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Abstract

Neural Architecture Search (NAS) can automatically de-
sign well-performed architectures of Deep Neural Networks
(DNNs) for the tasks at hand. However, one bottleneck
of NAS is the prohibitively computational cost largely due
to the expensive performance evaluation. The neural pre-
dictors can directly estimate the performance without any
training of the DNNs to be evaluated, thus have drawn
increasing attention from researchers. Despite their pop-
ularity, they also suffer a severe limitation: the short-
age of annotated DNN architectures for effectively train-
ing the neural predictors. In this paper, we proposed Ho-
mogeneous Architecture Augmentation for Neural Predictor
(HAAP) of DNN architectures to address the issue afore-
mentioned. Specifically, a homogeneous architecture aug-
mentation algorithm is proposed in HAAP to generate suf-
ficient training data taking the use of homogeneous repre-
sentation. Furthermore, the one-hot encoding strategy is
introduced into HAAP to make the representation of DNN
architectures more effective. The experiments have been
conducted on both NAS-Benchmark-101 and NAS-Bench-
201 dataset. The experimental results demonstrate that
the proposed HAAP algorithm outperforms the state of the
arts compared, yet with much less training data. In addi-
tion, the ablation studies on both benchmark datasets have
also shown the universality of the homogeneous architec-
ture augmentation. Our code has been made available at
https://github.com/1yg998/HAAP.

1. Introduction

Deep Neural Networks (DNNs) have been successfully
applied to various challenging real-world problems, includ-
ing image classification [16], natural language process-
ing [8], speech recognition [40], to name a few. Well-
designed architectures of DNNs are generally viewed as

*Equal contribution.
Corresponding author.

the deciding factor that the DNNs can achieve promising
performance. Traditionally, designing architecture is nev-
ertheless time-consuming, and is often exerted by experts
with rich knowledge in both the DNNs and the task do-
main. Neural Architecture Search (NAS) is an automatic
way to design the architectures of DNNs without such kind
of expertise.

Generally, the NAS algorithm is composed of three dif-
ferent parts: search space, search strategy and performance
estimation [10]. Particularly, given a search space prede-
fined, the search strategy should find a well-performed ar-
chitecture when the search terminates. In literature, there
are mainly three techniques used as the search strategies:
reinforcement learning [32], gradient-based algorithms [21]
and Evolutionary Computation (EC) [1]. However, no mat-
ter which technique is used, all NAS algorithms need to
estimate the performance of the DNNs searched in order
for the effective proceeding of search. In most NAS algo-
rithms, the search strategy evaluates the solutions individ-
ually, which inevitably gives rise to heavy computational
overheads. For instance, on the commonly used CIFAR-
10 benchmark dataset [19], the Large-Scale evolution NAS
algorithm [24] used 250 GPU computers for 11 days. Not
only that, the NAS algorithm [41] used 800 GPUs for nearly
one month. Unfortunately, this is unaffordable for most aca-
demic researchers. To address this issue, various algorithms
have been designed to speed up the estimation process with-
out numerous computation resource, which can be classified
into four different categories: weight inheritance [24], early
stopping policy [29, 14], reduced training set [25] and neu-
ral predictor [33].

The neural predictor requires a number of well-trained
architectures, and then a regression model is trained to map
the architectures and the corresponding performance val-
ues. When a new DNN is generated, its performance is di-
rectly predicted by the regression model. Compared to other
speed-up algorithms mentioned above, the neural predictors
can provide satisfactory prediction result, thus is popular
among the community.

Many previous works focused on designing better re-
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gression models to improve the performance of predic-
tors [28, 34]. They try to achieve a better fit from the per-
spective of the regression model. However, the big issue in
neural predictor is actually in the training dataset. In prac-
tice, it is prohibitively unaffordable to obtain a large train-
ing dataset. Even with the ultra high performance hardware,
for example, it will take about 32 minutes to train a neural
network on the TPU v2 accelerator [38], which means only
nearly 45 annotated training data can be obtained one day.
Generally, neural predictor is trained with a small dataset
of annotated architectures, e.g., Wen et al. [34] only used
119 annotated architectures to build the neural predictor in
practice. The main reason for the poor performance of the
neural predictor is not the regression model, but the limited
training data. As a result, how to make full use of the exist-
ing limited data without increasing the computational cost
is an important issue in neural predictor.

In this paper, we propose a novel data augmentation
strategy in the space of neural architectures by exploring
their Homogeneous properties. The Homogeneous augmen-
tations eliminate the influence of layer order, making the
neural predictor pay more attention to the overall layer type.
Specifically, the architecture augmentation works by swap-
ping the inner orders to generate a group of homogeneous
representations. To effectively represent the intrinsic prop-
erties of architectures, one-hot encoding strategy is also de-
veloped. The flowchart of the proposed Homogeneous Ar-
chitecture Augmentation for Neural Predictor (HAAP) is
shown in Fig. 1. The experiments on NAS-Bench-101 [38]
and NAS-Bench-201 [9] demonstrate the effectiveness of
the proposed architecture augmentation method, and show
the superiority of HAAP compared with the state of the arts.
Not only that, the Homogeneous augmentations can also be
combined with the state-of-the-art neural predictors to im-
prove their predictions.

The reminder of this paper is organized as follows. The
related works are provided in Sec. 2. Sec. 3 gives the imple-
mentation details of the proposed approach. Experiments
and extensive experimental results demonstrate the effec-
tiveness of HAAP in Sec. 4. Finally, Sec. 5 is for the con-
clusion and future works.

2. Related Works

In this section, we will first introduce the encoding strat-
egy of NAS algorithms, which is the base of the pro-
posed algorithm. Immediately after, the state-of-the-art al-
gorithms are reviewed and their limitations are summarized
to justify the necessity of the proposed algorithm.

2.1. Encoding Strategy of NAS Algorithms

The encoding space (i.e., search space) in NAS can be
divided into four different categories based on the basic unit

searched: the layer-based, the block-based, the cell-based
and the topology-based.

The basic units in the layer-based encoding space are the
primitive layers of DNNs. The layer-based encoding space
is often large and building architecture in this space acquires
more details and information, resulting in the search strat-
egy putting many efforts. EvoCNN [31] is a typical ex-
ample of layer-based space. In contrast, the basic units in
the block-based encoding space are the blocks which are
the combinations of the primitive layers, such as ResNet
block and DenseNet block used by AE-CNN [30]. With
the help of the integrated blocks, the architectures searched
from the block-based encoding space are more likely to be
well-designed with fewer parameters. One special case in
the block-based encoding space is that all the blocks are all
the same, which generates the cell-based encoding space.
The architectures found in the cell-based encoding space
are made of stacked cells. Since all the cells are the same,
the encoding information of one cell can represent a cor-
responding architecture by stacking the same cell multiple
times. The well known AmoebaNet-A [23] is an example
of cell-based space. The topology-based encoding space
mainly concentrates on the connections of the units rather
than their internal structures.

For cell-based encoding space, there are multiple ways
to encode the connections of layers in cells. The adja-
cency matrix is a common way to represent the connections,
where “1” means the two layers are connected while “0”
means the opposite. This representation method has been
widely adopted as the base encoding strategy by existing
NAS algorithms. For example, Genetic CNN [36] used a
variant of the adjacency matrix where the unimportant ele-
ments in the matrix are pruned and the remaining elements
are flattened into a binary vector.

2.2. Neural Predictor

There are five representative state-of-the-art neural pre-
dictors: Peephole [7], E2EPP [28], Semi-Supervised As-
sessor of Neural Architectures (SSANA) [33], Neural Pre-
dictor for Neural Architecture Search (NPNAS) [34] and
ReNAS [37]. All of them have been investigated on im-
age classification tasks owning to various well-designed ar-
chitectures and available benchmark datasets for classify-
ing images. Recently, we also notice that some public ar-
chitecture datasets have been made available [38, 9]. This
will make the prediction more efficient and the comparison
fairer with providing more training data.

As mentioned in Sec. 1, most of the neural predictors
mainly aim at the design of the regression models. For ex-
ample, Peephole and NPNAS used different efficient regres-
sion models for better prediction, while ReNAS focused on
the redesign of training loss of the model. In this paper, we
demonstrate that without a complicated regression model,
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Figure 1. The flowchart of the proposed HAAP. Architectures in different encoding spaces are first transformed into the representation of
adjacency matrix and layer type list where one-hot encoding strategy is used. Please note that, we only display one neural architecture in
the figure for convenience. Then the original representation is augmented into its homogeneous forms. The original data and the augmented
data are all used to train the neural predictor. If the architecture augmentation is not used, the architecture to be predicted will refer more to
the accuracy of architecture B. When the architecture augmentation is used, the architecture to be predicted will be more inclined to refer
to the accuracy of the augmentation architectures, and then get a more accurate prediction.

the classical regression models (e.g. random forest) can also
make an accurate prediction with the utilization of the pro-
posed architecture augmentation method.

3. Approach

Building the neural predictor can be mathematically rep-
resented as a regression task. Supposing the predictor is rep-
resented by a regression model R. After R has been trained
with the training data [X, y], where X = { X7, Xo,..., Xy}
denotes the encoding of architecture information and y =
{y1,¥2,...,yn} denotes the corresponding performance
value of {X1, Xo,..., Xn}, the prediction y of test data
X*est can be predicted by R. Particularly, the training pro-
cess of R can be described by Equation 1:

N
1
min Zf(R(Tp,Xn),yn) (1)
where T}, is the trainable parameters of the regression model
R, and L(-) denotes the loss function of R. We choose the
{5 norm as the loss function, which is widely used in neural
predictors [34, 33].

3.1. Architecture Encoding

In principle, most of the neural architectures can be
represented by a standard Directed Acyclic Graph (DAG),
where the vertices represent the layers and the edges repre-
sent the connections. Therefore, each X, in X can be rep-
resented by the layer type list 2!, = {2}, 205,..., %}, }
and the corresponding adjacency matrix z;', where NV, de-
notes the number of layers. Although some architectures in
other encoding spaces are not represented by standard DAG,

where the vertices represent the connections while the edges
represent the layers, we can use a transformation to change
the form into the standard type. For example, to transform
the architectures in NAS-Bench-201, we can firstly give a
fixed order for edges, and then reduce the useless layers.
The detailed transformation method is provided in supple-
mentary materials.

The traditional hard encoding [37] uses an integer vec-
tor to encode layer type z!, directly. Then, the type vector
is broadcasted into the adjacency matrix x]' which can be
expressed in Equation 2:

X, = 2™ x strech(integer(z'))

2

where the integer(-) transforms verbal type list to integer
vector, and strech(-) can strech a vector into a square ma-
trix. As a result, the encoding X, is a sparse matrix which
contains much redundant dimensions. In addition, the re-
lationships and the Euclidean distances between layers are
misrepresented by integers. To this end, we come up with a
binary encoding strategy which takes the use of the one-hot
encoding for type list.

The encoding strategy used in this paper is easy to im-
plement. Equation 3 shows how to convert the original x]*
and z!, into a binary vector.

X,, = concat{ flattened(x™), one-hot(x%)}  (3)

Specifically, the two-dimensional adjacency matrix z' is
flattened (with flattened(-)) into an one-dimensional vec-
tor by row. Meanwhile, the layer type list is transformed
into the one-hot encoding (with one-hot(-)). Finally, these
two one-dimensional vectors are concatenated into X,
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Figure 3. An example to illustrate how the homogeneous augmen-
tation can better train the neural predictor.

(with concat(-)). Fig. 2 provides an example to explain the
one-hot encoding strategy operating on the layer type list,
where the number of types IV is 3, and Ty, T and T¢
denote the three types of layers in the list. To achieve the
encoding, the first is to transfer the verbal expression into an
integer vector. The second is to employ the one-hot encod-
ing to replace the integers accordingly. The one-hot encod-
ing uses multi dimensional space to represent the layer type
to ensure the Euclidean distances between different layer
types are the same, which is positive to the regression mod-
els.

3.2. Homogeneous Architecture Augmentation

Generally, a common DNN architecture begins with an
input layer and ends with an output layer [38, 30]. In this
paper, we use In and Out layers to denote both two layers
separately. Please note that the proposed architecture aug-
mentation method is suitable for the case that the neural net-
work has sole input and sole output. This is also the most
common case of DNNs. For example, the image classifi-
cation task only requires one image as input and the neural
network outputs the predicted category.

As introduced above, the adjacency matrix and the layer
type list make up the neural architecture, where the adja-
cency matrix describes the topological relationship of the
layer type list. Therefore, there should be no order in the
layer type list. However, the layers close to the In layer are
always placed in front of the layer type list, and the layers
close to the Out layer can only be placed at the back. In ad-
dition, null layers are generally placed at the end [34, 37].
In this way, the layers that should have no order and posi-
tion are sorted in a breadth-first traversal manner. This sort-

ing can mislead the neural predictor and make the predictor
pay attention to the relationship between layer type and the
specified location which is meaningless. What we have to
do is to eliminate the influence of layer position, making
the neural predictor pay more attention to the overall layer
type and some invariants in the augmentation of the neural
architecture, such as the total number of different types of
layers, instead of focusing on the type of layer in a specific
location. Fig. 3 is an example. Shown on the left is a part
of a neural network, including two layers A and B. If the
neural predictor is only trained with the normal representa-
tion of the architecture, the predictor will bind position 1 to
A, and position 2 to B. However, if the predictor is trained
with normal and augmented representation together, the in-
fluence of the layer order on the predictor will be weakened.

By observing this, the original representation can be aug-
mented with the “unordered” character of the layer type
list. However, not all the layers in the layer type list are
unordered. The In and Out layers belong to placeholder
set and they are fixed at the first and last positions of the
layer type list in all architectures. Thus, it is useless to
change their positions. The other layers in the middle of
the layer type list belong to operation set which princi-
pally determines the performance of an architecture. Ac-
tually, only these layers are unordered in layer type list. As-
suming that the layer type list is * = {«f,25,..., 2%},
xf is the In layer and z'y is the Out layer. Since for
Va:;, j€{2,3,...,N;—1} could be in any position, there-
fore there are (IN; — 2)! possible permutations. We use these
different permutations to augment the training dataset by a
factor of (N; — 2)!.

However, if the layer type list is changed, the adjacency
matrix has to make changes accordingly to make sure that
the actual architectures of the representation are the same.
This is because the order of rows and columns of the ad-
jacency matrix is related to the order in the layer type list.
Specifically, the i-th row of the adjacency matrix denotes
the output of the i-th layer in the layer type list, and the
Jj-th column denotes the input of the j-th layer. The “Ho-
mogeneous Architectures” part of Fig. 1 shows an example
to illustrate the architecture augmentation for neural predic-
tors. In this example, we assume the number of layers IV;
equals to 5 and the neural architecture contains a null layer.
The original representation of the architecture is on the top,
and we term these different representation of architecture in
dashed box as homogeneous representation, because they
represent the same architecture in essence. Specifically,
comparing the first homogeneous representation displayed
in Fig. 1 with the original representation, the order of 3-rd
layer and 4-th layer is swapped from the original one. To
maintain the representation of architecture, the correspond-
ing row and column in the adjacency matrix need to swap
according to the swapping of the layer type list. Whether
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to swap rows or columns first, the matrix ends up with the
same effect.

The general process of constructing more training data
with the proposed architecture augmentation method is
shown in Fig. 1. Specifically, the input can be architectures
in different encoding spaces, such as the binary vector used
in Genetic CNN [36] or the operations represented by edges
in NAS-Bench-201 [9]. The first step is to transform the dif-
ferent encoding strategies into the standard DAG form like
NAS-Bench-101 [38]. Because of the character of the re-
gression model, the encoded architecture information must
be fixed length. We refer the padding approach in [37] to
achieve this goal, by adding zeros into the adjacency matrix
and the layer type list. The position of starting to pad ze-
ros is the penultimate element in the layer type list, while
the starting positions in the adjacency matrix are the penul-
timate row and column. We define the zero in the layer
type list as null layer type for convenience. The next step is
the homogeneous architecture augmentation. Including the
original representation, the augmentation ends up with N,
architecture augmentations where N, = (N; — 2)! except
for In and Out layers. Next, the unnecessary dimensions in
the adjacency matrix and the layer type list are reduced. To
be more specific, the first element (In layer) and the last el-
ement (Out layer) in the layer type list, and the first column
and the last row in the adjacency matrix will be reduced. Fi-
nally, the layer type list is converted to a binary vector and
concatenate with flattened adjacency matrix.

The training dataset can be expanded by a factor of NV,
in the end. In principle, the generated data are reliable be-
cause of the homogeneous representation. It makes sense
that all the homogeneous representation of X, correspond
to the same performance value y,. Similar to the image
augmentation (e.g., flip, rotation, efc.), the proposed aug-
mentation can generate a more comprehensive dataset with
more possible training points, which reduces the distribu-
tion gap between training data and unknown data [27]. As a
result, the regression model R, i.e. the neural predictor, can
be trained better with more training data augmented.

4. Experiments

We choose the NAS-Bench-101 [38] and the NAS-
Bench-201 [9] as the experimental datasets. The NAS-
Bench-101 dataset is built for the NAS research to allevi-
ate the need for intensive computing resource. NAS-Bench-
101 collects the accuracy of architectures tested on CIFAR-
10 [19] with Convolutional Neural Networks (CNNs). The
NAS-Bench-201 is another benchmark dataset with differ-
ent search space. In a nutshell, both benchmark datasets
choose the cell-based search space, and the whole architec-
ture is built up by stacking different cells which are shown
in Fig. 4. The cells in NAS-Bench-101 use vertices to rep-
resent operation layers, and edges to represent the connec-

(a) Cells in NAS-Bench-101 (423K types)

/—\\ —>  zeroize
\

skip-connect
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Q —>  3x3average pool
Operation set
» pe

(b) Cells in NAS-Bench-201 (15K types)

Figure 4. (a) Cells in NAS-Bench-101 where 1x1 denotes 1x1
convolution, 3x3 denotes 3 X3 convolution and MP denotes 3x3
max pooling. (b) Cells in NAS-Bench-201.

tions. Whereas in NAS-Bench-201, the operation layers are
presented by edges, which could not use the proposed ar-
chitecture augmentation directly and need additional trans-
formations to get adjacency matrix and layer type list.

In this section, we will first perform the comparison
with the state-of-the-art neural predictors to demonstrate
the effectiveness of the proposed HAAP algorithm. Sec-
ond, HAAP is embedded in an Evolutionary Algorithm
(EA) [39] based NAS search strategy to search for promis-
ing architectures on both two benchmark datasets. Third,
we will also perform extensive ablation experiments on
different classical regression models and on both datasets
to show the effect of proposed architecture augmentation
method and the utilization of the one-hot encoding strategy.

4.1. Comparison of Prediction Performance on
NAS-Bench-101

The proposed HAAP algorithm is compared with the
state-of-the-art algorithms which we have introduced above,
i.e., Peephole [7], E2EPP [28], SSANA [33], ReNAS [37]
and NPNAS [34]. NAS-Bench-101 is used to providing
training and testing architectures. In addition, two indica-
tors are used to measure the performance of the prediction:
Kendall’s Tau (KTau) [26] and MSE. Particularly, the KTau
reflects the rank correlation of two ordinal variables, and
its value varies in [-1, 1]. The closer this value gets to 1,
the more similar the rankings of the two ordinal variables
are. The MSE reflects the error between the predicted ac-
curacy values y and the ground-truth labels y. Please note
that both are widely used by the neural predictors of NAS
algorithms [28, 33, 37].

We report the comparison results in Table 1 where the
proposed HAAP algorithm is realized by Random Forest
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Table 1. Comparison with the state-of-the-art neural predictors. We report the results of HAAP on two different N, for fair comparison.

Algorithms | Nyt | KTau MSE Regression Model
Peephole [7] | 1K | 0.437340.0112 | 0.007110.0005 LSTM
E2EPP [28] 1K 0.5705+0.0082 0.0042+0.0003 RF
SSANA [33] | 1K | 0.654140007s | 00031200003 AE + GCN
ReNAS [37] 424 0.6574 — LeNet-5
NPNAS [34] 424 0.6945 — GCN
NPNAS + HA | 424 0.7062 — GCN

0 1000 2000 3000. 4000‘ 5000
(b) E2EPP (N,~1k)

(a) Peephole (N,~1k)

2000 3000 4000 5000

(d) HAAP (N, ~424)

3000 4000 5000
(¢) SSANA (N,=1k)

Figure 5. Comparison with state-of-the-art algorithms. The x-axis
denotes the true ranking while the y-axis denotes the predicted
ranking. Figures (a), (b) and (c) are from [33].

(RF) [4] with fine-tuning. In addition, the symbol “—”
in Table 1 implies there is no result publicly reported in
the corresponding literature, and N,; denotes the number
of the original training data. The best values are shown in
bold for the convenience of observation. For a fair com-
parison, we report the results of HAAP on two different
N,:. As can be seen from Table 1, when N,; is set as 424,
HAAP can achieve the largest KTau comparing with Re-
NAS and NPNAS. In addition, if NPNAS is combined with
the proposed Homogeneous Augmentation (HA), the pre-
diction performance can be further improved. With N, in-
creasing to 1K, HAAP also achieves the best values of KTau
and MSE comparing with Peephole, E2EPP and SSANA.
Fig. 5 provides the qualitative comparison results, where
the x-axis denotes the true ranking while the y-axis denotes
the predicted ranking of 5K randomly sampled architec-
tures. If these points are closer to the diagonal, the rank-
ing correlation is stronger, which is equivalent to the val-
ues indicated by KTau. Please note that figures (a), (b), (c)
are trained with 1K original data whereas N,; in our al-
gorithm is only 424. As can be seen from these figures,
the points shown in figure (d) demonstrate the best result,

Table 2. Classification accuracy rate and ranking of the searched
architectures of NAS-Bench-101. 1K annotated architectures ran-
domly selected from NAS-Bench-101 are used to train predictors.

Algorithm \ Accuracy (%) \ Ranking (%)
Peephole [7] | 93.414+0.34 1.64

E2EPP [28] | 93.7740.13 0.15
SSANA [33] | 94.01+0.12 0.01

HAAP 94.09+0.11 0.004
Oracle \ 94.2340.0 \ 0.0005

which is achieved by the proposed algorithm. Furthermore,
compared with the Neural Networks used by the compared
Peephole [7], SSANA [33] and ReNAS [37] algorithms
(such as Long Short Term Memory (LSTM) [17], Auto-
Encoder (AE), Graph Convolutional Network (GCN) and
LeNet-5 [20]), the RF employed by the proposed HAAP al-
gorithm requires few additional tuning of parameters.

4.2. Searching Architectures on NAS-Bench-101
and NAS-Bench-201

We have referred to the NAS experiment in [33], and also
take an EA based search strategy to search architectures on
NAS-Bench-101. In order to demonstrate the effectiveness
of the proposed HA, we do not use the state-of-the-art neu-
ral predictor when searching. Specifically, the experiment
is repeated for 20 times, and we compare the accuracy and
ranking of the top-10 architectures selected by different al-
gorithms which can be seen in Table 2. The second column
displays the top-1 classification accuracy on CIFAR-10, and
the third column displays the ranking of whole architectures
in NAS-Bench-101. The last row of Table 2 shows the ora-
cle where the performance of all architecture is known. The
proposed HAAP obtains the highest accuracy and ranking
among the neural predictor algorithms. Specifically, the ar-
chitectures searched by HAAP are significantly better than
that searched by Peephole and E2EPP. Furthermore, HAAP
is slightly better than SSANA and is very close to the oracle.

We visualize the best architecture searched by different
algorithms in Fig. 6 to give an intuitive comparison. The
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Figure 6. The architectures searched by different neural predictors
on NAS-Bench-101. 1K annotated architectures are used to train
the neural predictors.

Table 3. Validation and test accuracy rate on CIFAR-10 of the
searched architectures on NAS-Bench-201. We report the mean
and std of 10 runs for E2EPP and HAAP.

Algorithm | Validation Test Time
REA [23] 91.1940.31 | 93.924+0.30 | 12000
RS [2] 90.934+0.36 | 93.70+0.36 | 12000
REINFORCE [35] | 91.0940.37 | 93.85+0.37 | 12000
BOHB [11] 90.824+0.53 | 93.61£0.52 | 12000
E2EPP [28] 90.61£0.89 | 93.394+0.75 | 6000
HAAP 91.184+0.25 | 94.00+£0.25 | 6000
optimal [ o6l | 9437 | NA

In node is directly connected to the Out node in all archi-
tectures displayed. This connection can facilitate gradient
propagation [16, 18]. There are five operation layers in ar-
chitectures searched by Peephole and E2EPP, and four in
SSANA and oracle. Whereas there are only three operation
layers including a 1 x 1 convolution in HAAP, which can re-
duce a lot of computing costs.

In order to compare with other state-of-the-art NAS al-
gorithms, we also conduct an experiment searching archi-
tectures on NAS-Bench-201. In Table 3, four algorithms
with the top accuracy reported in NAS-Bench-201 and one
neural predictor are chosen for comparison. Following the
tradition in NAS community, the validation accuracy was
used to guide the search during search stage, and the test
accuracy was only queried for the searched architecture.
To demonstrate the efficiency of HAAP, we stopped HAAP
once the time budget of predictor reached the half of the
state-of-the-art NAS algorithms (i.e. 6000 seconds). With
the half time budget, E2EPP can not exceed any of the com-
petitors. However, HAAP outperforms all the state-of-the-
art NAS algorithms, yet with much less search cost.

4.3. Ablation Study

In this subsection, the classical regression models on dif-
ferent cases are compared to show the effectiveness bene-

fiting from the architecture augmentation and the one-hot
encoding strategy. They are Decision Tree (DT) [5], Lin-
ear Regression (LR), Support Vector Regression (SVR) [6],
K-Nearest Neighbors (KNN), RF [4], AdaBoost [12], Gra-
dient Boosted Regression Tree (GBRT) [13], Bagging [3]
and ExtraTree [15]. Please note that all the models are
implemented by Scikit-learn [22] with the default settings
that often give rise to satisfactory performance of the corre-
sponding model in reality.

The results are shown in Table 4, where all experiments
use the same training data and test data. Note that Table 4 is
split into two parts where the top part uses 424 training data
to train the regression model, while the bottom part uses
architecture augmented (actually 424 x (7 — 2)! = 50880
training data) and the test data are all SK. We only report the
result of a single run in the table. Four cases are designed
to show the efficiency of HAAP:

case 1 (baseline): Using only the concatenation of the
flattened adjacency matrix and integer vector.

case 2 (one-hot): One-hot encoding for layer type list z*
is used on the basis of case 1.

case 3 (architecture augmentation): Using augmented
data while other settings are the same as case 1.

case 4 (architecture augmentation + one-hot): One-
hot encoding for z¢ is used on the basis of case 3.

The comparison of the four cases is shown in Table 4. As
can be seen from the comparison results, almost all the re-
gression models can benefit from these two designed com-
ponents. When the architecture augmentation is applied,
a great promotion is obtained especially using the archi-
tecture augmentation and one-hot encoding strategy collec-
tively. Furthermore, RF achieves the best performance in
terms of both KTau and MSE indicators which are marked
with % in Table 4. In summary, this group of experiments
demonstrates the effectiveness of the proposed architecture
augmentation method and utilization of the one-hot encod-
ing strategy.

In addition, this ablation study is also experienced on
NAS-Bench-201. As introduced above, we firstly transform
the architectures to the standard DAG form. Table 5 shows
the KTau and MSE under four cases and different N,;. The
values of KTau and MSE in case 1 are much better than
that of NAS-Bench-101 as shown in Table 4. This demon-
strates that the proposed transformation method is effective,
and the architectures in NAS-Bench-201 are more recogniz-
able. The cases with architecture augmentation still get the
highest KTau and the lowest MSE which is in bold as shown
in Table 5. In addition, under the same setting of N, the
results are better than that of NAS-Bench-101 which can be
seen in Table 1. One important reason is that N; is 8 in
this dataset, and the training data will be expanded by 720
times rather than 120 times in NAS-Bench-101. Howeyver,
there is no obvious improvement using the one-hot encod-
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Table 4. Comparisons on classical regression models on NAS-Bench-101. 424 annotated architectures are used to train the regression
models. A and O are short for “Architecture augmentation” and “One-hot encoding” separately. The italic and bold denote the best values

(highest KTau and lowest MSE) of each regression model.

A O Regression Models (Neural Predictor)
DT LR SVR KNN RF AdaBoost GBRT Bagging ExtraTree
X X KTau | 0.3380 0.3407 0.2738 0.3041 0.5422  0.3624 0.5559 04737 0.3410
MSE | 0.0048 0.0028 0.0051 0.0028 0.0030 0.0036 0.0031 0.0038 0.0039
X v KTau | 0.4386 0.5074 0.3257 0.4426 0.5909 0.4185 0.5779 0.5405 0.4442
MSE | 0.0048 7.7862 0.0050 0.0027 0.0031 0.0032 0.0030 0.0040 0.0049
S OX KTau | 0.5271 0.3592 0.3256 0.3932 0.6888 0.3158 0.5746  0.6620 0.5154
MSE | 0.0030 0.0029 0.0046 0.0029 0.0023 0.0028 0.0025 0.0024 0.0033
Vs KTau | 0.5424 0.5456 0.3548 0.5068 0.6991x 0.3309 0.6007 0.6628 0.5189
MSE | 0.0032 0.0026 0.0045 0.0029 0.0022x 0.0026 0.0025 0.0024 0.0031

Table 5. Results on NAS-Bench-201. The regression model is RF.
The bold denotes the best accuracy of each Nt on CIFAR-10.

Not
A0 424 [1K
X X KTau | 0.69194¢.0040 0.7754+0.0051
MSE | 0.0009+0.00006 | 0.0004+0.00002
X ‘/ KTau 0-7156i0.0060 0.7647i0,0050
MSE 0.0008i0_00004 0-0004i0.00003
‘/ X KTau 0.7824:|:0.0014 0.8172:&0'0051
MSE | 0.0005+0.00001 | 0.0004+0.00005
‘/ ‘/ KTau 0.7899:‘:0.0011 0.8166i0.0025
MSE | 0.0004+0.00005 | 0.0003_+0.00001
0.70 ]
3 0.65 ndom
E xnznmg
0.60 4 Random2
0 20 a0 60 80 100 120
Number of Augmentation Data
0.00300 A Random@
Randoml
w 0.00275 i
= 0.00250 1
0.00225 1
0 20 40 60 80 10 120

Number of Augmentation Data

Figure 7. Neural predictor performance results of HAAP w.r.t. dif-
ferent number of architecture augmentation.

ing strategy, and this may be caused by the increasing size
of adjacency matrix.

Last but not the least, in order to figure out how many
augmentation architectures are needed at least training the
predictor to achieve the best performance, we conduct an
experiment on NAS-Bench-101, and N,; is set to 424.
Fig. 7 shows three separate randomized trials, where ar-
chitectures are randomly sampled from all the architectures

augmented. The x-axes in Fig. 7 is the number of augmen-
tation data from one original training data, and 0O in x-axis
denotes no augmentation is used. As can be observed from
Fig. 7, the trials can obtain the highest KTau and the low-
est MSE when all the architectures augmented are used to
train the predictor. Because of this, all the architectures aug-
mented are used to train the predictor in all the experiments
except this one.

5. Conclusion

The goal of this paper is to develop an efficient neural
predictor. The goal has been achieved by two core com-
ponents. Specifically, we have proposed a homogeneous
architecture augmentation method, which could construct
more training data from the limited original data. In addi-
tion, the one-hot encoding strategy is utilized to transform
the DNN architectures, enhance the prediction accuracy
made by the neural predictors. The experiments have
been conducted on NAS-Bench-101 and NAS-Bench-201,
and the significant improvements can be observed in both
datasets when architecture augmentation is used. The
results compared with five state-of-the-art peer neural
predictors show that the proposed HAAP algorithm outper-
forms all the competitors in terms of both KTau and MSE
indicators. Furthermore, well-performed architectures can
be found on NAS-Bench-101 and NAS-Bench-201 with
94.09% accuracy (top 0.004% of the entire search space)
and 94.00% accuracy separately using HAAP. Our future
work will focus on encoding additional features of the
architecture to improve the performance with the help of
more comprehensive description of the architectures.
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