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Abstract

Existing state-of-the-art saliency detection methods
heavily rely on CNN-based architectures. Alternatively,
we rethink this task from a convolution-free sequence-to-
sequence perspective and predict saliency by modeling
long-range dependencies, which can not be achieved by
convolution. Specifically, we develop a novel unified model
based on a pure transformer, namely, Visual Saliency Trans-
former (VST), for both RGB and RGB-D salient object de-
tection (SOD). It takes image patches as inputs and lever-
ages the transformer to propagate global contexts among
image patches. Unlike conventional architectures used in
Vision Transformer (ViT), we leverage multi-level token fu-
sion and propose a new token upsampling method under
the transformer framework to get high-resolution detec-
tion results. We also develop a token-based multi-task de-
coder to simultaneously perform saliency and boundary
detection by introducing task-related tokens and a novel
patch-task-attention mechanism. Experimental results show
that our model outperforms existing methods on both RGB
and RGB-D SOD benchmark datasets. Most importantly,
our whole framework not only provides a new perspec-
tive for the SOD field but also shows a new paradigm for
transformer-based dense prediction models. Code is avail-
able at https://github.com/nnizhang/VST.

1. Introduction

SOD aims to detect objects that attract peoples’ eyes and
can help many vision tasks, e.g., [58, 19]. Recently, RGB-D
SOD has also gained growing interest with the extra spatial
structure information from the depth data. Current state-
of-the-art SOD methods are dominated by convolutional ar-
chitectures [28], on both RGB and RGB-D data. They often
adopt an encoder-decoder CNN architecture [47, 57], where
the encoder encodes the input image to multi-level features
and the decoder integrates the extracted features to predict
the final saliency map. Based on this simple architecture,
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most efforts have been made to build a powerful decoder
for predicting better saliency results. To this end, they in-
troduced various attention models [37, 80, 7], multi-scale
feature integration methods [24, 49, 16, 43], and multi-task
learning frameworks [67, 77, 82, 69, 25]. An additional de-
mand for RGB-D SOD is to effectively fuse cross-modal
information, i.e., the appearance information and the depth
cues. Existing works propose various modality fusion meth-
ods, such as feature fusion [22, 4, 16, 18, 89], knowledge
distillation [53], dynamic convolution [48], attention mod-
els [31, 78], and graph neural networks [43]. Hence, CNN-
based methods have achieved impressive results [66, 88].

However, all previous methods are limited in learning
global long-range dependencies. Global contexts [21, 83,
56, 44, 37] and global contrast [75, 2, 8] have been proved
crucial for saliency detection for a long time. Nevertheless,
due to the intrinsic limitation of CNNs that they extract fea-
tures in local sliding windows, previous methods can hardly
exploit the crucial global cues. Although some methods uti-
lized fully connected layers [36, 22], global pooling layers
[44, 37, 65], and non-local modules [38, 7] to incorporate
the global context, they only did such in certain layers and
the standard CNN-based architecture remains unchanged.

Recently, Transformer [61] was proposed to model
global long-range dependencies among word sequences for
machine translation. The core idea is the self-attention
mechanism, which leverages the query-key correlation to
relate different positions in a sequence. Transformer stacks
the self-attention layers multiple times in both encoder and
decoder, thus can model long-range dependencies in every
layer. Hence, it is natural to introduce the Transformer to
SOD, leveraging the global cues in the model all the way.

In this paper, for the first time, we rethink SOD from a
new sequence-to-sequence perspective and develop a novel
unified model for both RGB and RGB-D SOD based on a
pure transformer, which is named Visual Saliency Trans-
former. We follow the recently proposed ViT models
[12, 74] to divide each image into patches and adopt the
Transformer model on the patch sequence. Then, the Trans-
former propagates long-range dependencies between image
patches, without any need of using convolution. However,
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it is not straightforward to apply ViT for SOD. On the one
hand, how to perform dense prediction tasks based on pure
transformer still remains an open question. On the other
hand, ViT usually tokenizes the image to a very coarse
scale. How to adapt ViT to the high-resolution prediction
demand of SOD is also unclear.

To solve the first problem, we design a token-based
transformer decoder by introducing task-related tokens
to learn decision embeddings. Then, we propose a
novel patch-task-attention mechanism to generate dense-
prediction results, which provides a new paradigm for using
transformer in dense prediction tasks. Motivated by pre-
vious SOD models [82, 87, 79, 25] that leveraged bound-
ary detection to boost the SOD performance, we build a
multi-task decoder to simultaneously conduct saliency and
boundary detection by introducing a saliency token and a
boundary token. This strategy simplifies the multitask pre-
diction workflow by simply learning task-related tokens,
thus largely reduces the computational costs while obtain-
ing better results. To solve the second problem, inspired by
the Tokens-to-Token (T2T) transformation [74], which re-
duces the length of tokens, we propose a new reverse T2T
transformation to upsample tokens by expanding each token
into multiple sub-tokens. Then, we upsample patch tokens
progressively and fuse them with low-level tokens to obtain
the final full-resolution saliency map. In addition, we also
use a cross modality transformer to deeply explore the inter-
action between multi-modal information for RGB-D SOD.
Finally, our VST outperforms existing state-of-the-art SOD
methods with a comparable number of parameters and com-
putational costs, on both RGB and RGB-D data.

Our main contributions can be summarized as follows:

e For the first time, we design a novel unified model
based on the pure transformer architecture for both
RGB and RGB-D SOD, from a new perspective of
sequence-to-sequence modeling.

* We design a multi-task transformer decoder to jointly
conduct saliency and boundary detection by introduc-
ing task-related tokens and patch-task-attention.

e We propose a new token upsampling method for
transformer-based framework.

e Our proposed VST model achieves state-of-the-art
results on both RGB and RGB-D SOD benchmark
datasets, which demonstrates its effectiveness and the
potential of transformer-based models for SOD.

2. Related Work
2.1. Deep Learning Based SOD

CNN-based approaches have become a mainstream trend
in both RGB and RGB-D SOD and achieved promising
performance. Most methods [24, 65, 49, 84, 16] lever-
aged a multi-level feature fusion strategy by using UNet

[57] or HED-style [71] network structures. Some works
introduced the attention mechanism to learn more discrim-
inative features, including spatial and channel attention
[52, 80, 16, 7] or pixel-wise contextual attention [37]. Other
works [36, 64, 11, 42, 6] tried to design recurrent net-
works to refine the saliency map step-by-step. In addi-
tion, some works introduced multi-task learning, e.g., fixa-
tion prediction [67], image caption [77], and edge detection
[54, 82, 69,79, 25] to boost the SOD performance.

As for RGB-D SOD, many methods have designed var-
ious models to fuse RGB and depth features and obtained
significant results. Some models [4, 5, 18] adopted sim-
ple feature fusion methods, i.e., concatenation, summation,
or multiplication. Some others [81, 30, 52, 31] leveraged
the depth cues to generate spatial or channel attention to
enhance the RGB features. Besides, dynamic convolution
[48], graph neural networks [43], and knowledge distillation
[53] were also adopted to implement multi-modal feature
fusion. In addition, [38, 39, 7] adopted the cross-attention
mechanism to propagate long-range cross-modal interac-
tions between RGB and depth cues.

Different from previous CNN-based methods, we are the
first to rethink SOD from a sequence-to-sequence perspec-
tive and propose a unified model based on pure transformer
for both RGB and RGB-D SOD. In our model, we follow
[54, 82, 69, 79, 25] to leverage boundary detection to boost
the SOD performance. However, different from these CNN-
based models, we design a novel token-based multitask de-
coder to achieve this goal under the transformer framework.

2.2. Transformers in Computer Vision

Vaswani et al. [61] first proposed a transformer encoder-
decoder architecture for machine translation, where multi-
head self-attention and point-wise feed-forward layers are
stacked multiple times. Recently, more and more works
have introduced the Transformer model to various computer
vision tasks and achieved excellent results. Some works
combined CNNs and transformers into hybrid architectures
for object detection [3, 91], panoptic segmentation [62],
lane shape prediction [40], and so on. Typically, they first
use CNNGs to extract image features and then leverage the
Transformer to incorporate long-range dependencies.

Other works design pure transformer models to process
images from the sequence-to-sequence perspective. ViT
[12] divided each image into a sequence of flattened 2D
patches and then adopted the Transformer for image clas-
sification. Touvron et al. [60] introduced a teacher-student
strategy to improve the data-efficiency of ViT and Wang et
al. [68] proposed a pyramid architecture to adapt ViT for
dense prediction tasks. T2T-ViT [74] adopted the T2T mod-
ule to model local structures, thus generating multiscale to-
ken features. In this work, we adopt T2T-ViT as the back-
bone and propose a novel multitask decoder and a reverse
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Figure 1. Overall architecture of our proposed VST model for both RGB and RGB-D SOD. It first uses an encoder to generate multi-
level tokens from the input image patch sequence. Then, a convertor is adopted to convert the patch tokens to the decoder space, and
also performs cross-modal information fusion for RGB-D data. Finally, a decoder simultaneously predicts the saliency map and the
boundary map via the proposed task-related tokens and the patch-task-attention mechanism. An RT2T transformation is also proposed to

progressively upsample patch tokens. The dotted line represents exclusive components for RGB-D SOD.

T2T token upsampling method. It is noteworthy that our
usage of task-related tokens is different from previous mod-
els. In [12, 60], the class token is directly used for image
classification via adopting a multilayer perceptron on the
token embedding. However, we can not obtain dense pre-
diction results directly from a single task token. Thus, we
propose to perform patch-task-attention between patch to-
kens and the task tokens to predict saliency and boundary
maps. We believe our strategy will also inspire future trans-
former models for other dense prediction tasks.

Another related work to ours is [86], which introduces
transformer into the semantic segmentation task. The au-
thors adopted a vision transformer as a backbone and then
reshaped the token sequences to 2D image features. Then,
they predicted full-resolution segmentation maps using con-
volution and bilinear upsampling. Their model still falls
into the hybrid architecture category. In contrast, our model
is a pure transformer architecture and does not rely on any
convolution operation and bilinear upsampling.

3. Visual Saliency Transformer

Figure 1 shows the overall architecture of our proposed
VST model. The main components include a transformer
encoder based on T2T-ViT, a transformer convertor to con-
vert patch tokens from the encoder space to the decoder
space, and a multi-task transformer decoder.

3.1. Transformer Encoder

Similar to other CNN-based SOD methods, which of-
ten utilize pretrained image classification models such as
VGG [59] and ResNet [23] as the backbone of their en-
coders to extract image features, we adopt the pretrained
T2T-ViT [74] model as our backbone, as detailed below.

3.1.1 Tokens to Token

Given a sequence of patch tokens T” with length [ from the
previous layer, T2T-ViT iteratively applies the T2T module,
which is composed of a re-structurization step and a soft
split step, to model the local structure information in T and
obtain a new sequence of tokens.

Re-structurization. As shown in Figure 2(a), the tokens
T’ is first transformed using a transformer layer to obtain
new tokens T' € R!*¢:

T = MLP(MSA(T")), (1)

where MSA and MLP denote the multi-head self-attention
and multilayer perceptron in the original Transformer [61],
respectively. Note that layer normalization [1] is applied
before each block. Then, T is reshaped to a 2D image I €
RAXwxe where | = h X w, to recover spatial structures, as
shown in Figure 2(a).

Soft split. After the re-structurization step, I is first split
into k x k patches with s overlapping. p zero-padding is also
utilized to pad image boundaries. Then, the image patches
are unfolded to a sequence of tokens T, € RZOXC’“z, where
the sequence length [, is computed as:

h+2p—k w+2p—k

lo:hoxwo:L k_s 1J |_ k—

+1].

2
Different from ViT [12], the overlapped patch splitting
adopted in T2T-ViT introduces local correspondence within
neighbouring patches, thus bringing spatial priors.

The T2T transformation can be conducted iteratively
multiple times. In each time, the re-structurization step first
transforms previous token embeddings to new embeddings
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Figure 2. (a) T2T module merges neighbouring tokens into a new token, thus reducing the length of tokens. (b) Our proposed reverse T2T
module upsamples tokens by expanding each token into multiple sub-tokens.

and also integrates long-range dependencies within all to-
kens. Then, the soft split operation aggregates the tokens in
each k£ x k neighbour into a new token, which is ready to
use for the next layer. Furthermore, when setting s < k—1,
the length of tokens can be reduced progressively.

We follow [74] to first soft split the input image into
patches and then adopt the T2T module twice. Among the
three soft split steps, the patch sizes are set to k = [7, 3, 3],
the overlappings are set to s = [3,1,1], and the padding
sizes are set to p = [2, 1, 1]. As such, we can obtain multi-
level tokens Ty € Ri*e T, € Ri2Xc and Ty € Rlsxe,
Given the width and height of the input image as H and

W, respectively, then [} = % X %, lo = % X %, and
I3 = % X %. We follow [74] to set ¢ = 64 and use a linear

projection layer on T3 to transform its embedding dimen-
sion from c to d = 384.

3.1.2 Encoder with T2T-ViT Backbone

The final token sequence T3 is added with the sinusoidal
position embedding [61] to encode 2D position informa-
tion. Then, L transformer layers are used to model long-
range dependencies among T3 to extract powerful patch to-
ken embeddings T¢ € R!3*9,

For RGB SOD, we adopt a single transformer encoder to
obtain RGB encoder patch tokens T € R!3*4 from each
input RGB image. For RGB-D SOD, we follow two-stream
architectures to further use another transformer encoder to
extract the depth encoder patch tokens ng from the input
depth map in a similar way, as shown in Figure 1.

3.2. Transformer Convertor

We insert a convertor module between the transformer
encoder and decoder to convert the encoder patch tokens T
from the encoder space to the decoder space, thus obtaining
the converted patch tokens T¢ € R!3*¢,

3.2.1 RGB-D Convertor

We fuse T¢ and ng in the RGB-D converter to integrate the
complementary information between the RGB and depth
data. To this end, we design a Cross Modality Transformer

(CMT), which consists of L¢ alternating cross-modality-
attention layers and self-attention layers.

Cross-modality-attention. Under the pure transformer
architecture, we modify the standard self-attention layer
to propagate long-range cross-modal dependencies be-
tween the image and depth data, thus obtaining the cross-
modality-attention, which is detailed as follows.

First, similar with the self-attention in [61], Tf is em-
bedded to queries Q, € R!3*? keys K, € R!*? and
values V, € R!3*9 through three linear projections. Sim-
ilarly, we can obtain the depth queries Q4, keys K, and
values V from ng .

Next, we compute the “Scaled Dot-Product Attention”
[61] between the queries from one modality with the keys
from the other modality. Then, the output is computed as a
weighted sum of the values, formulated as:

Attention(Q,., K4, Vy) = softmax(Q, K] /Vd)Vy,
Attention(Qg, K, V,.) = softmax(Q.K,  /Vd)V,.

We follow the standard Transformer architecture in [61]
and adopt the multi-head attention mechanism in the cross-
modality-attention. The same positionwise feed-forward
network, residual connections, and layer normalization [1]
are also used, forming our CMT layer.

After each adoption of the proposed CMT layer, we use
one standard transformer layer on each RGB and depth
patch token sequence, further enhancing their token embed-
dings. After alternately using CMT and transformer for L€
times, we fuse the obtained RGB tokens and depth tokens
by concatenation and then project them to the final con-
verted tokens T, as shown in Figure 1.

3.2.2 RGB Convertor

To align with our RGB-D SOD model, for RGB SOD, we
simply use LC standard transformer layers on T' to obtain
the converted patch token sequence 1.

3.3. Multi-task Transformer Decoder

Our decoder aims to decode the patch tokens T to
saliency maps. Hence, we propose a novel token upsam-
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pling method with multi-level token fusion and a token-
based multi-task decoder.

3.3.1 Token Upsampling and Multi-level Token Fusion

We argue that directly predicting saliency maps from T°°
can not obtain high-quality results since the length of T
is relatively small, i.e., I3 = £& x &, which is limited for
dense prediction. Thus, we propose to upsample patch to-
kens first and then conduct dense prediction. Most CNN-
based methods [84, 82, 38, 18] adopt bilinear upsampling
to recover large scale feature maps. Alternatively, we pro-
pose a new token upsampling method under the transformer
framework. Inspired by the T2T module [74] that aggre-
gates neighbour tokens to reduce the length of tokens pro-
gressively, we propose a reverse T2T (RT2T) transforma-
tion to upsample tokens by expanding each token into mul-
tiple sub-tokens, as shown in Figure 2(b).

Specifically, we first project the input patch tokens to re-
duce their embedding dimension from d = 384 to ¢ = 64.
Then, we use another linear projection to expand the em-
bedding dimension from c to ck?. Next, similar to the soft
split step in T2T, each token is seen as a k x k image patch
and neighbouring patches have s overlapping. Then, we
can fold the tokens as an image using p zero-padding. The
output image size can be computed using (2) reversely, i.e.,
given the length of the input patch tokens as h, X w,, the
spatial size of the out image is h x w. Finally, we reshape
the image back to the upsampled tokens with size [, X ¢,
where [, = h x w. By setting s < k — 1, the RT2T trans-
formation can increase the length of the tokens. Motivated
by T2T-ViT, we use RT2T three times and set k = [3, 3, 7],
s =11,1,3],and p = [1, 1, 3]. Thus, the length of the patch
tokens can be gradually upsampled to H x W, equaling to
the original size of the input image.

Furthermore, motivated by the widely proved successes
of multi-level feature fusion in existing SOD methods
[24, 49, 84, 16, 43], we leverage low-level tokens with
larger lengths from the T2T-ViT encoder, i.e., T; and 15,
to provide accurate local structural information. For both
RGB and RGB-D SOD, we only use the low-level tokens
from the RGB transformer encoder. Concretely, we pro-
gressively fuse T5 and 77 with the upsampled patch tokens
via concatenation and linear projection. Then, we adopt one
transformer layer to obtain the decoder tokens T}" at each
level ¢, where ¢« = 2, 1. The whole process is formulated as:

TP = MLP(MSA(Linear([RT2T(TZ, ), T])), ()

where [,] means concatenation along the token embedding
dimension. “Linear” means linear projection to reduce the
embedding dimension after the concatenation to c. Finally,
we use another linear projection to recover the embedding
dimension of T}P back to d.

3.3.2 Token Based Multi-task Prediction

Inspired by existing pure transformer methods [74, 12],
which add a class token on the patch token sequence for
image classification, we also leverage task-related tokens to
predict results. However, we can not obtain dense predic-
tion results by directly using MLP on the task token embed-
ding, as done in [74, 12]. Hence, we propose to perform
patch-task-attention between the patch tokens and the task-
related token to perform SOD.

In addition, motivated by the widely used boundary de-
tection in SOD models [82, 69, 79, 25], we also adopt the
multi-task learning strategy to jointly perform saliency and
boundary detection, thus using the latter to help boost the
performance of the former.

To this end, we design two task-related tokens, i.e., a
saliency token t, € R'*? and a boundary token ¢, € R!*,
At each decoder level i, we add the saliency and boundary
tokens ts and t; on the patch token sequence TiD, and then
process them using LP transformer layers. As such, the two
task tokens can learn image-dependent task-related embed-
dings from the interaction with the patch tokens. After this,
we take the updated patch tokens as input and perform the
token upsampling and multi-level fusion process in (4) to
obtain upsampled patch tokens T2 ;. Next, we reuse the
updated ts and %; in the next level + — 1 to further update
them and T2 ,. We repeat this process until we reach the
last decoder level with the i scale.

For saliency and boundary prediction, we perform patch-
task-attention between the final decoder patch tokens TP
and the saliency and boundary tokens ts and t,. For
saliency prediction, we first embed TP to queries QP ¢
RI*4 and embed t, to a key K, € R'*? and a value
V., € R'*4, Similarly, for boundary prediction, we embed
TP to QP and embed t;, to K}, and Vj,. Then, we adopt the
patch-task-attention to obtain the task-related patch tokens:

TP = sigmoid( QT K| /Vd)V, + TP,
T = sigmoid(Q) K /Vd)V, + TP

Here we use the sigmoid activation for the attention compu-
tation since in each equation we only have one key.

Since TSD and TbD are at the % scale, we adopt the third
RT2T transformation to upsample them to the full resolu-
tion. Finally, we apply two linear transformations with the
sigmoid activation to project them to scalars in [0, 1], and
then reshape them to a 2D saliency map and a 2D boundary
map, respectively. The whole process is given in Figure 1.

®)

4. Experiments
4.1. Datasets and Evaluation Metrics

For RGB SOD, we evaluate our VST model on six
widely used benchmark datasets, including ECSSD [72]

4726



Table 1. Ablation studies of our proposed model. “Bili” denotes bilinear upsampling. “F” means multi-level token fusion. “TMD”
denotes our proposed token-based multi-task decoder, while “C2D” means using conventional two-stream decoder to perform saliency and
boundary detection without using task-related tokens. The best results are labeled in blue.

Settings NJUD [26] DUTLE-Depth [52] STERE [46] LFSD [33]
Sm 1 maxFt Eg™ 1+ MAE]|Sm, T maxF1 Eg™ 1 MAEJ|S, T maxFt E¢™ 1 MAE]|S,, T maxFt Ef™ 1+ MAEJ

Baseline 0.869 0.862  0.931 0.073 | 0.889 0.887 0942  0.062 | 0.868 0.853 0.927  0.075 | 0.842 0.845 0.893  0.103
+CMT 0.873 0.867 0934 0.072 | 0.889 0.890 0942  0.063 | 0.869 0.854  0.928  0.075 | 0.849 0.855  0.900  0.100
+CMT+Bili 0.906 0902 0944 0.045 [ 0926 0.930 0961 0.032 [ 0.889 0877 0939 0.051 [0.856 0.858 0.895  0.081
+CMT+RT2T 0915 0915 0.951 0.039 | 0.934 0940 0964 0.028 | 0.8906 0.889 0943 0.046 | 0.867 0.873 0903 0.073
+CMT+RT2T+F 0.923  0.923 0954 0.035 | 0936 0943 0963 0.028 | 0.910 0.903 0.947  0.040 | 0.876 0.880  0.909  0.067
+CMT+RT2T+F+TMD | 0.922  0.920  0.951 0.035 | 0.943 0948 0.969 0.024 | 0.913 0.907 0.951 0.038 | 0.882 0.889  0.921 0.061
+CMT+RT2T+F+C2D | 0.922  0.921 0954 0.036 | 0941 0947 0968 0.026 | 0911 0.906 0949 0.040 | 0.874 0.878 0909 0.069

(1,000 images), HKU-IS [32] (4,447 images), PASCAL-
S [34] (850 images), DUT-O [73] (5,168 images), SOD
[45] (300 images), and DUTS [63] (10,553 training im-
ages and 5,019 testing images). For RGB-D SOD, we use
nine widely used benchmark datasets: STERE [46] (1,000
image pairs), LFSD [33] (100 image pairs), RGBD135
[9] (135 image pairs), SSD [90] (80 image pairs), NJUD
[26] (1,985 image pairs), NLPR [51] (1,000 image pairs),
DUTLF-Depth [52] (1,200 image pairs), SIP [15] (929 im-
age pairs), and ReDWeb-S [39] (3,179 image pairs).

We adopt four widely used evaluation metrics to evalu-
ate our model performance comprehensively. Specifically,
Structure-measure S,, [13] evaluates region-aware and
object-aware structural similarity. Maximum F-measure
(maxF) jointly considers precision and recall under the op-
timal threshold. Maximum enhanced-alignment measure
Eg“""‘ [14] simultaneously considers pixel-level errors and
image-level errors. Mean Absolute Error (MAE) computes
pixel-wise average absolute error. To evaluate the model
complexity, we also report the multiply accumulate opera-
tions (MACs) and the number of parameters (Params).

4.2. Implementation Details

For fair comparisons, we follow most previous methods
to use the training set of DUTS to train our VST for RGB
SOD and use 1,485 images from NJUD, 700 images from
NLPR, and 800 images from DUTLF-Depth to train our
VST for RGB-D SOD. We follow [82] to use a sober opera-
tor to generate the boundary ground truth from GT saliency
maps. For depth data preprocessing, we normalize the depth
maps to [0,1] and duplicate them to three channels. Finally,
we resize each image or depth map to 256 x 256 pixels and
then randomly crop 224 x 224 image regions as the model
input and use random flipping as data augmentation.

We use the pre-trained T2T-ViT;-14 [74] model as our
backbone since it has similar computational complexity as
ResNet50 [23] does. This model uses the efficient Per-
former [10] and ¢ = 64 in T2T modules, and sets L® = 14.
In our convertor and decoder, we set L = LT = 4 and
LP = LP = 2 according to experimental results. We
set the batchsizes as 11 and 8, and the total training steps
as 40,000 and 60,000, for RGB and RGB-D SOD, respec-
tively. For both of them, Adam [27] is adopted as the op-

timizer and the binary cross entropy loss is used for both
saliency and boundary prediction. The initial learning rate
is set to 0.0001 and reduced by a factor of 10 at half and
three-quarters of the total step, respectively. Deep supervi-
sion is also used to facilitate the model training, where we
use the patch-task attention to predict saliency and bound-
ary at each decoder level. We implemented our model using
Pytorch [50] and trained it on a GTX 1080 Ti GPU.

4.3. Ablation Study

Since our RGB-D VST is built by adding one more trans-
former encoder and additional CMT based on our RGB
VST, while the other parts of the two models are the same,
we conduct ablation studies based on our RGB-D VST to
verify all of our proposed model components. The exper-
imental results on four RGB-D SOD datasets, i.e., NJUD,
DUTLF-Depth, STERE, and LFSD, are given in Table 1.
We remove the transformer convertor and the decoder from
our RGB-D VST as the baseline model. Specifically, it uses
the two-stream transformer encoder to extract RGB encoder
patch tokens T} and the depth encoder patch tokens T,
and then directly concatenate them and predict the saliency
map with 1/16 scale by using MLP on each patch token.

Effectiveness of CMT. For cross-modal information fu-
sion, we deploy our proposed CMT right after the trans-
former encoder to substitute the concatenation fusion
method in the baseline model, shown as “+CMT” in Table 1.
Compared to the baseline, CMT brings performance gain
especially on the NJUD and LFSD datasets, hence demon-
strating its effectiveness.

Effectiveness of RT2T. Based on “+CMT” model, we
further simply use bilinear upsampling (“+CMT+Bili”) to
progressively upsample tokens to the full resolution and
then predict the saliency map. The results show using bi-
linear upsampling to increase the resolution of the saliency
map can largely improve the model performance. Then, we
replace bilinear upsampling with our proposed RT2T token
upsampling method (“+CMT+RT2T”). We find that RT2T
leads to obvious performance improvement compared with
using bilinear upsampling, which verifies its effectiveness.

Effectiveness of multi-level token fusion. We progres-
sively fuse T} and T in our decoder (“+CMT+RT2T+F”) to
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Table 2. Quantitative comparison of our proposed VST with other 14 SOTA RGB-D SOD methods on 9 benchmark datasets. Red and blue
denote the best and the second-best results, respectively. ‘- indicates the code or result is not available.

Dataset Metric|A2dele JL-DCF SSF-RGBD UC-Net S?MA PGAR DANet cmMS ATST CMW Cas-Gnn HDFNet CoNet BBS-Net| VST
[53] [18] [79] [76] [38] [6] [85] [29] [78] [31] [43] [48] [25] [16]

MACs (G)| 41.86 211.06 46.56 16.16 141.19 44.65 66.25 134.77 42.17 208.03 - 91.77 20.89 31.2 [30.99

Params (M) | 30.34 143.52 32.93 31.26 86.65 162 26.68 92.02 32.17 85.65 - 44.15 43.66 49.77 |83.83

Sm T| 0.871  0.902 0.899 0.897 0.894 0.909 0.899 0.900 0.885 0.870 00911 0.908 0.896 0.921 |0.922

NJUD maxF1| 0.874 0.904 0.896 0.895 0.889 0.907 0.898 0.897 0.893 0.871 0.916 0911 0.893 0.919 |0.920

Eg“”‘ 110916 0944 0.935 0936 0.930 0940 0.935 0.936 0.930 0.927 0.948 0.944 0937 0.949 |0.951

[26] MAE|| 0.051 0.041 0.043 0.043 0.054 0.042 0.046 0.044 0.047 0.061 0.036 0.039 0.046 0.035 |0.035

Sm 1] 0.899 0.925 0.915 0.920 0916 0917 0.920 0919 0909 0917 0919 0.923 0912 0.931 |0.932

NLPR maxF1| 0.882 0.918 0.896 0.903 0.902 0.897 0.909 0.904 0.898 0.903 0.906 0917 0.893 0.918 |0.920

Egm“" 110944  0.963 0.953 0.956 0953 0950 0.955 0.955 0.951 0.951 0.955 0.963 0.948 0.961 |0.962

[51] MAE(| 0.029 0.022 0.027 0.025 0.030 0.027 0.027 0.028 0.027 0.029 0.025 0.023 0.027 0.023 |0.024

Sm T| 0.885  0.906 0.915 0.871 0904 0.899 0.899 0912 0916 0.797 0.920 0.908 0.923 0.882 |0.943

DUTLF maxF7T| 0.891 0.910 0.923 0.864 0.899 0.898 0.904 0913 0.928 0.779 0.926 0915 0932 0.870 |0.948

-Depth Eg‘ﬂx 11 0.928 0.941 0.950 0.908 0.935 0.933 0.939 0.940 0.953 0.864 0.953 0.945 0.959 0912 |0.969

[52] MAE] | 0.043 0.042 0.033 0.059 0.043 0.041 0.042 0.036 0.033 0.098 0.030 0.041 0.029 0.058 |0.024

Sm T| 0.641  0.734 0.595 0.713 0.711 0.656 - 0.699 0.679 0.634 - 0.728 0.696 0.693 |0.759

ReDWeb-S maxF7T| 0.603  0.727 0.558 0.710 0.696 0.632 - 0.677 0.673 0.607 - 0.717  0.693 0.680 |0.763

Eg‘ax 11 0.674  0.805 0.710 0.794 0.781 0.749 - 0.767 0.758 0.714 - 0.804 0.782 0.763 |0.826

[39] MAE/| 0.160 0.128 0.189 0.130 0.139 0.161 - 0.143 0.155 0.195 - 0.129 0.147 0.150 |0.113

Sm 1| 0.879  0.903 0.837 0.903 0.890 0.894 0.901 0.894 0.896 0.852 0.899 0.900 0.905 0.908 |0.913

STERE maxF71| 0.880  0.904 0.840 0.899 0.882 0.880 0.892 0.887 0.901 0.837 0.901 0.900 0.901 0.903 |0.907

Eg““‘ 11 0.928  0.947 0.912 0944 0932 0929 0937 0.935 0942 0907 0.944 0.943  0.947 0.942 |0.951

[46] MAE/|| 0.045 0.040 0.065 0.039 0.051 0.045 0.044 0.045 0.038 0.067 0.039 0.042 0.037 0.041 |0.038

Sm T| 0.803 0.860 0.790 0.865 0.868 0.832 0.864 0.857 0.850 0.798 0.872 0.879 0.851 0.863 |0.889

SSD maxF1| 0.777 0.833 0.762 0.855 0.848 0.798 0.843 0.839 0.853 0.771 0.863 0.870 0.837 0.843 |0.876

Egm“" 11 0.862  0.902 0.867 0.907 0909 0.872 0914 0.900 0.920 0.871 0.923 0.925 0917 0914 |0.935

[90] MAE/|| 0.070 0.053 0.084 0.049 0.053 0.068 0.050 0.053 0.052 0.085 0.047 0.046 0.056 0.052 |0.045

Sm T 0.886 0.931 0.904 0934 0941 0.886 0.924 0.934 0917 0934 0.894 0.926 0914 0.934 |0.943

RGBDI35 maxF1| 0.872 0.923 0.885 0.930 0.935 0.864 0914 0928 0916 0.931 0.894 0.921 0.902 0.928 |0.940

Eg“”‘ 11 0.921  0.968 0.940 0.976 0973 0.924 0.966 0.969 0.961 0.969 0.937 0.970 0.948 0.966 |0.978

9] MAE]| 0.029 0.021 0.026 0.019 0.021 0.032 0.023 0.018 0.022 0.022 0.028 0.022 0.024 0.021 |0.017

Sm 1] 0.825 0.853 0.851 0.856 0.829 0.808 0.841 0.845 0.845 0.776  0.838 0.846 0.848 0.835 |0.882

LESD maxF71| 0.828  0.863 0.863 0.860 0.831 0.794 0.840 0.858 0.859 0.779 0.843 0.858 0.852 0.828 |0.889

Eg‘ax 11 0.866 0.894 0.892 0.898 0.865 0.853 0.874 0.886 0.893 0.834 0.880 0.889 0.895 0.870 |0.921

[33] MAE/|| 0.084 0.077 0.074 0.074 0.102 0.099 0.087 0.082 0.078 0.130 0.081 0.085 0.076  0.092 |0.061

Sm 1] 0.829 0.880 0.799 0.875 0.872 0.838 0.875 0.872 0.849 0.705 - 0.886 0.860 0.879 |0.904

SIP maxF71| 0.834 0.889 0.786 0.879 0.877 0.827 0.876 0.876 0.861 0.677 - 0.894 0.873 0.884 |0.915

Eg““‘ 11 0.890 0.925 0.870 0919 0919 0.886 0918 0911 0.901 0.804 - 0.930 0917 0.922 |0.944

[15] MAE/|| 0.070 0.049 0.091 0.051 0.058 0.073 0.055 0.058 0.063 0.141 - 0.048 0.058 0.055 |0.040

supply low-level fine-grained information. We find that this
strategy further improves the model performance. Hence,
leveraging low-level tokens in transformer is as important
as fusing low-level features in CNN-based models.

Effectiveness of the multi-task transformer decoder.
Based on “+CMT+RT2T+F”, we further use our token-
based multi-task decoder (TMD) to jointly perform saliency
and boundary detection (“+CMT+RT2T+F+TMD”). It
shows that using boundary detection can bring further per-
formance gain for SOD on three out of four datasets.
To very the effectiveness of our token-based prediction
scheme, we try to directly use a conventional two-stream
decoder (C2D) by using the “+RT2T+F” architecture twice
to predict the saliency map and boundary map via MLP,
without using task-related tokens. This model is denoted
as “+CMT+RT2T+F+C2D” in Table 1. The parameters and
MACs of TMD vs. C2D are 17.22 M vs. 20.35 M and

17.70 G vs. 28.27 G, respectively. The results show that
using our TMD can achieve better results than using C2D
on three out of four datasets, and also with much less com-
putational costs. This clearly demonstrates the superiority
of our proposed token-based transformer decoder.

4.4. Comparison with State-of-the-Art Methods

For RGB-D SOD, we compare our VST with 14 state-
of-the-art RGB-D SOD methods, i.e., A2dele [53], JL-DCF
[18], SSF-RGBD [79], UC-Net [76], S?MA [38], PGAR
[6], DANet [85], cmMS [29], ATSA [78], CMW [31], Cas-
Gnn [43], HDFNet [48], CoNet [25], and BBS-Net [16].
For RGB SOD, we compare our VST with 12 state-of-the-
art RGB SOD models, including GateNet [84], CSF [20],
LDF [69], MINet [49], ITSD [87], EGNet [82], TSPOANet
[41], AFNet [17], PoolNet [35], CPD [70], BASNet [55],
and PiCANet [37]. Table 2 and Table 3 show the quantita-
tive comparison results for RGB-D and RGB SOD, respec-
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Table 3. Quantitative comparison of our proposed VST with other 12 SOTA RGB SOD methods on 6 benchmark datasets. “-R” and “-R2”
means the ResNet50 and Res2Net backbone, respectively.

Dataset Metric | PiCANet BASNet CPD-R PoolNet AFNet TSPOANet EGNet-R ITSD-R MINet-R LDF-R CSF-R2 GateNet-R | VST
[37] [55] [70] [35] [17] [41] [82] [87] [49] [69] [20] [84]

MACs (G) | 54.05 12736 1777 88.89 21.66 - 157.21 15.96 87.11 15.51 18.96 162.13 |23.16

Params (M) | 47.22 87.06 4785 6826 3595 - 111.64 2647 162.38  25.15 36.53 128.63 | 44.48

Sm T| 0.863 0.866 0.869 0.879 0.867 0.860 0.887 0.885 0.884  0.892 0.890 0.891 0.896
maxFf | 0.840 0.838 0.840 0.853 0.838 0.828 0.866 0.867 0.864  0.877 0.869 0.874 |0.877
EZ“’" 17| 0915 0902 0913 0917 0910 0.907 0.926 0.929 0926 0930 0.929 0.932  [0.939

[63] MAE] | 0.040 0.047 0.043 0.041 0.045 0.049 0.039 0.041 0.037  0.034 0.037 0.038 [0.037

DUTS

Sm T| 0916 0916 0918 0917 0914 0.907 0.925 0.925 0925 0925 0.931 0.924 10.932
maxF{ | 0.929 0931 0926 0929 0.924 0.919 0.936 0.939 0938 0938 0.942 0935 [0.944

ECSSD Eg"“x 17| 0.953 0951 0951 0948 0.947 0.942 0.955 0.959 0957 0954  0.960 0.955 [0.964
[72] MAE] | 0.035 0.037  0.037 0.042 0.042 0.047 0.037 0.035 0.034  0.034 0.033 0.038 |0.034
Sm T| 0.905 0909 0906 0916 0.905 0.902 0918 0.917 0919  0.920 - 0.921  |0.928

HKU-IS maxF{| 0913 0919 0911 0920 0.910 0.909 0.923 0.926 0926  0.929 - 0.926 |0.937
Eg““ 17| 0.951 0952 0950 0955 0.949 0.950 0.956 0.960 0.960  0.958 - 0.959 ]0.968

[32] MAE| | 0.031 0.032 0.034 0.032 0.036 0.039 0.031 0.031 0.029  0.028 - 0.031 0.030
Sm T| 0.846 0.837 0.847 0.852 0.849 0.841 0.852 0.861 0.856  0.861 0.863 0.863 |0.873

PASCAL-S maxF{| 0.824 0.819 0817 0.830 0.824 0.817 0.825 0.839 0.831  0.839 0.839 0.836 | 0.850
E‘g”x 7| 0.882 0.868 0.872 0.880 0.877 0.871 0.874 0.889 0.883  0.888  0.885 0.886 | 0.900

[34] MAE/] | 0.072 0.083 0.077 0.076  0.076 0.082 0.080 0.071 0.071  0.067 0.073 0.071 | 0.067
Sm T| 0.826 0.836 0.825 0.832 0.826 0.818 0.841 0.840 0.833  0.839 0.838 0.840 |0.850

DUTO maxFt| 0.767 0.779  0.754  0.769  0.759 0.750 0.778 0.792 0.769  0.782  0.775 0.782  |0.800

EZ“’"T 0.865 0.872 0.868 0.869 0.861 0.858 0.878 0.880 0.869  0.870  0.869 0.878 |0.888
[73] MAE] | 0.054 0.057 0.056 0.056 0.057 0.062 0.053 0.061 0.056  0.052 0.055 0.055 [0.058

S, T| 0813 0.99 0797 0823 0811 0802 0824 0835 0830 0831 082 0827 |0.854
maxF1| 0.824  0.808 0.804 0832 0819  0.809 0.831  0.849 0835 0841 0832 0835 |0.866
EPt| 0871 0846 0860 0873 0867  0.852 0875 0.889 0878 0.878 0.883  0.877 |0.902
[45] MAEL| 0073 0091 0089 0085 0.085  0.094 0080 0075 0074 0071 0079 0079 |0.065

SOD

w7 e |
.DDC!E!IDB
LAY

b AY Y VY ¥IYLY
MI LILIEIENLNL

Image  Depth GT VST BBS-Net CoNet HDFNet JLDCF UC-Net Image GT VST  GateNet CSF LDF MINet ITSD EGNet
[16] [25] [48] [18] [76] [84] [20] [69] [49] [87] [82]

Figure 3. Qualitative comparison against state-of-the-art RGB-D (left) and RGB (right) SOD methods. (GT: ground truth)

tively. The results show that our VST outperforms all previ- formers in dense prediction tasks, we propose a new to-
ous state-of-the-art CNN-based SOD models on both RGB ken upsampling method under the transformer framework
and RGB-D benchmark datasets, with comparable number and fuse multi-level patch tokens. We also design a multi-
of parameters and relatively small MACs, hence demon- task decoder by introducing task-related tokens and a novel
strating the great effectiveness of our VST. We also show patch-task-attention mechanism to jointly perform saliency
visual comparison results among best-performed models and boundary detection. Our VST model achieves state-of-
in Figure 3. It shows our proposed VST can accurately the-art results for both RGB and RGB-D SOD without rely-
detect salient objects in very challenging scenarios, e.g., ing on heavy computational costs, thus showing its great ef-
big salient objects, cluttered backgrounds, foreground and fectiveness. We also set a new paradigm for the open ques-
background having similar appearances, etc. tion of how to use transformer in dense prediction tasks.

5. Conclusion
Acknowledgments: This work was supported in part

In this paper, we are the first to rethink SOD from a by the National Key R&D Program of China under
sequence-to-sequence perspective and develop a novel uni- Grant 2020AAA0105702, the National Science Foundation
fied model based on a pure transformer, for both RGB and of China under Grant 62027813, 62036005, U20B2065,
RGB-D SOD. To handle the difficulty of applying trans- U20B2068.
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