the
weight factors.

3.3. Grid-Level Inter-Channel Correlation

In Eq. 3, we simply flatten the entire 3D feature map
into the corresponding 2D matrix and then calculate the ICC
matrix. When coming into semantic segmentation, the final
feature map can be very large, e.g. 256×128×128. The cor-
relation of two channels is generated by the inner-product of
two vectors of length 16,384. Generally, these two vectors
can be seen as sampled from an independent distribution,
the correlation value will be of a very small order of magni-
tude, that means the correlation result is vulnerable to noise.
In this situation, the inter-channel correlation of the student
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Figure 3: Grid-level Inter-Channel Correlation. We
evenly divide the original feature into n×m parts and com-
pute their ICC matrices individually. We then minimize the
MSE on each paired ICC matrices.

model in training process may be unstable. Motivated by
the divide-and-conquer, we seek to split the feature map and
then perform knowledge distillation individually.

Based on this idea, we introduce the grid-level inter-
channel correlation. We evenly partition the feature FT into
n × m parts along the pixel position, denoted by FT

(i,j),
i = 1, 2, ..., n, j = 1, 2, ...,m. Each part is of size
c × hG × wG where hG = h/n and wG = w/m. Each
part presents the semantic on a patch level. The ICC matrix
of each part is computed individually as described in Sec.
3.2. Then all the ICC matrices are aggregated.

GF
T
(i,j) = f(FT

(i,j)) · f(F
T
(i,j))

>, (6)

GF
S
(i,j) = f(FS

(i,j)) · f(F
S
(i,j))

>, (7)

Ln×m
CC =

1

n×m× c2
n∑
i

m∑
j

||GF
T
(i,j) − GF

S
(i,j) ||22. (8)

As depicted in Fig. 3, we use a Grid Mask to evenly
divide the whole feature into different groups. Despite the
change of spatial dimensions, the size of the resulting ICC
matrix always depend on the numbers of channels, i.e., c. In
addition, the grid division also helps to extract more spatial
and local information, which is beneficial in correctly clas-
sifying pixels for semantic segmentation [31]. This variant
is referred to ICKD-S. Finally, the objective for semantic
segmentation is formulated as:

LICKD−S = LSeg + αLn×m
CC , (9)
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Table 1: Top-1 accuracy (%) in Cifar-100 testing set. Methods are divided into two groups. The performance of each method
against traditional KD [12] is reported. For fair comparison, we also report the performance of our method without LKL. We
find that our ICKD-C outperforms all the other methods.

Method
Network Architecture

WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet110 ResNet32×4 VGG13
WRN-16-2 WRN-40-1 ResNet20 ResNet20 ResNet32 ResNet8×4 VGG8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Vanilla 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [12] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [22] 73.58−1.34 72.24−1.30 69.21−1.45 68.99−1.68 71.06−2.02 73.50+0.17 71.02−1.96

AT [34] 74.08−0.84 72.77−0.77 70.55−0.11 70.22−0.45 72.31−0.77 73.44+0.11 71.43−1.55

SP [28] 73.83−1.09 72.43−1.11 69.67−0.99 70.04−0.63 72.69−0.39 72.94−0.39 72.68−0.20

CC [21] 73.56−1.36 72.21−1.33 69.63−1.03 69.48−1.19 71.48−1.6 72.97−0.36 70.71−2.27

RKD [19] 73.35−1.57 72.22−1.32 69.61−1.05 69.25−1.42 71.82−1.26 71.90−1.43 71.48−1.5

PKT [20] 74.54−0.38 73.45−0.09 70.34−0.32 70.25−0.42 72.61−0.47 73.64+0.31 72.88−0.10

FSP [32] 72.91−2.01 NA 69.95−0.71 70.11−0.56 71.89−1.19 72.62−0.71 70.20−2.78

NST [13] 73.68−1.24 72.24−1.3 69.60−1.06 69.53−1.14 71.96−1.12 73.30−0.03 71.53−1.45

ICKD-C (w/o LKL) 75.64+0.72 74.33+0.79 71.76+1.1 71.68+1.01 73.89+0.81 75.25+1.92 73.42+0.44

ICKD-C (Ours) 75.57+0.65 74.63+1.09 71.69+1.03 71.91+1.24 74.11+1.03 75.48+2.15 73.88+0.9

where α is the weight factor and LSeg is the supervised seg-
mentation loss. LSeg, though, can be replaced with other
loss for different downstream tasks, this is not the focus of
this paper.

4. Experiments
We evaluate the effectiveness of the proposed model on

two vision tasks: image classification and semantic segmen-
tation. For image classification, we conduct the experiments
on Cifar-100 and ImageNet. To verify the generalization of
our framework, we further conduct experiments of semantic
segmentation on the large-scale benchmark Pascal VOC.

4.1. Datasets

ImageNet. This dataset has about 1.2M training sam-
ples labeled into 1,000 categories. The images are resized
to 224×224 for both training and testing. Usually, the per-
formance of a model is measured by Top-1 and Top-5 clas-
sification accuracy.

Cifar-100. This dataset contains 50,000 training im-
ages and 10,000 testing images, labeled into 100 categories.
Each image is of size 32× 32× 3. Top-1 classification ac-
curacy is adopted to measure the model.

Pascal VOC. This dataset contains 20 foreground object
classes plus an extra background class. It has 1,464 images
for training, 1,499 images for validation and 1,456 images
for testing. We also include the coarse annotated training
images from [8], resulting in 10,582 training images in to-
tal. We employ mean Intersection over Union (mIoU) to
evaluate the effectiveness of the proposed model.

4.2. Implementation Details

For image classification, the feature map before the
global average pooling layer is used for distillation. We em-

pirically set the weight factors of β1 and β2 in Eq. 5 to 1
and 2.5, respectively. On Cifar-100, the SGD optimizer [26]
is applied to train the student model with Nesterov momen-
tum and a batch size of 64. The initial learning rate is 5e-2
and decayed by 0.1 at epochs 150, 180, and 210 with 240
epochs in total. In terms of ImageNet, we use the AdamW
optimizer [18] to train the network for 100 epochs with a
total batch size of 256. The initial learning rate is 2e-4 re-
duced by 0.1 at epochs 30, 60, and 90.

As to semantic segmentation, we distill the knowledge
on the last BN [14] layer of DeeplabV3+, whose feature
map size is 256×129×129. The weight α in Eq. 9 is set to
20. All students are trained for 100 epochs with a batch size
of 12. We use the SGD optimizer with an initial learning
rate of 0.007. And the learning rate decays according to the
cosine annealing scheduler.

4.3. Image Classification

Results on Cifar-100. We evaluate the proposed method
in a variety of network architectures, including VGG [24],
ResNet [9] and its variants [33]. As shown in Table 1, our
method outperforms other methods by a large margin. In
the setting of distillation from WRN-40-2 to WRN-16-2,
we achieve 75.57% Top-1 accuracy which is close to the
teacher’s performance 75.61%. We also compare to the
methods that are more relevant to us, including layer-wise
relation [20, 28, 21, 19] and those based on Gram matrix
[32, 13] which measures the relation between pixel-wise
positions. In terms of layer-wise relational knowledge dis-
tillation methods, we outperform all the state-of-the-arts
consistently. For example, in the distillation setting from
ResNet56 to ResNet20, our method achieves an accuracy
of 71.69% which greatly exceeds the second best method.
This consistency proves the important role of feature di-
versity in knowledge distillation. As can be observed, the
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Figure 4: Knowledge distillation across different architectures on Cifar-100. Using teacher networks that completely
different from that of students for knowledge distillation. The model before the slash is the teacher and the one after is the
student. Our method can enable the students to learn more general knowledge regardless of the specific architecture.

Table 2: Top-1 and Top-5 Accuracy (%) on ImageNet validation set. The teacher network is ResNet34 and the student
network is ResNet18. Our method outperforms other state-of-the-arts by a significant margin. Methods denoted by * do not
release Top-5 accuracy.

Vanilla KD [12] AT [34] RKD [19] SCKD∗ [2] CRD [27] CRD+KD SAD∗ [15] CC∗ [21] ICKD-C (Ours) Teacher
w/ LKL X X X X X X
Top-1 70.04 70.68 70.59 71.34 70.87 71.17 71.38 71.38 70.74 72.19 73.31
Top-5 89.48 90.16 89.73 90.37 NA 90.13 90.49 NA NA 90.72 91.42

other state-of-the-arts ranked inconsistently and the tradi-
tional KD [12] ranked the second place at most time. We
can say that the contribution of mining the relationship of
the layer-wise features is less than the guarantee of feature
diversity.

We further explore the potential of inter-channel corre-
lation by distillation across different network architectures,
including MobileNetV2 [23], ShuffleNetV1 [35], and Shuf-
fleNetV2 [23] (See Fig. 4). The characteristic of an ideal
knowledge distillation method is that it can transfer the gen-
eral knowledge regardless of the specific architecture. We
find that some methods even deteriorated the performance
of the students. Cho et al. [4] has pointed out that the stu-
dents may fail to catch up with the teachers if their learning
capacities mismatch. In the case that VGG13 is adopted
as the teacher of MobileNetV2, many methods fail to im-
prove the performance of the student. The situation even
became worse when trying unilaterally to lead the student to
learn the high-response area of the teacher’s features given
that AT [34] dropped 5% compared to the vanilla student.
On the contrary, due to the characteristic of being invariant
to the spatial dimension, ICKD-C can be adopted to trans-
fer knowledge across different architectures, and its perfor-
mance is always better than other methods. For instance,
the transferred layer of VGG13 has a different feature map
size from that of MobileNetV2, our method surpasses the
second-best about 1% accuracy.
Results on ImageNet. We evaluate our method on the
larger scale dataset ImageNet [5]. Note that [19] addition-
ally applied the rotation, horizontal flipping, and color jit-
tering for data augmentation. To compare with other works

more fairly, we choose ResNet34 as the teacher network and
ResNet18 as the student network. The result is presented in
Table 2. Again, our method consistently outperforms all
methods by a significant margin. Our result is remarkable
in that it achieves an accuracy rate of more than 72% in the
existing literature for the first time.

We visualize the ICC matrices of the student network
and teacher network (See Fig. 5). At first, the feature maps
of student and teacher show great differences both in the
inter-channel correlation and the response on a single chan-
nel. However, after distillation, they have become similar
in addition to the ICC matrix, and the response on a single
channel is also closer. According to the visualization of the
feature channels, we can say the student can effectively pre-
serve the feature diversity and has a similar feature pattern
with the teacher. More results are displayed in Appendix.

4.4. Semantic Segmentation

Semantic segmentation is a promising but computation-
consuming application. Yet methods based on knowl-
edge distillation are rarely successfully applied to seman-
tic segmentation. In this section, we present the exper-
iments on the Pascal VOC semantic segmentation in the
setting of knowledge distillation. Specifically, we de-
ploy the ResNet101 as teacher backbone and transfer to
student backbones ResNet18 and MoobileNetV2. The
DeepLabV3+ [3] is chosen as the baseline model. Seman-
tic segmentation aims at pixel-level classification, which is
more challenging than image classification. The result is
displayed in Table 3. It shows that we can prompt the stu-
dent by a large margin (from 72.07% to 75.01%), which
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Figure 5: Visualization of the features and the ICC matrices. We have visualized the feature maps and the corresponding
ICC matrices of the vanilla student, our model (ICKD-C) and the teacher, respectively. The four input images are sampled
from ImageNet testing set. The teacher architecture is ResNet34 and the student architecture is ResNet18. Without loss of
generality, we orderly select 16 feature maps extracted from the 4-th block (i.e., the distillation layer) of the network. The
results show that our model possesses the similar feature diversity and pattern with the teacher, demonstrating that learning
inter-channel correlation can effectively preserve feature diversity.

demonstrates that our method can learn rich representation
for different downstream tasks. Particularly, our method
bridges the gap between the cumbersome teacher and the
inferior student, making it feasible to deploy segmentation
models on edge devices.

4.5. The potential of a better teacher
An assumption is that the better the teachers are, the bet-

ter the students we would have. This assumption seems
plausible yet has been demonstrated unpractical because the
students may not be able to catch up with the teachers [4].
We use several teacher networks individually to train the
same student network (ResNet18) to see the possible im-
provements. As shown in Fig. 6, although all of the teach-
ers can bring considerable performance gain to the student,
the heavier teachers could not consistently prompt the Top-1
accuracy than the lightweight one. The student can achieve
the best performance (Top-1 72.31%) when ResNet101 is
used as the teacher and the second-best performance (Top-1
72.19%) when ResNet34 is adopted. Except for ResNet101,
teachers better than ResNet34 could not bring further im-
provement. Interestingly, the best teacher (ResNet152)

couldn’t obtain a considerable student model compared
with others, which may be caused by the huge difference
between their channel numbers (2048 for ResNet152 and
512 for ResNet18). We may say that it is unnecessary to
employ a very cumbersome teacher network for knowledge
distillation since it cannot bring further improvement con-
sistently and spends more cost on pre-training.

Table 3: Performance on semantic segmentation in terms of
mIoU (%) on the validation set of Pascal VOC.

Model ResNet18 MobileNetV2
Vanilla 72.07 68.46
KD [12] 73.74 71.73
FitNet [22] 73.31 69.23
AT [34] 73.01 71.39
Overhaul [11] 73.98 71.19
ICKD-S (Ours) 75.01 72.79

4.6. Ablation Study
Firstly, we study the impact of the linear transformation

layer Cl on Cifar-100. Intuitively, the linear transformation
module may hinder the process of inter-channel correlation
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knowledge distillation. However, the results presented in
Table 6 show that the 1×1 linear transformation leads to
a minor gain in most cases. This phenomenon is also ob-
served by Wang et al. [29] in which linear transformation
acts as an adaptor between the teacher and student.

Secondly, we study the impact of the weight factor β2 in
Eq. 5. In order to exclude the influence of LKL ( Eq. 1)
and verify the effectiveness of LCC separately, we set β1
to zero. The results in Table 7 illustrate that our method is
still impressive without joining LKL on ImageNet (71.59%
Top-1 accuracy, which also surpasses the methods in Table
2). And it is also very robust to β2. We perform the ICC ma-
trix transferring (ResNet34→ResNet18) at different stages.
The stage numbers are indicated by the subscript. When a
single layer is used, our strategy is the best. When multiple
stages are get involved with training, S3,4 achieves the best
Top-1 accuracy (See Table 4). In addition, we also conduct
the experiments under different loss functions and kernel
functions (See Table 5).

Lastly, the grid-level inter-channel correlation proposed
in Sec. 3.3 is able to bring more performance improve-
ments. Recall that we divide the whole feature map into
n ×m parts and if it is set to 1×1, this variant degrades to
the ICKD-C without LKL. We conduct some experiments
under different settings of n × m to see its effect. As can
be observed in Table 8, our proposed ICKD-C without LKL

still improve the student (ResNet18) by 2.07% (from 72.07
to 74.14) and it can further boost the student to 75.01 after
dividing the feature map into 32 × 32 patches. Generally,
meshing the feature map can consistently improve the per-
formance, but it is not the finer the better. Besides, the finer
grid means more training cost. Table 9 illustrated the GPU
hours cost of training the segmentation model 100 epochs
with 2×NVIDIA 2080Ti.

Table 4: ICC Transferring at different places on ImageNet.
S1 S2 S3 S4 (ours) S1,4 S2,4 S3,4 S1,2,3,4

Top-1 70.49 70.50 70.87 72.16 72.31 72.20 72.33 72.26
Top-5 89.47 89.53 89.59 90.75 90.67 90.71 90.55 90.64

Table 5: Different loss functions and kernel functions.

Loss Functions Kernel Functions
L2 (ours) Smooth L1 Gaussian kernel Polynomial kernel

Top-1 72.16 72.29 70.63 72.25
Top-5 90.75 90.75 89.73 90.80

5. Conclusion
This work presents a method for knowledge distillation

that explores the inter-channel correlation to mimic the fea-
ture diversity of the teacher network. In addition to image
classification, we introduce the grid-level inter-channel cor-
relation for semantic segmentation that most prior works do
not pay attention to. We empirically demonstrate the ef-
fectiveness of the proposed method on a variety of network
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Figure 6: Accuracy (%) of the same student (ResNet18)
guided by different teachers on ImageNet.

Table 6: Ablation on Cifar-100.

Teacher Student w/o Linear w/ Linear
WRN-40-2 WRN-16-2 75.10 75.64
WRN-40-2 WRN-40-1 73.87 74.33
ResNet56 ResNet20 71.72 71.76
ResNet110 ResNet20 70.96 71.68
ResNet110 ResNet32 73.90 73.89
ResNet32×4 ResNet8×4 74.40 75.25
VGG13 VGG8 73.85 73.42

Table 7: Top-1 accuracy(%) under different β2 on Ima-
geNet.

β2 0.2 1.0 2.0 4.0

ACC. 71.09 71.17 71.59 71.34

Table 8: mIoU(%) under different settings of n × m on
Pascal VOC.

n×m 1× 1 4× 4 16× 16 32× 32

ResNet18 74.14 74.97 74.74 75.01
MobileNetV2 72.10 72.26 72.79 72.58

Table 9: Training cost (GPU Hours) under different settings
of n×m on Pascal VOC.

n×m 1× 1 4× 4 16× 16 32× 32

ResNet18 25.8 25.9 31.8 157.4
MobileNetV2 24.5 24.7 30.4 155.9

architectures and achieve the state-of-the-art in two vision
tasks (image classification and semantic segmentation). Be-
sides, the computation of the proposed ICC matrix is invari-
ant to feature spatial dimensions and able to distill generic
knowledge across different network architectures.
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