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Abstract

Existing non-negative matrix factorization based multi-
view clustering algorithms compute multiple coefficient ma-
trices respect to different data views, and learn a common
consensus concurrently. The final partition is always ob-
tained from the consensus with classical clustering tech-
niques, such as k-means. However, the non-negativity con-
straint prevents from obtaining a more discriminative em-
bedding. Meanwhile, this two-step procedure fails to unify
multi-view matrix factorization with partition generation
closely, resulting in unpromising performance. Therefore,
we propose an one-pass multi-view clustering algorithm by
removing the non-negativity constraint and jointly optimize
the aforementioned two steps. In this way, the generated
partition can guide multi-view matrix factorization to pro-
duce more purposive coefficient matrix which, as a feed-
back, improves the quality of partition. To solve the resul-
tant optimization problem, we design an alternate strategy
which is guaranteed to be convergent theoretically. More-
over, the proposed algorithm is free of parameter and of
linear complexity, making it practical in applications. In
addition, the proposed algorithm is compared with recent
advances in literature on benchmarks, demonstrating its ef-
fectiveness, superiority and efficiency.

1. Introduction

With the wide spread of multi-view data, multi-view
clustering (MvC) algorithms are proposed to maximally in-
tegrate complementary information among views and reveal
the underlying data structure for clustering [10, 18]. Most of
them are developed on classical clustering methods, such as
non-negative matrix factorization, k-means, spectral clus-
tering, etc. [26, 21, 9, 17]. Therefore, MvC approaches can
be roughly classified according to this criterion. In the pa-
per, we concentrates on non-negative matrix factorization
based ones.
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Non-negative Matrix Factorization (NMF) [14] is one
of the most fundamental clustering techniques in machine
learning and data engineering tasks. It factorizes the input
data into two parts, i.e. coefficient and base matrices [12].
Orthogonality [5] and low rank constraint [29] are widely
explored in matrix factorization, achieving promising per-
formance. In MvC setting, Gao et al. obtain the coefficient
matrices via performing NMF on each data view, then push
them towards a common consensus [6]. On the contrary,
some researches assume that all views share an underlying
consensus manifold, thus employ a single coefficient ma-
trix to capture the intrinsic data structure [7]. Upon the two
aforementioned frameworks, a large number of researchers
[27, 30, 24, 7, 25] borrow the manifold regularization in [2]
to further improve clustering performance. In specific, each
view can be regarded as a manifold and manifold regular-
ization is able to preserve the local geometry structure of
data [30]. However, it requires building one or more simi-
larity graphs, introducing higher computational and storage
complexities, O(n2) or even O(n3) sometimes [27]. Nev-
ertheless, Gao et al. impose orthogonality on the base ma-
trix explicitly [7], while Zhang et al. do so implicitly [27],
where the both are validated to be effective in experiment.

However, the aforementioned approaches limit the dis-
criminative embedding learning by imposing non-negativity
and fail to unify multi-view matrix factorization with par-
tition generation closely, leading to unsatisfying perfor-
mance. To address the issues, we propose an One-pass
Multi-view Clustering (OPMC) algorithm. First, we re-
move the non-negativity constraint on both coefficient and
base matrices. Instead of explicitly combining the objec-
tives of matrix factorization and k-means in a unified for-
mulation, we approximate the coefficient matrix with a con-
sensus hard partition matrix and a view-specific centroid
matrix, where no additional parameter is introduced. The
overview of OPMC is presented in Fig. 1. It can be ob-
served that the generated hard partition guides multi-view
matrix factorization to produce more purposive coefficient
matrix which, as a feedback, improves the quality of parti-
tion. In order to validate effectiveness of the proposal, we
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Figure 1. Overview of the proposed OPMC algorithm (Taking the data of two views as an example). Two semantic parts are concerned,
including multi-view matrix factorization and partition generation. From left to right, the hard partition matrix passes through two view-
specific transformations by multiply a centroid matrix respectively. Then, a coefficient matrix is obtained corresponding to each view. Note
that, we use dotted line to represent coefficient matrix, for it does not explicitly given in our algorithm. By multiplying the coefficient
matrices with base matrices, the data views can be reconstructed. From right to left, dotted arrows indicate that the clustering information
flows from original data views to the consensus hard partition step by step.

design an ablation study by comparing single-view OPMC
with ONMF [5]. Besides, extensive experiments are con-
ducted and OPMC establishes state-of-the-art performance
compared with recent advances on six benchmarks. Finally,
the contributions are summarized as follows:

1) We find removing the non-negativity constraint and uni-
fying matrix factorization with partition generation can
improve the clustering performance, and validate their
effectiveness with an ablation study.

2) We propose a non-parametric OPMC algorithm to ad-
dress the multi-view data clustering problem. It achieves
state-of-the-art performance on six benchmarks.

3) We design an alternate strategy to solve the resultant op-
timization problem. Its convergence and computational
complexity (O(n)) are analyzed theoretically and exper-
imentally.

2. Related work
2.1. Single-view matrix factorization

Given n data observations X ∈ Rn×d drawn from k dis-
tributions, matrix factorization algorithms aims to decom-
pose them into two parts, i.e. coefficient matrix H ∈ Rn×k

and base matrix W ∈ Rk×d. The most typical matrix fac-
torization method is NMF [1] which regularizes the both
matrix to be non-negative, as shown

min
H≥0,W≥0

f(X,HW) (1)

where f(·) is the loss function. In most cases, l2 and
Kullback-Leibler divergence loss are adopted [14]. Further-
more, Ding et al. explore the benefits of orthogonality con-
straint on matrix factorization methods [5]. With adopting
l2 norm and regularizing the base matrix to be orthogonal,
Eq. (1) can be formulated as

min
H≥0,W≥0

∥X−HW∥2F s.t. WW⊤ = Ik. (2)

The final partition is obtained by performing classical clus-
tering algorithms, mostly k-means, on coefficient matrix H.

2.2. Multi-view matrix factorization

Given the data from V views {X}Vv=1, in which Xv is
drawn from Rn×dv and dv is the feature dimension of v-
th view, multi-view matrix factorization is to find an opti-
mal H to reveal the consensus data structure of different
views. Liu et al. formulate a joint matrix factorization pro-
cess with the constraint that pushes coefficient matrix Hv of
each view towards the common consensus H [6], as shown

min
H≥0,Hv≥0,W≥0

V∑
v=1

∥Xv −HvWv∥2F + λ

V∑
v=1

g(H,Hv)

s.t. g(H,Hv) = γv∥H−HvQv∥2F ,
(3)

where Qv is a diagonal matrix for scalar matching. Mean-
while, Gao et al. propose to capture the underlying data
structure with the consensus coefficient matrix H in all data
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views [7]. The formulation is presented as

min
H≥0,W≥0

V∑
v=1

∥Xv −HWv∥2F + λh(H)

s.t. h(H) = Tr

[
H∗⊤(

V∑
v=1

λvLv)H

]
,

(4)

in which Lv is the Laplacian matrix of v-th data view. With
the obtained consensus coefficient matrix H, standard k-
means is adopted to compute the data partition.

3. The proposed method

It can be observed that both single-view and multi-view
matrix factorization methods follow a two-step procedure
of data clustering. As a result, the coefficient matrices are
generated without sufficient guidance of clustering results,
leading to unpromising performance. To address this issue,
the proposed OPMC combines the two steps in a unified
objective.

3.1. Objective

Taking the data Xv from v-th view, corresponding coef-
ficient matrix can be obtained via

min
Hv,Wv

∥Xv −HvWv∥2F s.t. WvW
⊤
v = Ik (5)

in which the orthogonality regularization is imposed on
Wv . Compared with Eq. (2), we remove the non-negativity
constraint on Hv and Wv . This encourages the model to
learn a more discriminative embedding in a larger search re-
gion. As a by-product, it benefits the optimization process,
for closed-form solutions can be obtained on them at each
iteration. Furthermore, k-means algorithm aims to partition
the data into k disjoint clusters with each characterized by
its centroid, which can be formulated into

min
Yv

∥Hv −YvCv∥2F

s.t. y(i)
v ∈ {e1, e2, · · · , ek},

(6)

where y(i)
v represents the i-th row of Yv . Meanwhile, Yv ∈

Rn×k is the hard partition matrix with each row being an
orthonormal basis of k-dimension space. Moreover, Cv ∈
Rk×k is a centroid matrix and its j-th row represents the
j-th centroid of Hv .

Rather than combining Eq. (5) and (6) in a unified for-
mulation explicitly, OPMC firstly approximates Hv into Yv

and Cv by

Hv ≈ YvCv. (7)

With unifying Eq. (5) and (7), a 3-factor matrix factoriza-
tion can be derived as

min
Yv,Cv,Wv

∥Xv −YvCvWv∥2F

s.t. WvW
⊤
v = Ik, y

(i)
v ∈ {e1, e2, · · · , ek}.

(8)

Considering V data views, the objective of OPMC is for-
mulated into

min
Y,{Cv}V

v=1,{Wv}V
v=1

1

V

V∑
v=1

∥Xv −YCvWv∥2F

s.t. WvW
⊤
v = Ik, y

(i) ∈ {e1, e2, · · · , ek}.

(9)

Note that the hard partition is unique in a specific clustering
task, therefore, we employ a consensus Y across all views.
At the same time, we set weights of all views to 1/V . This
is called element-wise objective, for the loss of every fea-
ture element is equally measured. Another widely adopted
setting is called view-wise in which the weights are float on
loss of each view. In experiments, we found element-wise
OPMC outperforms the view-wise one consistently. Nev-
ertheless, it can be observed that no hyper-parameters are
required in Eq. (9), which is a great improvement over the
recent advances in literature, since there is no validation set
for parameter tuning in a clustering task.

3.2. Optimization

In order to optimize Eq. (9), we design an alternate strat-
egy where each unknown variable is solved by fixing the
others in each step.

3.2.1 Wv subproblem

It is obvious that {Wv}Vv=1 are independent from each
other. Therefore, we fix {Wp}Vp=1,p̸=v , {Cv}Vv=1 and Y,
formulating the optimization respect to Wv into

max
Wv

Tr(WvB) s.t. WvW
⊤
v = Ik, (10)

where B = X⊤
v YCv . Eq. (11) can be efficiently optimized

with singular value decomposition (SVD) technique, while
the closed-form solution can be obtained via Theorem 1.

Theorem 1. Defining economic rank-k singular value de-
composition of matrix B as UΣV⊤, the closed-form solu-
tion of Eq. (10) should be

W∗
v = UV⊤. (11)

Proof. Assuming F = V⊤WvU, Eq. (10) can
be rewrite as maxF Tr(FΣ), in which FF⊤ =
V⊤WvUU⊤W⊤

v V = I. Since F is orthogonal, all of
its elements are from −1 to 1. Meanwhile, Σ is a diago-
nal matrix and is composed of non-negative singular values
{σj}kj=1. Therefore, Tr(FΣ) ≤

∑k
j=1 σj . The equality

holds when F is an identity matrix, leading to Eq. (11).
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Table 1. Complexity comparison between NMF and the proposed OPMC. NMFc is a naive setting of NMF on multi-view data (More
details can be found in Section 4.1). Note that SVD decomposition in Eq. (11) takes O(a1d

2
vk + a2k

3), where a1 and a2 are constants
[8]. Meanwhile, d =

∑V
v=1 dv .

Algorithm Subproblem Addition Multiplication Division Overall

NMFc U (3k − 1)dn− kd 3kdn+ kd kd O(kdn)
V (3kd− k − d)n k(3d+ 1)n nk

OPMC
Wv dvn+ k(2k − 3)dv +O(a1d

2
vk + a2k

3) 2k2dv +O(a1d
2
vk + a2k

3) -
O(kdn)Cv dvn+ (k − 1)kdv − k2 k2dv + k2 k

Y k(2d− 1)n+ (k − 1)kd k2d+ kdn -

3.2.2 Cv subproblem

Similar to Wv subproblem, we fix {Cp}Vp=1,p̸=v ,
{Wv}Vv=1 and Y. As a result, Eq. (9) is reduced to

min
Cv

Tr(Y⊤YCvC
⊤
v )− 2Tr(WvX

⊤
v YCv). (12)

With setting its derivation to zero, the minimum can be
found when

Cv = (Y⊤Y)−1Y⊤XvW
⊤
v . (13)

3.2.3 Y subproblem

It can be observed that the i-th row of hard partition Y satis-
fies 1-of-K encoding scheme. Therefore, we do an exhaus-
tive search on k candidates, i.e. {e1, e2, · · · , ek}, to find
out the solution, which can be formally given as

yi = {ej |j = argmin

V∑
v=1

∥x(i)
v − (CvWv)j∥2F }, (14)

where subscript i, j denote the i, j-th row of corresponding
matrix.

Additionally, the proposed alternate strategy is outlined
in Algorithm 1.

Algorithm 1 One-pass Multi-view Clustering Algorithm
Input: Data {Xv}Vv=1 and number of cluster k
Output: Hard partition Y

1: Initialize Y, {C}Vv=1 and {W}Vv=1 randomly.
2: while true do
3: Compute the objective value obj(t) via Eq. (9).
4: Update {W}Vv=1 via Eq. (11).
5: Update {C}Vv=1 via Eq. (13).
6: Update Y via Eq. (14).
7: if (obj(t− 1)− obj(t))/obj(t) < 1e−5 then
8: break;
9: end if

10: end while
11: return Y

3.3. Complexity and convergence

Computational complexity analysis of the proposed
OPMC is provided in the following. From the definitions,
we can find Xv ∈ Rn×dv , Cv ∈ Rk×k and Wv ∈ Rk×dv .
Observing that Y keeps the cluster assignments, computa-
tion can be accelerated by performing index and sum oper-
ations rather than matrix multiplication when involving Y.
For instance, A = YCv requires k2n element-wise multi-
plications. Alternatively, A(i, :) = Cv(j, :) if Y(i, j) = 1,
which is obviously much faster than the former method. In
specific, the complexity of OPMC is analyzed in Table 1. It
can be observed that the proposed algorithm is linear to data
number n and of O(kdn) in which d =

∑V
v=1 dv . More-

over, it requires fewer operations, including addition, multi-
plication and division, compared with the classical NMF in
each iteration. The two observations demonstrate OPMC’s
scalability on large-scale multi-view data.

Nevertheless, the proposed OPMC is theoretically guar-
anteed convergent to a local minimum. Similar to [19], we
give out the convergence proof of the proposed OPMC in
the following. For the ease of expression, we reformulate
the objective in Eq. (9) into

min
Y,{Cv}V

v=1,{Wv}V
v=1

J (Y, {Cv}Vv=1, {Wv}Vv=1) (15)

Since the optimization strategy is a cyclical procedure,
we use superscript t to represent the optimization round
t. In Wv subproblem, with given Y(t) and {Cv}V (t)

v=1 ,
{Wv}V (t+1)

v=1 is obtained, resulting in

J (Y(t), {Cv}V (t)
v=1 , {Wv}V (t+1)

v=1 )

≤ J (Y(t), {Cv}V (t)
v=1 , {Wv}V (t)

v=1 ).
(16)

The similar inequality holds in Cv and Y subproblems.
Therefore, we can get

J (Y(t+1), {Cv}V (t+1)
v=1 , {Wv}V (t+1)

v=1 )

≤ J (Y(t), {Cv}V (t)
v=1 , {Wv}V (t)

v=1 ),
(17)

which indicates the objective monotonically decreases
along with iterations. Meanwhile, it is obvious that J is
lower bounded by 0. Therefore, the proposed algorithm is
guaranteed to be convergent theoretically.
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4. Experiment
4.1. Experimental setting

In the following experiments, six multi-view datasets are
chosen to evaluate the proposed algorithm, including

1) HandWritten1 [23] collects 2000 digits, where six fea-
tures are extracted, including 76-D fourier coefficient,
216-D profile correlation, 64-D Karhunen-Love coeffi-
cient, 240-D pixel average, 47-D Zernike moment and
6-D morphological features.

2) Caltech1012 [15] contains 9144 pictures of objects be-
longing to 101 categories. Five features, including 48-D
Gabor, 40-D Wavelet Moments, 254-D Cenhist, 512-D
GIST and 928-D LBP, are adopted.

3) SUNRGBD3 [22] consists of 10335 RGB and depth im-
age pairs collected by researchers from Princeton Uni-
versity. We employ the deep neural network on the orig-
inal images to extract features of two views.

4) NUS-WIDE4 [4] is a web image dataset created by Lab
for Media Search in National University of Singapore.
Six types of features are concerned, including 4-D color
histogram, 144-D color correlogram, 73-D edge direc-
tion histogram, 128-D wavelet texture, 225-D block-
wise color moments and 500-D bag of words based on
SIFT descriptions.

5) AwA5 [13] contains 30475 images of 50 animals classes
with six extracted features, including 2688-D color his-
togram, 2000-D local self-similarity, 252-D PHOG,
2000-D SIFT, 2000-D color SIFT and 2000-D SURF
features.

6) YtVideo6 [20] consists of 101499 Youtube videos. Five
types of features are used, including 64-D audio volume,
512-D vision cuboids histogram, 64-D vision HIST,
647-D vision HOG, 838-D vision MISC features.

Their specifications are listed in Table 2. At the same time,
the proposed algorithm is compared with seven comparative
methods of linear complexity, including

1) NMF [14] (baseline). Two settings, i.e. NMFb and
NMFc, are concerned. NMFb performs NMF on each
view and the best result is reported, while NMFc on con-
catenated data of all views.

1https://archive.ics.uci.edu/ml/datasets/
Multiple+Features/

2http://www.vision.caltech.edu/Image_Datasets/
Caltech101/

3http://rgbd.cs.princeton.edu/
4https://lms.comp.nus.edu.sg/wp-content/

uploads/2019/research/nuswide/NUS-WIDE.html
5https://cvml.ist.ac.at/AwA/
6http://archive.ics.uci.edu/ml/datasets/

YouTube+Multiview+Video+Games+Dataset

Table 2. Specifications of the chosen datasets.

Dataset Number of
Samples Views Clusters

HandWritten 2000 6 10
Caltech101 9144 5 101
SUNRGBD 10335 2 45
NUS-WIDE 23953 5 31
AwA 30475 6 50
YtVideo 101499 5 31

2) ONMF [5] (baseline) imposes the orthogonality on
NMF. Similarly, two settings including ONMFb and
ONMFc are adopted.

3) MNMF [6] pushes the indicator matrices, generated
from NMF on each view, towards a common consensus
instead of fixing it directly.

4) RMKMC [3] extends the standard k-means into multi-
view setting.

5) LMSpC [16] groups large-scale multi-view data by ap-
proximating the similarity graph in spectral clustering
with bipartite graph.

6) BMVC [28] collaboratively encodes multi-view data
into compact binary representations, then clusters them
with binary matrix factorization.

7) LMSuC [11] employs anchor technique to extend sub-
space clustering algorithm on large-scale multi-view
data.

Other matrix factorization based multi-view clustering al-
gorithms, such as GCoNMF [27], MVMF [7], MDMF [30]
and DiNMF [24], are not involved in the experiments, since
they construct similarity graphs, leading to O(n2) or higher
complexity. Furthermore, we use the codes which are pub-
licly available on authors’ websites, perform grid-search on
the parameters recommended in their papers and report the
best. To eliminate the randomness, we run all compara-
tive algorithms ten times, and the averages are presented.
According to the discussion in section 5, we select the re-
sults corresponding to the minimum loss for the proposed
OPMC, and also repeat ten times to report the averages. Ad-
ditionally, the source code of OPMC is opened on Github7.

4.2. Experiment results

In the following, we design multiple experiments to eval-
uate effectiveness, superiority, efficiency and convergence
of the proposed algorithm.

7https://github.com/liujiyuan13/OPMC-code_
release
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Table 3. Ablation study on NMF and OPMC. Additionally, OPMCs refers to single-view OPMC by setting the view number V to 1.

Dataset ACC NMI Purity Time (s)
ONMFc OPMCs ONMFc OPMCs ONMFc OPMCs ONMFc OPMCs

HandWritten 61.55 90.65 58.52 83.30 62.05 90.65 48.46 1.11
Caltech101 24.61 25.59 41.13 46.08 38.92 44.82 448.62 31.08
SUNRGBD 18.98 18.61 21.95 25.32 35.89 39.36 2742.80 272.25
NUS-WIDE 13.77 16.28 11.12 15.10 21.38 26.75 589.72 35.29
AwA 08.05 09.09 09.34 11.59 09.97 11.31 5535.58 1090.61
YtVideo 16.85 22.52 10.41 20.53 27.03 31.02 4023.83 1029.63

Table 4. Parameter number and performance comparison between the proposed OPMC and seven large-scale algorithms in literature. ’-’
indicates the algorithm fails on corresponding datasets due to memory limitation.

Dataset NMFb NMFc ONMFb ONMFc MNMF RMKMC LMSpC BMVC LMSuC OPMC

Param. num. 1 0 1 0 1 1 1 6 2 0

ACC

HandWritten 72.63 58.57 69.29 61.55 66.34 69.62 51.06 86.40 92.10 90.30
Caltech101 23.38 19.18 22.14 24.61 20.73 16.40 - 27.71 21.17 25.18
SUNRGBD 17.84 15.61 17.87 18.98 18.57 18.06 11.30 16.39 17.71 19.44
NUS-WIDE 13.37 11.82 12.35 13.77 12.91 15.40 - 15.30 12.46 16.37
AwA 08.31 06.13 08.48 08.05 06.74 08.89 - 10.45 08.18 09.49
YtVideo 17.55 03.82 16.59 16.85 10.17 12.38 - 19.41 17.25 23.34

NMI

HandWritten 65.76 49.98 65.98 58.52 60.33 69.21 47.60 84.03 86.49 82.73
Caltech101 44.20 40.51 40.28 41.13 41.53 27.47 - 45.33 43.49 46.41
SUNRGBD 22.36 21.75 21.42 21.95 23.29 23.86 07.20 19.22 20.71 25.78
NUS-WIDE 11.53 10.94 09.94 11.12 10.60 14.28 - 12.92 09.67 15.32
AwA 08.81 07.72 09.42 09.34 07.59 11.14 - 12.30 09.03 11.71
YtVideo 16.22 00.14 15.64 10.41 08.24 10.17 - 15.80 14.08 20.74

Purity

HandWritten 74.21 59.84 71.84 62.05 67.50 72.93 53.76 86.40 92.10 90.30
Caltech101 43.85 39.87 38.32 38.92 40.82 28.87 - 44.13 42.05 44.59
SUNRGBD 36.87 36.02 35.19 35.89 38.40 38.24 18.28 33.28 35.42 40.46
NUS-WIDE 24.69 22.65 20.64 21.38 23.40 26.15 - 25.04 21.02 26.88
AwA 10.50 08.21 10.75 09.97 08.57 11.02 - 12.19 10.03 11.23
YtVideo 28.19 26.62 27.74 27.03 26.68 26.87 - 30.78 32.25 31.78

4.2.1 Effectiveness

To demonstrate effectiveness of the proposal, we conduct
an ablation study, where two algorithms are compared, i.e.
ONMF and single-view OPMC with V = 1. In such set-
ting, the only difference between them are whether the non-
negativity constraint is imposed and the two steps are uni-
fied into a single objective. Nevertheless, we feed the con-
catenated data of all views to them and their performances
and execution times are investigated in Table 3. It can be
seen that OPMC outperforms ONMF in all metrics, includ-
ing ACC, NMI and Purity, on HandWritten, Caltech101,
NUS-WIDE, AwA and YtVideo. Although a little decrease

in ACC, is observed on SUNRGBD, OPMC achieves con-
sistent increases in NMI and Purity on all chosen datasets.
Furthermore, OPMC is 5-10 times faster than ONMF. This
is caused by the following two points:

1) OPMC approximates coefficient matrix H into a discrete
label matrix Y and a centroid matrix C ∈ Rk×k, which
largely reduce the variable number and search region.

2) ONMF is optimized with gradient descent technique.
On the contrary, OPMC removes the non-negativity con-
straint, therefore, adopts the alternate strategy where
closed-form solutions are obtained in each step, requir-
ing fewer iterations to converge.
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Figure 2. ACC with different parameter settings. LMSpC on NUS-WIDE, AwA and YtVideo are not shown due to memory overflow.

Table 5. Execution time comparison between the proposed OPMC and seven large-scale algorithms in literature.

Dataset NMFb NMFc ONMFb ONMFc MNMF RMKMC LMSpC BMVC LMSuC OPMC

HandWritten 0.69 1.80 36.89 48.46 32.04 11.18 21.91 3.74 13.37 0.83
Caltech101 71.52 89.76 193.42 448.62 1729.35 10722.52 - 4.65 661.88 46.04
SUNRGBD 186.07 29.26 2028.65 2742.80 5583.03 583.15 5727.64 6.90 774.87 204.24
NUS-WIDE 86.86 104.08 145.97 589.72 1600.64 3854.59 - 60.43 9372.25 56.36
AwA 163.91 593.39 1063.86 5535.58 15952.07 6245.74 - 68.90 2379.84 1474.19
YtVideo 488.79 555.58 2249.03 4023.83 9553.65 59.69 - 151.24 8291.37 671.92

Overall, jointly performing matrix factorization and par-
tition generation while removing the non-negativity con-
straint can improve the performance and efficiency.

4.2.2 Superiority

In order to validate the superiority of the proposed algo-
rithms, we conduct extensive experiments on comparative
methods in literature. Their performances are collected in
Table 4. Three observations can be obtained as follows:

1) The proposed OPMC outperforms the best of baselines
including NMFb, NMFc, ONMFb and ONMFc, over
all datasets. Meanwhile, some baselines achieves bet-
ter performances than several comparative methods on a
part of datasets. For instance, ONMFc shows to be the
second best , i.e. 18.98% in ACC, on SUNRGBD, which
conversely demonstrate the superiority of OPMC.

2) It can be observed that OPMC consistently exceeds the
recent advances in literature on Caltech101, SUNRGBD,
NUS-WIDE and YtVideo. Although LMSuC and BMVC
achieves better performances on HandWritten and AwA,
respectively, they perform grid search on multiple pa-
rameters. OPMC outperforms them in most parameter
settings, as shown in Fig. 2.

3) LMSpC fails on Caltech101, NUS-WIDE, AwA and
YtVideo due to memory overflow. This also illustrates
OPMC’s scalability on large-scale datasets.

Furthermore, the proposed OPMC is compared with the
comparative methods on six datasets with different parame-
ters. We grid search their parameters ten times and compute
the averages in each parameter setting. The obtained aver-
ages are presented in Fig. 2. Note that, although the two
baselines do not require parameters, they need to choose
which data view to handle with, therefore, their perfor-
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Figure 3. Loss and performance along with iteration on four large-scale datasets, including SUNRGBD, NUS-WIDE, AwA and YtVideo.

mances are not constants. It can be seen that performances
of the most comparative methods, including NMF, ONMF,
RMKMC, BMVC and LMSuC, are highly dependent on pa-
rameter choice. Though MNMF obtains stable results in
different parameter settings, the proposed OPMC outper-
forms it by large margins. Overall, with summarizing Table
4 and Fig. 2, we can conclude that OPMC achieves state-of-
the-art performance and is much more feasible in real-world
applications due to its non-parametric property.

4.2.3 Efficiency and convergence

To demonstrate the linear computational complexity of
OPMC, we ran all algorithms ten times on the chosen
datasets and collect their averages in Table 5. For fair com-
parison, they are executed in parallel where one Intel(R)
Core(TM) i9-10900X CPU @ 3.70GHz is allocated each
time. It can be observed that the proposed OPMC shows
comparable results with classical NMF, which is also con-
sistent with the complexity analysis in Table 1. Meanwhile,
the loss of OPMC on SUNRGBD, NUS-WIDE, AwA and
YtVideo along with iteration is presented in Fig. 3. Re-
sults on relatively smaller datasets, i.e. HandWritten and
Caltech101, are presented in Appendix due to space limit.
It can be found that the objective value monotonically de-
creases to a minimum, validating the converge analysis in
Section 3.3 experimentally. We also observe that OPMC’s
performances increase with the decrease of loss in Fig. 3,
verifying its rationality and effectiveness .

5. Discussion
The proposed OPMC is guaranteed convergent to a local

minimum instead of a global one. As a result, its initializa-
tion will inevitably introduce randomness to the final parti-
tion, which is especially obvious in small datasets, such as
HandWritten. To obtain a better performance, we recom-
mend to repeat OPMC multiple times and select the results
corresponding to the smallest loss. Fig. 4 shows OPMC’s
performances, including ACC and NMI, respect to the ob-
jective loss of 100 times. Purity presents too many over-
laps with ACC, therefore, is shown in Appendix for clarity.

It can be found that OPMC’s performances are negatively
correlated with loss. This observation well validates effec-
tiveness of the objective design and our recommendation.
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Figure 4. ACC and NMI variation respect to objective loss on
HandWritten.

6. Conclusion
Current non-negative matrix factorization based multi-

view clustering algorithms decompose the data view and
generate the clustering results separately. However, the non-
negativity constraint over-limits the discriminative embed-
ding learning. Meanwhile, they fail to unify matrix factor-
ization and partition generation closely, resulting in unsat-
isfying performance. Therefore, we propose an one-pass
multi-view clustering algorithm, which is non-parametric
and of linear complexity. Its effectiveness, superiority and
efficiency are validated by comparing with recent advances.
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