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Figure 1. We propose to normalize human poses in video frames for computing pose similarity. People with different anthropometry (b)
lead to differences in joint positions when performing the same pose (a), but their joint rotations are similar. The same pose performed by
different subjects in (a) and (b) can be represented by the same normalized pose (c) to retain only pose information.

Abstract

We present a novel approach for extracting human pose
features from human action videos. The goal is to let the
pose features capture only the poses of the action while
being invariant to other factors, including video back-
grounds, the video subjects’ anthropometric characteristics
and viewpoints. Such human pose features facilitate the
comparison of pose similarity and can be used for down-
stream tasks, such as human action video alignment and
pose retrieval. The key to our approach is to first normal-
ize the poses in the video frames by mapping the poses onto
a pre-defined 3D skeleton to not only disentangle subject
physical features, such as bone lengths and ratios, but also
to unify global orientations of the poses. Then the normal-
ized poses are mapped to a pose embedding space of high-
level features, learned via unsupervised metric learning. We
evaluate the effectiveness of our normalized features both
qualitatively by visualizations, and quantitatively by a video
alignment task on the Human3.6M dataset and an action
recognition task on the Penn Action dataset.

1. Introduction
Video alignment aims to find dense temporal correspon-

dences between a pair of videos. Finding alignments be-
tween two natural human action videos is especially chal-

lenging because the two videos to be aligned can have large
variations in many factors, such as scales and orientations
of the video subjects, camera viewpoints, action speeds and
orientations, etc. A feature that is robust to these variations
is desirable in finding the alignments.

A common approach to the problem of human ac-
tion video alignment is to first estimate 2D or 3D hu-
man poses from two input videos, and then find the align-
ments by matching with features extracted from joint posi-
tions [48, 11], so as to reduce certain interference in video
backgrounds and subjects’ clothing. However, human poses
still contain large variations in scale, bone length ratios,
orientations, etc. Since existing 3D pose estimation meth-
ods [28, 37] recover 3D poses in camera coordinate sys-
tems, the joint positions relative to a root joint are depen-
dent on viewpoints (as illustrated by a toy example in the
supplementary material). Global orientation normalization
by Procrustes alignment is hard to be applied to in-the-wild
videos when the ground-truth 3D poses are not available.
Besides viewpoint, the joint positions computed by exist-
ing 3D pose estimation methods are also dependent on the
video subjects’ anthropometric characteristics, such as bone
lengths and ratios. Such anthropometric variation would
cause a difference in distance measurements (e.g., L2 dis-
tance after Procrustes alignment) even when the subjects in
the videos perform exactly the same poses, as illustrated in
Figure 1.

11521



Given the above limitations of using joint position-based
pose representations for video alignment, an important ob-
servation is that pose similarity is better described by joint
angular representations than relative joint positions. The
poses of two subjects performing an identical pose should
have the same joint angles or joint rotations, but could pro-
duce a difference in joint positions due to the difference in
relative bone lengths, as illustrated in Figure 1. In addition,
relative joint angles or rotations of physically connected
joints are consistent among cameras and invariant to view-
points. Thus the key to extract subject- and scene-invariant
features for comparison is to extract features with respect
to joint angular representations rather than joint position-
based representations.

At first sight, a straightforward solution might be to com-
pute joint angles from joint positions, and use raw joint
angles [10] or their aggregations [35, 52] as features for
matching. However, the joint angle features suffer from in-
formation loss by dropping the skeleton’s relational context,
which has a proven significance in capturing pose discrim-
ination [8, 40]. Joint rotations also have limitations in that
either directly regressing 3D joint rotations from 2D poses,
or computing joint rotations from 3D poses by inverse kine-
matics (IK) is an ill-posed problem, where multiple possi-
ble sets of joint rotations can be mapped to the same set of
joint positions [17, 53]. Even though existing works have
attempted to add kinematic constraints to reduce the IK am-
biguity [17, 46], it is still impractical to compare pose sim-
ilarities directly in the joint rotation space using the joint
rotations computed from joint positions [57].

To address the limitations in position-based and angular-
based pose representations, we propose to use a normalized
human pose, an intermediate pose representation that re-
flects the pose information with respect to joint rotations,
and is parameterized by joint positions to preserve the re-
lational context of body configurations, as shown in Fig-
ure 1(c). This normalized pose representation is enlight-
ened by the recent works that use joint rotations as pose
parameterizations for motion reconstruction [45] and pose
sequence generation [53, 38]. They incorporate a determin-
istic forward kinematics (FK) layer in neural networks to
convert the joint rotations into joint positions to avoid the
joint rotation ambiguity problem in IK. FK recursively ro-
tates the bones in a skeleton from a root joint to the leaf
joints according to the joint rotations, resulting in joint posi-
tions that can be supervised by ground-truth joint positions.
We adopt an FK layer to perform pose normalization. Our
normalized pose representation retains the joint rotations of
the subjects in video frames, such that it captures the pose
information and is invariant to all other factors related to
the original scene and subject in the video; and is param-
eterized by the joint positions of a pre-defined skeleton to
reduce ambiguity in comparing pose similarities.

Figure 2. The pipeline of our proposed method. (a) Pose nor-
malization: the 2D pose in each video frame is mapped onto a 3D
condition skeleton; (b) pose embedding: the 3D condition skeleton
poses are mapped to a pose embedding space.

We design a neural network that learns to normalize
human poses in videos. Specifically, the pose normaliza-
tion network takes in 2D poses and estimate joint rotations,
which are then applied by FK on a pre-defined 3D skeleton
with unified fixed bone lengths (called condition skeleton as
in [53]). The joint rotations of the subjects’ poses in videos
are thus converted into the joint positions of the condition
skeleton to normalize the poses. In this way, the difference
in joint positions of the condition skeleton is caused only
by the difference in joint rotations. Since the normalized
poses are not paired with ground-truth poses for training,
our network adopted a cycle consistency training strategy
(Section 3.2). With joint rotations, the poses can also be
easily unified to the same global orientation by specifying
the root joint rotation. Finally, the pose features are learned
from the normalized 3D poses by metric learning. The re-
sulting pose features are high-level human pose represen-
tations and can be directly compared by the Euclidean dis-
tance.

In this paper we mainly focus on the video alignment
task, but the proposed feature could also be used for other
pose similarity tasks, such as pose retrieval, action detec-
tion, etc. Experiments show that our proposed normalized
pose is robust to variations in viewpoint and subjects’ an-
thropometry. Pose features learned from the normalized
poses have shown proven performances on a dense corre-
spondence task on the Human3.6M dataset, and an action
recognition task on the Penn Action dataset.

2. Related Work

Human Action Video Alignment. Alignment of human
action videos has been actively explored in recent years
for many video analysis tasks, such as action detection
in unconstrained videos [16], human reconstruction from
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uncalibrated multiview videos [11], action synchroniza-
tion [12], few-shot video classification [6], etc. Since there
is no large-scale dataset with frame-by-frame labeled align-
ments, existing works on human action video alignment
have focused on exploiting natural spatio-temporal rela-
tions in videos and designed self-supervised tasks to by-
pass the requirement on datasets. For example, Dwibedi
et al. [12] adopted cycle-consistency learning to maximize
the number of corresponding frames between videos; Ser-
manet et al. [44] utilized multiview videos for cross-view
correspondence; Misra et al. [33] and Sumer et al. [47] pro-
posed to learn visual representations by sequence verifica-
tion tasks that penalize the temporal order of action subse-
quences. While existing methods design temporal model-
ing techniques specific to video alignment to handle varia-
tions in videos, our method aims at obtaining normalize hu-
man poses that can also generalize to other pose similarity-
related applications.

Human Pose Parameterizations. A common human
pose parameterization is via joint positions. Approaches
for regressing 3D joint positions from video frames or
2D poses have been extensively studied in compute vi-
sion [28, 49, 50]. However, regressing 3D poses from 2D
information often suffers from artifacts due to the projective
ambiguity. To reduce the ambiguity, a 3D articulated body
model can be introduced to provide physical constraints. In
this case, the poses in videos are often reconstructed by fit-
ting the body model’s projection to the 2D poses [30, 29]
or video frames [23, 24], and the pose features can be rep-
resented by the body model parameters [23, 29]. Another
parameterization of human poses is by joint rotations such
that kinematic techniques could apply. Among the rota-
tion parameterizations, Euler angles and exponential maps
would cause exploding gradients due to their discontinu-
ities and singularities and thus are not suitable for neural
networks [38]. More optimized joint rotation parameteriza-
tions, such as quaternions [53, 45] and 6Ds [58], have been
adopted in neural networks to ensure continuity. In this pa-
per, we adopt quaternions to represent joint rotations, since
they are compatible with major animation software, such as
Blender and Unity.

Human Pose Features. The features (representations) of
human pose or motion in videos have been extensively
studied for down-stream tasks, such as video frame re-
trieval [48, 10], human pose estimation [18, 9, 41], motion
graph transition detection [25, 2], etc. Hand-crafted low-
level features, such as Euler angles computed from joint
positions [8, 10] and pixel intensity-based features [13], are
not comprehensive descriptions that capture contextual la-
tent representations of human poses. Several works [34, 12]
also proposed to learn features directly from video frames,
without detecting body parts. These features extracted from

general video frames are not tailored for human action
videos and are subjected to variations in camera motions
and background motions. Deep neural networks designed
for human pose related tasks, such as human pose estima-
tion [41], poses synthesis [40] and motion retargeting [1],
capture certain pose features in network latent layers. But
such latent representations are task-specific, and their dis-
tances might not directly reflect pose similarities. A few ex-
isting works also proposed to learn high-level human pose
features by metric learning techniques from 2D poses or im-
ages [34, 47, 48]. Please see the following “Deep Represen-
tation Learning” subsection.

Deep Representation Learning. Representation learn-
ing predicts relative distances between different instances
within a category, such as human faces [43], texts [31],
graphs [5], motions [2], as well as human poses [34, 47, 48].
Contrary to these pose embedding methods that adopt as-
sumptions on 2D poses [34, 48] and video temporal or-
dering [47] to indicate pose similarity, and let the neural
networks learn to cover the variations in poses, our pose
normalization is equivalent to a pre-processing step that ex-
plicitly factors out the variations in dataset entities to avoid
introducing assumptions in the metric learning. Various
losses have been proposed for the learning of relative dis-
tances. Besides the commonly used contrastive loss [19, 20]
and triplet loss [43, 54], soft contrastive loss [5] and triplet
ratio loss [48] enable probabilistic embedding that mod-
els the input uncertainties, and circle loss [51] re-weights
similarities for more flexible optimizations. To automati-
cally define similar and dissimilar instances, various min-
ing strategies have also been proposed, such as semi-hard
triplet mining [43], online triplet mining [21], batch-hard
strategy [32], etc. In this paper, we also propose an adap-
tive triplet sampling strategy for human action videos (Sec-
tion 3.3).

3. Methodology

3.1. Overview

Figure 2 shows the pipeline of our method. The input
is 2D poses detected from video frames using off-the-shelf
2D pose detectors [7, 14]. The pipeline contains two steps:
(1) pose normalization, which maps the poses of the sub-
ject in the video onto a 3D condition skeleton, such that
the poses are disentangled from the video subject’s anthro-
pometry and unified to the same global orientation; (2) pose
embedding, which extracts features of the normalized 3D
poses by mapping them to a pose embedding space.

3.2. Pose Normalization

Figure 3 shows the pose normalization training pipeline.
The core of this model is applying the 3D joint rotations
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Figure 3. Our model for pose normalization. (a) The network EQ regresses 3D joint rotations from input 2D poses; (b) reconstruction
branch: apply joint rotations on source skeletons for 3D pose reconstruction for training; (c) cycle reconstruction branch: apply joint
rotations on the condition skeleton, and then project to 2D as input for cycle consistency.

from input 2D poses computed by a convolutional neu-
ral network EQ onto a condition skeleton to normalize the
poses (as shown by the gray data path in Figure 3(a)(c)).
For a video containing T frames, we denote the 2D posi-
tion of joint n at frame t as xnt ∈ R2, t = 1, 2, ..., T, n =
1, 2, ...N , where N is the total number of joints. The joint
rotations, computed from the input 2D poses by EQ, are
represented as a unit quaternion for each joint αn

t ∈ R4.
Denote the FK process as X = FK(s, α), where bones

in a skeleton s are rotated according to a set of joint rota-
tions α, resulting in the 3D joint positions X of the skele-
ton. In order to train EQ, we apply the joint rotations αn

t

computed from 2D poses xnt on two types of skeletons: the
condition skeleton S, to facilitate the learning of pose nor-
malization; and the source 3D skeletons of the video sub-
jects st computed from the ground-truth 3D poses, to assist
the training of EQ. In the following, we describe the two
FK branches, namely reconstruction branch and cycle re-
construction branch, for training EQ.

Reconstruction Branch. The reconstruction branch is
shown as the green data path in Figure 3(a)(b). Applying
αn
t on the source 3D skeletons st results in reconstructed 3D

poses Xt
s, which can be directly supervised by the ground-

truth 3D poses Xn
t using the reconstruction loss:

Lrecon =
∑
t,n

‖FK(st, α
n
t )−Xn

t ‖2.

Cycle Reconstruction Branch. The cycle reconstruction
branch is represented by the orange data path in Figure 3.
The design of the cycle reconstruction branch is based on

the observation that, since the condition skeleton has the
same poses as the poses of the subject in the video frames,
its projections should yield the same 3D joint rotations as
the 3D joint rotations produced by the original input 2D
poses. However, applying rotations αn

t on the condition
skeleton results in new 3D poses X̄S without paired ground-
truth for supervised training. Thus, we adopt this cycle re-
construction that projects the 3D condition skeleton pose
into 2D pose, and then compute 3D joint rotations from the
projected 2D poses.

Specifically, the 3D condition skeleton poses X̄S are pro-
jected by ground-truth camera parameters into the 2D poses
x̂nt , which are then input to EQ to compute the joint rota-
tions α̂n

t of the projected poses of the condition skeleton.
These rotations are applied again to the ground-truth skele-
ton by FK, resulting in cycle reconstructed 3D poses. This
process produces two constraints for training. The joint ro-
tation consistency loss is computed as the differences be-
tween joint rotations from the input 2D poses and from the
projected skeleton poses:

Ljrc =
∑
t,n

‖αn
t − α̂n

t ‖2.

The cycle reconstruction loss is:

Lcycle =
∑
t,n

‖FK(st, α̂
n
t )−Xn

t ‖2.

Besides the above losses, we also adopted the foot con-
tact loss Lfc, which is commonly used in 3D pose estima-
tions to reduce the skating effect [46]. The total loss func-
tion for training is:

L = Lrecon + ϕLcycle + βLjrc + λLfc,
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Figure 4. Adaptive triplet mining: determining the positive and
negative candidate ranges based on primary pose similarities.

where ϕ, β and λ are weights for the cycle reconstruction
loss, the joint rotation consistency loss and the foot contact
loss, respectively.

The reconstruction branch and the cycle reconstruction
branch are only used for training. For inference, only the
regressorEQ is used to compute the 3D joint rotations from
2D poses to be applied onto the condition skeleton. To unify
the global orientations of the poses, the quaternion for the
root joint is set to a specific rotation value (in our experi-
ments [1, 0, 0, 0]) so as to rotate the poses to the same ori-
entation.

3.3. Pose Embedding

After the poses in the video frames are normalized into
unified bone lengths and viewpoints, we use metric learning
to map the poses to a pose embedding space to extract high-
level pose features. Specifically, we use another neural net-
work EP to extract features from the normalized 3D poses
and train EP with a triplet loss [43]. We experimented on
three types of networks as the feature extractor, including
fully connected [28], GCN [56], and PointNet [39], and
have empirically found that fully connected performs bet-
ter than the other two alternatives (see the ablation study in
Section 4.4).

To train the feature extractor by metric learning, an im-
portant consideration is the definition of positive and neg-
ative pair for each anchor 3D pose. Existing works on hu-
man pose related metric learning often make use of action
coherence in videos [47, 2, 44], and sample the positive pair
at a fixed temporal offset of the anchor, while the negative
pair outside a temporal window of the anchor or from an-
other action. However, since actions in different videos are
performed at various speeds, and some poses are repetitive
throughout an action, a fixed temporal offset might not gen-
eralize well to all videos.

We thus propose to adaptively mine triplets within a
video. As shown in Figure 4, for each frame in the video
(anchor frame), we compute a primary similarity with all
other frames, by measuring the Mean Per Joint Position
Error (MPJPE) between the normalized poses in the an-
chor frame and in other frames. These primary similarities
are linearly normalized to [0, 1], such that setting thresh-
olds c. ∈ [0, 1] divides the primary similarities into positive

([cpl, cpu]) and negative ([cnl, cnu]) candidate ranges from
which triplets are sampled. Adaptive mining also facilitates
curriculum learning [3], where the training starts from easy
negative pairs and gradually shifts to semi-hard pairs. The
difficulty level of triplets can be easily modulated by setting
the thresholds.

4. Experiments
We trained our networks on the training set of Hu-

man3.6M dataset [22], which provides ground-truth 2D
poses, 3D poses, and camera parameters. The ground-truth
source skeleton can be computed from the ground-truth 3D
poses. The bone lengths of the condition skeleton is defined
as the average bone lengths in the Human3.6M training set.
Please refer to the supplementary material for more imple-
mentation details.

4.1. Robustness to Anthropometry

Dataset. To produce variations in subjects’ anthropom-
etry, we augment Human3.6M dataset with different skele-
tons. With raw joint angles and bone lengths in the dataset,
for every 50 frames in each video, we multiply the origi-
nal bone lengths by a random scale factor from the range
[0.75, 1.25] (skeleton symmetry preserved), and compute
the new ground-truth 2D and 3D joint positions following
the original construction process of Human3.6M dataset.

Baselines. We experimented on three state-of-the-art
methods [28, 56, 37] that estimate 3D poses from 2D poses.
Their models and our model were all re-trained using the
respective original settings (e.g. pre-processings of 2D and
3D poses, number of epochs, etc.)

Metrics. The goal of this experiment is to measure the
changes in the 3D poses when there are variations in the 2D
poses caused by bone length variations. As illustrated in
Figure 5, suppose x and ∆x represents the input 2D poses
and variations in 2D poses, and y and ∆y are the corre-
sponding output 3D poses and the variations in the output.
The model is robust when ∆y is close to zero at the pres-
ence of ∆x. We thus define the metric as the mean errors in
reconstructed 3D poses with and without bone length vari-
ations in input 2D poses, denoted as ∆MPJPE .

Figure 5. An illustration of variations in input and output of a
model.

We also report the MPJPE under Protocol #1 [49]. The
MPJPE for baseline methods are all from the original pa-
pers. The MPJPE for our method is computed by applying
FK using the estimated joint rotations on the ground-truth
source skeletons from the Human3.6M test set.
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Method MPJPE ↓ ∆MPJPE ↓
Martinez [28] 45.50 58.27
SemGCN [56] 40.78 61.07
VideoPose3D [37] 37.20 58.40
Ours 52.61 53.35

Table 1. Results of pose reconstruction accuracy and robustness to
variations in anthropometry. (unit:mm)

Results. The results are shown in Table 1. The MPJPE
scores of the 3D pose estimation methods [28, 56, 37] out-
performs our reconstructed poses, partly because their train-
ing is directly supervised by the joint position errors, while
ours need to satisfy the FK constraint. However, the FK
constraint in our method helps to distinguish the variations
in anthropometry from the variations of joint rotations, and
thus our methods is more robust to anthropometry, leading
to the lowest value of ∆MPJPE .

4.2. Robustness to Viewpoint

To evaluate the effectiveness of normalization in view-
points, we visualized the normalized poses in video frames,
as shown in Figure 6. We also experimented on an alterna-
tive viewpoint normalization method, which first estimates
the 3D poses given the detected 2D poses from the video
frames [28], and then aligns the poses with a pre-defined T-
pose in a fixed global orientation by Procrustes alignment.
As shown in Figure 6(c), the estimated 3D poses trans-
formed to the world coordinates by ground-truth camera pa-
rameters are close to the ground-truth 3D poses. However,
when there is no ground-truth camera parameters, the joint
positions of the 3D poses are dependent on viewpoints (Fig-
ure 6(d)). Applying rigid transformations can only roughly
align them to the same global orientation (Figure 6(e)),
which would still have a large impact on joint positions. In
contrast, our method can both accurately capture the poses
in the video frames (Figure 6(f)), and effectively transform
the poses to a unified orientation (Figure 6(g)).

4.3. Dense Correspondence

To evaluate our pose feature in a video alignment task,
we design an experiment on finding dense correspondence
between pairs of human action videos.

Dataset. To the best of our knowledge, there is no ex-
isting dataset of videos with densely labeled ground-truth
correspondences, since manual annotation of such labeling
would be extremely laborious. We thus make use of the
synchronized multiview videos in the Human3.6M test set
to build a synthesized correspondence dataset. For each
of the 59 actions in the Human3.6M test set, we take the
two frontal viewpoint videos as a pair of source and target
videos, which are originally strictly aligned temporally. To

produce the difference in lengths between the source and
target videos, each frame in videos is randomly retained or
dropped with a probability of p = 0.5, while a temporal fil-
ter is applied to ensure that no five consecutive frames are
dropped together, to ensure the realism of the reconstructed
video dataset. Then new correspondences between source
and target frames are constructed by applying a Dynamic
Time Warping (DTW) [4] on the indexes of retained frames.
These correspondences will be used as the ground-truth in
the dense correspondence task. Please refer to the supple-
mentary material for more details of dataset construction.

Metrics. We design the task of finding dense correspon-
dence on this synthesized dataset as follows: for each frame
in the target video, retrieve the index of the corresponding
frame in the source video based on the similarity of pose
features extracted at each frame. Two evaluation metrics
are defined over the constructed dataset: (a) hit ratio: the
percentage of frames that have the retrieved source frame
indexed within a small temporal threshold (τ = 5 in our im-
plementation) of the ground-truth indexes; (b) mean square
error (MSE): the mean square error on temporal distances
in the source video between the retrieved and ground-truth
correspondences.

Baselines. The baselines we compared with include two
categories: (1) existing human pose features, such as pose
features from 2D poses [10, 48], SMPL-based pose pa-
rameters [24], and latent representations captured by net-
works [56], and (2) other alternatives of our current meth-
ods, such as using 3D joint positions or angles from 3D
poses. Except SMPL [24], which requires video frames as
input, all the other methods we compared with take a 2D
pose sequence as input and output a sequence of features.

Results. The results are shown in Table 2. Matching
with Euler angles from 3D poses outperforms that from 2D
poses by a large margin. Our pose feature outperforms the
features learned from 2D poses [48] and SMPL-based pose
features in terms of both metrics. In this experiment, using
L2 distances of normalized poses to represent pose similar-
ity achieves a significantly better performance than using
learned pose features, because each pair of videos record
the poses from the same subject, and thus the reconstructed
poses are supposed to be the same.

Figure 7 shows a visualization of video dense correspon-
dence on in-the-wild videos. For each pair of videos we
selected eight representative keyframes of the action in the
source video (upper row), and retrieve their corresponding
keyframes in the target video (lower row) by applying the
DTW with our pose features. Even though the subjects
are in different appearances and orientations, the retrieved
frames are correspondent with keyframes in terms of the
poses to the action.
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Figure 6. Visualization of pose normalization results. (a) The video frames from the Human3.6M test set; (b) ground-truth 3D poses in
world coordinates; (c) estimated 3D poses by Martinez [28] in world coordinates; (d) 3D joint positions in camera coordinates; (e) unify
3D poses in camera coordinates by Procrustes alignment with a pre-defined T-pose; (f) 3D condition skeleton poses by our method; (g) our
normalized 3D poses under a unified global orientation.

Figure 7. Visualization of dense correspondence on running (a) and weight-lifting (b) videos.

4.4. Ablation Study

We conducted ablative experiments on our dense corre-
spondence dataset to verify the importance of individual
system components and our choices as shown in Table 3.
We compared three types of neural networks for pose em-
bedding (the second step of our pipeline), including fully-
connected layers [28], PointNet for global features [39], and

graph convolutional network [56], to determine which best
captures the pose features. We have found out that the per-
formance when using fully-connect layers as the encoder
network outperforms the other two. We also tested alterna-
tive configurations, including (1) joint training of EQ and
EP ; (2) adding a temporal convolution module to extract
features from a small temporal window to include motion
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Method Hit Ratio (%) ↑ MSE ↓
Euler+2D Poses [10] 33.20 81.20
Euler+3D Poses [28] 66.92 16.63
PA 3D Poses [28] 53.18 16.55
SemGCN latent [56] 41.86 28.34
POEM [48] 59.88 16.90
SMPL [24] 69.04 13.99
Ours (Normalized Poses) 94.25 2.35
Ours (Pose Features) 74.95 12.71

Table 2. Accuracy of hit ratio and MSE on the finding dense cor-
respondences task.

Model Hit Ratio (%) ↑ MSE ↓
SemGCN 61.05 15.9751
PointNet 68.96 13.8574
FC 74.95 12.7106
joint training 25.76 30.9361
temporal window 44.81 25.8550
w/o normalization 53.69 17.6033
w/o adaptive mining 41.92 28.7598

Table 3. Ablation study on the dense correspondence task.

features instead of a single pose; (3) learn features from
Procrustes-aligned 3D poses without normalizations, and
(4) using fixed-sized temporal windows for triplet mining.
All of these alternatives result in inferior performance to our
current configurations.

4.5. Action Recognition

To verify how well our proposed pose features work in
other human action video analysis tasks, we conduct experi-
ments on the task of unsupervised human action recognition
by matching [16]. Since the pose features are computed on
a frame-by-frame basis, a temporal encoding is needed to
aggregate the pose features to further describe actions. We
adopted rank pooling [15] as the temporal encoder, as de-
scribed in [16].

We experimented on the Penn Action dataset [55]. For
each video in the dataset, we first computed the per-frame
features using either our method or other baseline meth-
ods; then the feature sequence was encoded as a fixed-
length vector by rank pooling; finally, the samples in the
test set were classified using the vectors by a K-Nearest
Neighbor (k-NN) matching with the vectors in the train-
ing set. We did not re-train on the Penn Action dataset; in-
stead we re-trained our models on the Human3.6M dataset
with augmented virtual cameras [27], and pre-process the
input 2D poses according to the original implementations.
Except TCC [12], which takes video frames as input and
EnGAN [26], which takes 3D poses as input (computed
by [28]), all the other methods take 2D poses as input, and
thus can directly apply the pre-trained models to the Penn

Methods Top-1 (%) ↑ Top-5 (%) ↑
Euler+2D Poses [10] 52.53 79.77
PA 3D Poses [28] 50.37 74.34
Pose Perceptual [40] 74.48 87.55
TCC [12] 15.07 43.82
EnGAN [26] 53.18 68.91
SemGCN latent [56] 49.34 72.19
Ours (Normalized Poses) 54.12 75.19
Ours (Pose Features) 75.66 88.58

Table 4. The accuracy of action recognition task on the Penn Ac-
tion dataset.

Action dataset. The results of action recognition accuracy
by 1-NN and 5-NN are shown in Table 4.

Our pose feature outperforms most of the baseline meth-
ods by a large margin on this task. The pose perceptual
feature [40] also achieves a comparable performance with
ours. It involves poses from neighboring frames and thus
also capture motion features. While the pose perceptual
features reserve most network output at hidden layers (on
average 12,672 parameters for each pose), our feature is a
more compact representation (64 parameters each).

5. Conclusion and Future Work

In this paper, we proposed a normalized human pose
feature for video alignment. A novel pose normalization
method has been proposed to obtain normalized poses from
video frames invariant to viewpoints and subjects’ physical
structures. In addition, an adaptive triplet mining strategy
has been proposed to make the metric learning using poses
from videos more robust to action speeds. Experiments on
the video dense correspondence task and the action recogni-
tion task show that our proposed feature outperforms human
pose features by the state-of-the-art techniques.

Our current method has a limitation in that it extracts
features from a complete normalized pose. Future work in-
cludes modeling the normalized pose with partial observa-
tions. A potential solution that worth exploring is to adopt a
probabilistic modeling with kinematics constraints [46, 23]
as priors for the FK layer in the network, such that the miss-
ing joint positions would be filled by satisfying both kine-
matics priors and non-missing joint positions. Another limi-
tation of our method is that it requires ground-truth 3D joint
positions in training. Adopting weakly-supervised settings,
such as using ordinal depths of joint pairs [36, 42] might
enable training on in-the-wild datasets.
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