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Abstract

Computer vision tasks such as object detection and se-
mantic/instance segmentation rely on the painstaking an-
notation of large training datasets. In this paper, we pro-
pose LocTex that takes advantage of the low-cost localized
textual annotations (i.e., captions and synchronized mouse-
over gestures) to reduce the annotation effort. We introduce
a contrastive pre-training framework between images and
captions, and propose to supervise the cross-modal attention
map with rendered mouse traces to provide coarse local-
ization signals. Our learned visual features capture rich
semantics (from free-form captions) and accurate localiza-
tion (from mouse traces), which are very effective when
transferred to various downstream vision tasks. Compared
with ImageNet supervised pre-training, LocTex can reduce
the size of the pre-training dataset by 10× or the target
dataset by 2× while achieving comparable or even improved
performance on COCO instance segmentation. When pro-
vided with the same amount of annotations, LocTex achieves
around 4% higher accuracy than the previous state-of-the-
art “vision+language” pre-training approach on the task of
PASCAL VOC image classification.

1. Introduction
The tremendous success of deep learning in computer

vision can be credited in part to the existence of large anno-
tated datasets, such as ImageNet [7, 47]. However, acquiring
high-quality annotations is usually very expensive and time-
consuming, especially for dense, pixel-wise labeling tasks.
For instance, segmenting instances in a single image from the
COCO dataset takes more than 10 minutes on average [29]*.

Pre-training plus fine-tuning is a widely-adopted solution
to reduce the need for costly annotations. In the computer
vision community, a convolutional neural network (CNN)
backbone is first pre-trained to perform image classifica-
tion on ImageNet. Then, the learned features can be trans-

*70k hours / 320k images = 0.22 hours/image = 13 minutes/image
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Figure 1: LocTex pre-trains the visual CNN backbone with
(a) localized textual annotations, which consists of free-form
captions associated with synchronized mouse traces. With
our contrastive and localization loss, the model learns (b)
rich semantics and accurate localization. This is very useful
when transferred to (c) downstream tasks that are sensitive to
localization (e.g., object detection, instance segmentation).

ferred to other downstream tasks by fine-tuning on the target
dataset. Over the past few years, this paradigm has enabled
state-of-the-art performance on many computer vision tasks,
including object detection [46], semantic segmentation [31]
and instance segmentation [20].

Though effective, ImageNet pre-training has its caveats.
(i) Its annotations (i.e., 1000-class labels) are very expensive
to acquire. Annotating ImageNet is not as easy as it seems
because differentiating among a fine-grained class taxonomy
requires expert knowledge, which makes it hard to scale up or
repeat. (ii) It is not as effective for those tasks that are more
sensitive to localization than classification. As ImageNet pre-
training only takes the object existence into consideration, its
learned visual representations are supposed to be invariant
to different object locations. Some recent research [19] has
demonstrated competitive performance on object detection
and instance segmentation with models trained from scratch.

12167

https://loctex.mit.edu/


To solve (i), researchers have explored pre-training back-
bone networks with coarse, freely available labels, such as
metadata and hashtags [23]. There has also been increased
attention in self-supervised pre-training that learns visual
representations from unlabeled images [18, 5, 16]. Some of
them have been successfully scaled up to hundreds of mil-
lions or even billions of images [18]. However, (ii) remains
unsolved as they usually rely on some low-level visual cues
(e.g., color, texture) and lack semantic understanding. In
addition to this, (iii) self-supervised pre-training methods
tend to be trained with prohibitively long schedules to ex-
ploit their potential. For instance, the recent approach of
BYOL [16] requires 170 TPU days for a single training run.

In this paper, we propose LocTex to learn data-efficient
visual representations using localized textual supervision,
which is composed of free-form captions associated to syn-
chronized mouse traces (see Figure 1a). This form of an-
notation can be easily acquired from non-expert workers,
leading to (i) lower cost and better scalability. Technically,
we propose to bridge the vision and language modalities
with contrastive learning and supervise the cross-modal at-
tention map with rendered mouse traces, providing (ii) coarse
localization information that improves the performance of
localization-sensitive downstream tasks. Finally, our method
requires (iii) a similar amount of training time as ImageNet
pre-training: it can be trained under a day with 8 GPUs.

After the pre-training, we transfer our learned feature rep-
resentations to various downstream vision tasks, including
image classification, object detection and instance segmenta-
tion. Compared with the ImageNet supervised pre-training,
our proposed LocTex can reduce the size of the pre-training
dataset by 10× or the target dataset by 2× while achieving
comparable or better performance on the COCO instance seg-
mentation. With the same amount of annotations, our LocTex
achieves around 4% higher accuracy than the previous state-
of-the-art “vision+language” pre-training approach [8] on
the PASCAL VOC image classification.

2. Related Work
Supervised Pre-Training. Much of the recent success of
computer vision can be attributed to the richness of im-
age features learned via supervised training. ImageNet pre-
training, in which image features are first learned through the
supervised image classification on ImageNet [7] before being
used on downstream tasks, is a highly popular model initial-
ization method [15, 10]. However, this approach has limita-
tions which have become increasingly evident as the variety
of downstream tasks and the types of new annotated data has
increased dramatically over the years [44, 19, 61, 51].
Unsupervised Learning. To go beyond the scale of Ima-
geNet in terms of supervised learning is expensive. Hence, it
becomes increasingly popular to seek methods for represen-
tation learning that can meet or exceed ImageNet supervised

pre-training without the need for labelled data. An important
direction in unsupervised learning is “self-supervised” learn-
ing, in which models are trained on pretext tasks where train-
ing labels can be obtained from the raw or augmented input.
Common pretext tasks include predicting context [9], solving
jigsaws [34], predicting rotation [14], colorization [58], and
inpainting [37]. Generative models have also been widely
used in representation learning to reconstruct the distribution
of the input data, such as restricted Boltzmann machines
(RBMs) [26], autoencoders [25] and generative adversarial
networks (GANs) [12, 11]. Recent explorations investigate
intra-dataset patterns and feature discrimination, including
clustering [3, 4] and contrastive learning [18, 16, 5, 55].

Vision & Language. Pre-training methods in natural lan-
guage processing have witnessed tremendous improvement
over the past few years [6, 39, 43, 2]. Efforts trying to use
the text in visual representation learning have never stopped.
Early research tried to predict captions or text from associ-
ated images [41]. Srivastava et al. [52] applied Boltzmann
machine to capture multi-modal features. Some works treat
text or language as weak supervisory signals for vision and
explore the trade-off between label quality and data scale.
Li et al. [27] train visual models on YFCC-100M [54] using
user-provided tags. JFT-300M [53] is also used for visual
pre-training with automatic-generated web signals. More re-
cent works like ICMLM [48], VirTex [8] and ConVIRT [59]
try to leverage the novel pre-training approaches developed
in NLP, such as masked language modeling and transformer-
based modeling. A concurrent work of us [42] has explored
contrastive learning between image and text at the web scale.
In this work, we explore further in this direction with a focus
on learning localization-aware features for spatially-sensitive
tasks such as object detection and segmentation.

Annotation Efficiency. A key goal of our work is to learn
powerful representations on data which can be acquired at
a low annotation cost. Recent explorations focused on ef-
ficient labeling [1, 30] and active learning [49] approach
this problem by placing the model in the loop in order to
increase the information gain per unit of annotation effort.
We approach from an alternative angle by looking at widely
available, natural sources of human supervision, which are
already cheap or free to acquire. Our work centers around
the Localized Narratives dataset [40], which complements
verbal image descriptions with synchronized mouse-over
gestures containing noisy spatial cues. We demonstrate that
designing a system to leverage such multi-modal cues can
provide significant performance benefit on visual representa-
tion learning with minimal annotation overhead.

3. Method
In this section, we introduce our approach of visual rep-

resentation learning from localized textual supervision. We
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Figure 2: Overview of our data-efficient visual representation learning framework (LocTex). We first use a pair of visual and
textual backbones to extract the features from the image and caption. We then apply the contrastive loss to pull the features
from positive pairs together and push those from negative pairs apart. Finally, we compute the cross-modal attention map
between visual and textual features and provide supervision using the rendered attention from the associated mouse trace.

present an overview of our LocTex framework in Figure 2.
We pre-train the visual backbone (as well as the textual back-
bone) using contrastive learning over positive and negative
image-caption pairs. We propose to make use of the accom-
panying mouse trace annotations to provide coarse learning
signals for localization. After pre-training, we transfer the
learned visual backbone to other downstream vision tasks
(e.g., classification, detection and segmentation).

3.1. Annotations

In the computer vision community, ImageNet [7] was
commonly used to pre-train visual backbone networks. How-
ever, annotating over 1000 fine-grained classes is very costly
and cannot be easily scaled up [48]. In this paper, we pro-
pose to employ localized textual annotations (also known as
localized narratives [40]) as it is relatively cheap to acquire
and offers semantically dense information. The annotation
we use consists of a caption with synchronized mouse trace:

Caption. Caption is a free-form annotation resulting from
annotators being asked to describe the content of the image
using natural language. As illustrated in Figure 1a, the infor-
mation captured in the caption is semantically dense: i.e., the
objects in the image as well as their attributes and relative
spatial relationships. The underlying rich semantic informa-
tion could potentially benefit a variety of downstream vision
tasks. On the other hand, the cost of this form of annota-
tion is much lower compared with other dense labeling [29]
since it is a very natural task for humans to do and does not
require the annotator to have extensive training or domain
knowledge. Some recent datasets [40] adopt a two-stage data
collection pipeline: they first ask the annotators to describe
the image verbally and then apply either speech recognition
or manual transcription to generate the final caption. From

this collection protocol, the starting and ending timestamp
of each token can also be obtained (which will be used to
synchronize the mouse trace with the caption).
Synchronized Mouse Trace. Compared with drawing a
sequence of bounding boxes or instance masks, logging the
mouse gestures of the subject while they describe the im-
age is an easier and more natural way for human annotators
to specify the object locations. It can be acquired almost
freely in the caption annotation pipeline since the annota-
tors only need to additionally hover their mouse over the
region being described. Though the localization and seman-
tic correspondence is too coarse for these annotations to be
directly used for tasks like object detection, it does capture
rich information about “what is where” at a high level.

3.2. Backbones

Given an image and its corresponding caption, we first
apply two separate neural networks to extract their features.
Visual Backbone. The visual backbone takes the raw im-
age as input and outputs a feature map that contains the se-
mantic information. This is also the only component which
we will transfer to other vision downstream tasks. Theoreti-
cally, we can choose any convolutional neural network as our
visual backbone. Following recent representation learning
papers [18, 5, 8], we adopt a standard ResNet-50 [21] as
our feature extractor throughout this paper to facilitate fair
comparison. We remove the last linear classification layer
and the preceding global average pooling layer to keep the
spatial dimension. Thus, the output feature map from the
visual backbone will have size 2048× R × R, where R is
the output resolution (which is 1/32 of the input resolution).
Textual Backbone. The textual backbone encodes the in-
put caption into a feature vector that captures the meaning of
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each word token. In this paper, we adopt a Transformer [56]
architecture as our textual backbone. Specially, we imple-
ment a 4-layer 1024-wide model with 16 self-attention heads.
Similar to Desai et al. [8], we replace the activation function
from ReLU to GELU [22] for its better empirical perfor-
mance. We refer the readers to Vaswani et al. [56] for more
architectural details. Before feeding the caption in, we first
tokenize it into a lower-cased byte pair encoding (BPE) [50]
with a vocabulary size of 10K. This results in almost no out-
of-vocab unknown ([UNK]) tokens in our experiments. We
also pad the input sequence with start of sequence ([SOS])
and end of sequence ([EOS]) tokens to mark the boundary.
The output feature vector from the textual backbone has size
1024× L where L is the caption length after tokenization.

3.3. Contrastive Loss

Given a batch of feature pairs extracted from visual and
textual backbones: {(xV,k,xT,k) | 1 ≤ k ≤ n} (where n is
the batch size), we transform each feature with a global av-
erage pooling and a single 1024-dimension fully-connected
layer. The resulting visual and textual features are denoted
yV,k and yT,k (both size 1024). Now, a straightforward way
to guide the pre-training is to match yV,k and yT,k in the
feature space using a simple L1/L2 regression loss. However,
this will lead to a collapsed solution where all features are
projected to the same location in the feature space [16].

Motivated by Chen et al. [5], we encourage the visual
and textual backbones to not only project the features of
matching image-caption pairs to be closer but also the fea-
tures of non-matching pairs to be further. Concretely, there
are n2 image-caption pairs {(yV,i,yT,j) | 1 ≤ i, j ≤ n} in
total, among which only the n pairs with i = j are positive
(as they correspond to the same data) while the remaining
(n2 − n) pairs are negative. We use the InfoNCE loss [35]
to pull the positive pairs together and push the negative pairs
apart to guide the pre-training (see Figure 2b):

LC = −
n∑

i=1

log
exp(sim(yV,i,yT,i)/τ)∑
j 6=i exp(sim(yV,i,yT,j)/τ)

, (1)

where sim(u,v) = uTv/‖u‖2‖v‖2 is the cosine similarity
between two vectors, and τ denotes a temperature parameter
(which is set to 0.1 in our experiments).
Discussions. Contrastive learning is not the only way to
bridge the vision and language modalities. It is also possible
to use one modality as input and the other as output to form a
supervised learning problem: i.e., image captioning [8] (im-
age to caption) and image synthesis [45] (caption to image).
However, the supervised formulation has a worse empirical
performance than the contrastive one (see our comparisons
with VirTex [8] in Table 4). Similar observations have also
been made in our concurrent work [42]. We conjecture that
this is because the relationship between image and caption

is not one-to-one (i.e., a single image may be described in a
multitude of ways, and vice versa). In this case, the encoding
process (many-to-one projection) might be much easier than
the decoding process (one-to-many projection).

3.4. Localization Loss

Applying the contrastive loss over the global visual and
textual features (after average pooling) provides the model
with a holistic sense of what objects are in the image. How-
ever, the model might not be able to correspond each instance
with its spatial location. This greatly limits its effectiveness
when transferred to localization-sensitive downstream tasks
(e.g., object detection, instance segmentation). This is where
the mouse trace can be helpful since it provides coarse lo-
calization information about the instances: i.e., where the
annotators position their mouse when describing an object.

We provide an overview of our localization loss in Fig-
ure 2c. We first transform visual and textual features linearly
using a 1024-dimension fully-connected layer. Note that we
do not apply the global average pooling as we need to keep
the spatial dimension to learn localization. Thus, the trans-
formed visual feature zV,k will have a size of 1024×R×R,
and the transformed textual feature zV,k will have a size of
1024×L. We then compute the image-caption attention map
as the normalized product between two feature maps:

Mk = softmax(zT
T, k × zV, k), (2)

which will then have the size of L×R×R. In Mk, each
location (i, x, y) corresponds to (the probability of) whether
the object described by the token i is located in the region
of (x, y). We observe that this may be supervised using the
mouse trace.

Given the fact that the mouse trace is synchronized with
the caption, we first temporally crop the part of the mouse
trace sequence that corresponds to each token in the caption.
We then render the covered region of cropped mouse trace
into a binary mask with resolution of R. Finally, we stack
the rendered masks of all tokens together to generate the
rendered attention M̂k. Since it has the same format and
definition as the image-caption attention map Mk, we can
use it to provide supervision on Mk with a normalized L2
regression loss:

LL =

n∑
k=1

∥∥∥Mk/‖Mk‖2 − M̂k/‖M̂k‖2
∥∥∥
2
. (3)

Discussions. The feature map from the visual backbone
usually has a low resolution (i.e., R = 7 if the input size
is 224×224), which largely limits the precision of the pro-
vided localized supervision. Therefore, we additionally ap-
ply the localization loss to the second last visual feature maps
(which has 2× larger resolution) to provide supervision at
a finer scale. The losses computed at different resolutions
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are added together with equal weights. We note that using
even higher resolutions than this leads to worse performance
(see Table 5). A likely reason for this is that the mouse trace
annotations from the datasets we use, and mouse traces in
general, are intrinsically noisy. In this case, downsampling
to a lower resolution removes some of the spurious corre-
lations that otherwise might be introduced, at the cost of
weaker overall supervision.

3.5. Implementation Details

Pre-Training Dataset. We use Localized Narratives [40]
as our pre-training dataset as it provides large-scale localized
textual annotations: i.e., it annotates the whole COCO [29],
Flickr30k [57], ADE20k [60], and part of Open Images [24]
datasets with high-quality captions and synchronized mouse
traces. In this paper, we present two variants of our LocTex:
(1) a smaller one trained only with COCO images (which
contains 118K images) to have a fair comparison with other
“vision+language” baselines, and (2) a larger one trained on
both COCO and Open Images data (which contains 809K
annotated images) to test the scalability of our method. To
compensate for the resolution difference with COCO, we
downsample the images from Open Images by 0.6×.

Data Augmentation. We apply standard data augmenta-
tions for images: i.e., random crop, random horizontal flip,
color jittering and normalization. Following Desai et al. [8],
we swap the ‘left’ and ‘right’ tokens in the caption when
applying the horizontal flip. We limit the caption length to
60 tokens for computational efficiency: we pad the caption
with zeros if its length is shorter than 60 or otherwise crop
a random 60-token subsequence from the caption, which
empirically helps to reduce overfitting.

Loss Functions. We assign LC and LL with equal weights
as they are roughly of the same magnitude. The contrastive
loss is computed locally at each GPU to save the communi-
cation bandwidth. This reduces the number of negative pairs,
while empirically, the convergence rate is not affected.

Training Details. We pre-train the visual and textual back-
bones with a batch size of 1024 for 600 epochs. Optimiza-
tion is carried out using stochastic gradient descent with a
momentum of 0.9 and a weight decay of 10−4. We use a
learning rate of 0.4 for the visual backbone, 0.002 for the
textual backbone, and 0.4 for the linear transforms. We adopt
the cosine learning rate decay schedule [32] with a linear
warmup for the first 20 epochs. We distribute the training
over 8 NVIDIA V100 GPUs with synchronized batch nor-
malization [38] and automatic mixed-precision [33] (from
PyTorch [36]). The total training time is around 18 hours.

4. Experiments
In this section, we evaluate the effectiveness of our pre-

trained visual backbone in various downstream vision tasks,

# Pretrain
Images

Annotations mAP

Random Init – – 67.3

MoCo [18] 1.28M self-supervised 79.4
PCL [28] 1.28M self-supervised 83.1
SwAV [4] 1.28M self-supervised 87.9
IN-Sup 1.28M 1 (1000-class) label 86.8

VirTex [8] 118K 1 caption 84.2
LocTex (Ours) 118K 1 localized caption 88.4

ICMLM [48] 118K 5 captions 87.5
VirTex [8] 118K 5 captions 88.7
LocTex (Ours) 809K 1 localized caption 92.6

Table 1: Results of linear classification on PASCAL VOC.
Our LocTex outperforms supervised and self-supervised pre-
training on ImageNet by 4-13% while using around 60% of
the annotated images. It also achieves 4% higher accuracy
than previous vision+language pre-training methods when
trained with a similar amount of annotations.

including image classification, object detection and instance
segmentation. The textual backbone also learns useful repre-
sentations and can be transferred to language-related tasks
in principle, though exploration of this is left as future work.

4.1. Image Classification

Following the common protocol [18], we first evaluate our
method by linear classification on frozen features: the pre-
trained visual backbone is fixed and used to extract features.
Setup. We adopt the PASCAL VOC dataset [13] for our
linear evaluation. We first resize all images to 224×224 and
feed them into our pre-trained ResNet-50. We then apply
global average pooling to extract 2048-dimensional image
features. We train a separate SVM for each class on VOC07
trainval and report the mean AP (over 20 classes) on the
test split. Following VirTex [8], we train multiple SVMs
with different cost values from {0.01, 0.1, 1, 10} and select
the best SVM based on a 3-fold cross-validation.
Baselines. We compare our method with three sets of base-
lines: (1) ImageNet pre-training (IN-Sup) that pre-trains the
model on the large-scale ImageNet dataset to perform im-
age classification, (2) self-supervised learning [18, 28, 4]
that pre-trains the model with a large number of unlabeled
images, and (3) vision+language pre-training [48, 8] that
pre-trains the model to perform image captioning on COCO.
Results. Training the classifier from scratch yields a rather
poor performance because the size of PASCAL VOC is fairly
small (with only 9K images). The widely-adopted ImageNet
pre-training (IN-Sup) significantly boosts the accuracy; how-
ever, it requires massive annotations over a fine-grained class
hierarchy. From Table 1, our LocTex achieves 1.6% higher
accuracy than IN-Sup with only 10% of annotated images,
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10% Training Data 20% Training Data

# Pretrain
Images

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75 APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

Random Init – 16.0 29.6 15.3 15.1 27.3 15.0 17.8 31.7 17.8 16.7 29.6 17.0

IN-Sup (10%) 128K 16.4 31.7 15.3 15.7 29.1 15.4 22.3 39.2 22.5 20.8 36.5 21.2
VirTex [8] 118K 23.7 41.9 24.0 21.5 38.6 21.4 28.9 47.4 30.6 25.6 44.1 26.2
LocTex (Ours) 118K 25.0 43.2 25.7 22.4 39.8 22.4 29.8 48.9 31.1 26.4 45.2 27.2

IN-Sup (50%) 640K 23.4 41.9 23.5 21.6 38.5 21.6 28.5 47.3 29.8 25.5 43.9 26.5
VirTex [8] 118K(×5) 26.3 44.1 27.1 23.4 40.9 23.8 30.7 49.4 32.3 27.1 45.9 27.9
LocTex (Ours) 809K 27.3 45.8 28.2 24.2 42.1 24.9 31.8 50.9 33.8 27.8 47.3 28.9

IN-Sup (100%) 1.28M 25.0 43.8 25.2 22.8 40.1 23.0 30.3 49.9 31.6 27.0 46.1 27.9

Table 2: Results of instance segmentation on COCO. Our LocTex consistently outperforms VirTex and IN-Sup under 10% and
20% data settings. We refer the readers to the appendix for detailed results under 50% and 100% data settings.

or 5.8% higher with around 60% of annotated images. The
superior performance comes from the use of cheap yet se-
mantically dense localized caption annotations.

Previous vision+language pre-training methods [48, 8]
were trained with five captions per image, which increases
the annotation cost by 5×. To have a fair comparison, we
compare our LocTex with the 1-caption VirTex [8]. With the
same amount of pre-training images, our LocTex achieves
more than 4% higher accuracy, which is contributed by the
better optimization formulation and the additional localiza-
tion supervision (see Table 4). We are also on par in terms
of the annotation cost as the extra mouse trace annotations
we use can be acquired almost for free during the caption
annotation [40]. We further scale our method up with the
additional Open Images data. With a similar amount of an-
notated images, our LocTex outperforms the full VirTex by
4% and ICMLM [48] by around 5%.

4.2. Object Detection

We then evaluate our method by transferring our learned
visual backbone to object detection. Here, the entire back-
bone is fine-tuned along with the object detector.
Setup. We adopt the PASCAL VOC dataset [13] for our
detection evaluation. Different from the linear evaluation
setup, we also include VOC12 trainval into the training
set. For the object detector, we use Faster-RCNN [46] with
ResNet-C4 backbone. Following He et al. [18], we add an
extra batch normalization right after the visual backbone. We
fine-tune all models for 24K iterations with linear warmup.
The learning rate is initialized with 0.02 and decayed by 10×
at 18K and 22K iteration. We distribute the training across 8
GPUs with a total batch size of 16.
Baselines. Apart from the full ImageNet pre-training base-
line, we also scale it down with fewer pre-training images
(10%, 20%, 50%) to match the annotation cost of VirTex and
ours. We follow the same training protocol as torchvision
and keep the number of epochs the same; otherwise, these

# Pretrain
Images

APbbox APbbox
50 APbbox

75

Random Init – 33.8 60.2 33.1

IN-Sup (10%) 128K 42.6 72.0 43.8
MoCo [18] 118K 47.6 75.4 51.0
VirTex [8] 118K 51.7 79.6 56.5
LocTex (Ours) 118K 53.9 80.9 59.8

IN-Sup (50%) 640K 52.1 80.4 57.0
VirTex [8] 118K(×5) 55.3 81.3 61.0
LocTex (Ours) 809K 56.9 82.4 63.2

IN-Sup (100%) 1.28M 54.3 81.4 59.6

Table 3: Results of object detection on PASCAL VOC. Our
LocTex surpasses VirTex and IN-Sup by 1.5-2.2% and 4.8-
11.3% given a similar amount of pre-training images.

models trained on smaller subsets are more prone to overfit-
ting. These baselines are referred to as IN-Sup (k%).
Results. We present our object detection results in Table 3.
With a similar amount of pre-training images, our LocTex
surpasses VirTex and IN-Sup by a large margin (1.5-2.2%
and 4.8-11.3%, respectively). Remarkably, LocTex matches
the full ImageNet pre-training performance with more than
10× fewer annotated images. The scaled-up version of Loc-
Tex further pushes the AP to 56.9%, which is 2.6% higher
than the full ImageNet pre-training performance despite us-
ing 1.6× fewer images.

4.3. Instance Segmentation

Finally, we evaluate our method on instance segmentation
under the limited data setting. Similar to the detection setup,
we train the visual backbone end-to-end with the model.
Setup. We use the COCO dataset [29] (with train2017
and val2017 split) for segmentation evaluation. We choose
Mask R-CNN [20] with ResNet-C4 backbone as our model.
We add the extra batch normalization to the visual backbone.
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Figure 3: LocTex learns visual representations in a data-efficient manner: on COCO instance segmentation, it is able to reduce
the pre-training dataset by 10× without loss of accuracy or reduce the target dataset by 2× with 5% higher accuracy.

Following the 2× schedule, we train the model with 180K
iterations. The learning rate is initialized with 0.02, multi-
plied by 0.01 at 120K and 160K iteration. As we target at the
limited data setting, we sample a subset from COCO images
(e.g., 10%, 20%, 50%, 100%) for fine-tuning, and shrink the
training schedule proportionally to the dataset size.
Results. From Table 2, our proposed LocTex consistently
outperforms VirTex and IN-Sup under all data settings. We
refer the readers to the appendix for detailed results under
50% and 100% data settings. In Figure 3, we further investi-
gate our method from the data efficiency perspective:

– Pre-Training Data. Our LocTex can reduce the number
of pre-training images by 10× without loss of accuracy.
With the same amount of pre-training data, it outperforms
IN-Sup by more than 8% in terms of AP. This translates
into 2.4× and 6.4× lower annotation cost compared to
pre-training with classification and segmentation labels.
We refer the readers to the appendix for more details.

– Fine-Tuning Data. The end goal of a good pre-training
is to reduce the amount of costly annotation in the target
task. Our LocTex reduces the target dataset by 2× while
achieving more than 5% higher accuracy than training
from scratch. Under extremely limited data settings (i.e.,
5-10%), the improvement is even more significant: 2.7%
and 7.2% AP boost compared with ImageNet pre-training
and random initialization, with 2× data reduction.

5. Analysis
In this section, we provide some additional analysis of our

model to understand how it works and might be improved.
Effectiveness of LC and LL. The two major components
of LocTex are the formulation of contrastive learning (LC)
and the use of low-cost mouse trace annotations (LL). Thus,
we present some ablation analysis by removing one or both
from our framework. VirTex [8] can be seen as our model

VOC COCO (10%) COCO (20%)

LC LL mAP APbbox APmask APbbox APmask

3 3 88.4 25.0 22.4 29.8 26.4

3 7 –0.9 –0.7 –0.6 –0.5 –0.5
7 7 –4.2 –1.3 –0.9 –0.9 –0.8

Table 4: The formulation of contrastive learning (LC) and the
use of low-cost mouse trace annotations (LL) are important
to the effectiveness of our visual representation learning.

removing both LC and LL (and using a predictive loss in-
stead). From Table 4, both components contributes positively
to our final performance on downstream vision tasks. We
also observe that the contrastive loss is particularly effective
on image classification; while the localization loss is more
useful on instance segmentation. This phenomenon is well
aligned with our design where LC provides holistic semantic
information and LL offers detailed localization supervision.

Learned Image-Caption Attention Map. Although we
focus on transferring the learned visual backbone to different
downstream tasks, it is still fairly important to understand
what the model actually learns from the pre-training stage.
In Figure 4, we visualize the learned image-caption attention
map. We refer the readers to the appendix for more examples.
Here, the visualized attention maps are predicted from the
second last visual feature map (with resolution of 14×14).
We resize the attention maps to 224×224 and then overlay
them to images. As shown in Figure 4, the learned attention
maps have fairly accurate localization and are able to capture
occluded and distant instances (e.g., cars and buildings in the
third example). This explains why our model transfers well
to detection and segmentation. As the model is trained with
open-vocabulary textual annotations, it is able to learn rich
visual concepts, some of which (e.g., helmets and goggles)
are not even covered in the COCO categories. This shows
great potential in the fine-grained localization tasks (such as
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Figure 4: Visualization of learned image-caption attention maps (on COCO val2017). Our LocTex learns rich visual concepts
(e.g., helmets, goggles) and fairly accurate localization. We refer the readers to the appendix for further examples.

VOC COCO (10%) COCO (20%)

Supervision mAP APbbox APmask APbbox APmask

1× 87.7 24.3 21.9 29.3 25.9
1×, 2× 88.4 25.0 22.4 29.8 26.4
1×, 2×, 4× 88.2 24.9 22.3 29.6 26.1

Oracle 90.8 26.1 23.3 30.7 21.7

Table 5: Analysis of mouse trace supervision. (1) Applying
supervision at too low or too high resolution does not work
well. (2) With oracle supervision, the performance is further
boosted by 2% on classification and 1% on segmentation.

LVIS [17]), which is left as future work. Another interesting
direction is to study the zero-shot transfer performance to
detection/segmentation based on the learned attention maps.

Resolution of Mouse Trace Supervision. We explore dif-
ferent resolutions for mouse trace supervision. As shown in
Table 5, applying supervision at both 1× and 2× resolutions
works the best across different downstream tasks. 1× alone
does not work well due to its low resolution (7×7) while 4×
introduces too much noise from the mouse trace annotation.

Performance “Upper Bound”. We further investigate the
performance upper bound of our method given perfect mouse
trace annotations. We synthesize the clean image-caption at-
tention maps using ground-truth COCO segmentation masks.
Specifically, we first match each token in the caption with
the COCO category names (as well as their synonyms and
parent classes). For each token with a match, we compute
the intersection-over-union (IoU) between its corresponding
mouse trace and every instance mask in the matching cate-

gory. Finally, we aggregate these instance masks with high
IoUs as our oracle image-caption attention maps. The IoU
matching process helps to deal with the case where the token
in the caption only refers to one of the multiple instances
from the category. Note that we apply the oracle supervision
still at 1× and 2× scale to mimic the coarse resolution of
real mouse traces. In Table 5, our LocTex trained with oracle
supervision further pushes the performance by 2% on the
PASCAL VOC image classification and 1% on the COCO
instance segmentation.

Training Efficiency. In addition to annotation efficiency,
our LocTex pre-training is also very efficient in computation.
Its training cost is comparable with ImageNet supervised
pre-training. We refer the readers to the appendix for details.

6. Conclusion

In this paper, we introduce LocTex to reduce the prac-
tical costs of data annotation by taking advantage of low-
cost, multi-modal labels including free-form captions and
mouse-over gestures. We adopt a cross-modal contrastive
pre-training approach using images and captions, and pro-
pose to supervise the image-caption attention map via ren-
dered mouse traces to provide coarse localization informa-
tion. Extensive experiments verify that the visual features
learned through our approach can be effectively and effi-
ciently transferred to downstream tasks including image
classification, object detection, and instance segmentation.
We hope that our approach will provide a simple but strong
baseline and inspire future exploration into how to extract
more value from rich yet noisy localized textual annotations.
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