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Abstract

In this paper, we proposed EPP-MVSNet, a novel deep
learning network for 3D reconstruction from multi-view
stereo (MVS). EPP-MVSNet can accurately aggregate
features at high resolution to a limited cost volume with an
optimal depth range, thus, leads to effective and efficient
3D construction. Distinct from existing works which
measure feature cost at discrete positions which affects
the 3D reconstruction accuracy, EPP-MVSNet introduces
an epipolar-assembling-based kernel that operates on
adaptive intervals along epipolar lines for making full use
of the image resolution. Further, we introduce an entropy-
based refining strategy where the cost volume describes
the space geometry with the little redundancy. Moreover,
we design a light-weighted network with Pseudo-3D
convolutions integrated to achieve high accuracy and
efficiency. We have conducted extensive experiments on
challenging datasets Tanks & Temples(TNT), ETH3D
and DTU. As a result, we achieve promising results on
all datasets and the highest F-Score on the online TNT
intermediate benchmark. Code is available at https:
//gitee.com/mindspore/mindspore/tree/m
aster/model_zoo/research/cv/eppmvsnet.

1. Introduction

Dense 3D reconstruction from multi-view stereo (MVS)
is a fundamental problem that has been studied for decades,
where dense correspondences are computed among multi-
ple images and used to determine the dense geometry. Typ-
ically, correspondences can be established for each patch of
a reference image by searching its optimal matching patch
among target images [2]. Alternatively, [10] computes mat-
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†Corresponding author.

(a) Mean F-score (b) Run-time and memory

Figure 1. Comparison between the proposed EPP-MVSNet and
state-of-the-art learning-based multi-view stereo methods [9, 19,
27] on reconstruction quality in (a) and run-time and memory re-
quirement in (b) with input images resolution of 1920×1056 on
Tanks & Temples dataset [13].

ching costs by exhaustively sampling pixels on the epipolar
lines and storing them into a cost volume, which is used to
determine the final depth map. However, both directions en-
counter the challenge on how to estimate depth accurately
and efficiently, especially in the real world scenarios filled
with noises and smooth texture, existing solutions require
high computation cost, but often achieve unsatisfactory re-
construction quality. While recent deep learning-based so-
lutions [9, 22] address these issues and further enhance re-
construction quality, they still suffer from high memory and
computation requirement for constructing and regularizing
cost volumes, which make them unable to make fully usage
of high resolution images.

In this paper, we aim at designing a deep neural network
to fully utilize the information of high resolution images.
Though high-resolution cost volume is memory consum-
ing, patch-match-based methods can overcome this issue
by searching for the minimum cost rather than storing all
the cost at the given image resolution. We further develop
this idea and propose an epipolar-assembling module that
assembles matching cost along the epipolar line. Specif-
ically, our epipolar-assembling module constructs a com-
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pact cost volume by assembling densely interpolated fea-
tures and further reducing the volume size by adaptive pool-
ing. Rather than increasing the resolution, our module as-
sembles high-resolution cost volume into a coarse volume
resolution and only introduces an one-dimensional aggre-
gation and pooling complexity. Furthermore, we introduce
an entropy-based refining strategy for reducing redundancy
and information loss of the constructed fine cost volume.

In proposed deep learning model, the most expensive
operator is 3D convolution, thus, in this work, we fur-
ther reduce the cost by replacing a 3D convolution with
a Pseudo-3D convolution and developing a light-weighted
structure for cost volume regularization. Our experiments
show that such change does not hurt reconstruction accu-
racy but dramatically improves learning and inference ef-
ficiency. We evaluate the EPP-MVSNet on Tanks & Tem-
ples(TNT) [13], ETH3D [17] and DTU [1] dataset and show
that the proposed network achieve promising performance
on both reconstruction quality and efficiency aspects. Abla-
tion study is further conducted for exhibiting advantageous
effect brought by each key modules proposed.

To summarize, our major contributions are listed as fol-
lows:

• We introduce an epipolar-assembling module for as-
sembling high-resolution information into cost vol-
umes with limited size.

• We propose an entropy-based process that adjusts
depth range for reducing redundancy and information
loss.

• We apply a light-weighted 3D regularization network
which dramatically increases learning and inference
efficiency.

• We have conducted extensive experiments to show that
EPP-MVSNet outperforms state-of-the-art methods in
TNT and ETH3D datasets with respect to effectiveness
and efficiency.

2. Related work
MVS has been exploited for decades with tradi-

tional methods such as COLMAP [16], ACMM [20] and
Gipuma [8] which achieve great and robust results. How-
ever, facing the challenge of high-performance large-scale
3D reconstruction, traditional methods fail to leverage the
accuracy and the computational cost. With deep learning
accomplishing significant achievements in on 2D and 3D
vision tasks [4, 6, 28], learning-based MVS methods also
demonstrate promising performances.

Ji et al. bring up the first learning based network, Sur-
faceNet [11], for MVS which utilizes 3D CNN for regular-
izing disparity. Adopting the divide-and-conquer strategy,

[11] is memory expensive, thus can only be used in limited
sized scenes. Later, Yao et al. propose MVSNet [25] for
large-scale 3D reconstruction and brought up a widely used
pipeline compose of feature extraction on 2D images, con-
struction a volume of matching cost between images fea-
tures, cost regularization and depth regression. However,
the memory and computation requirement of MVSNet [25]
is determined by the spatial resolution of the image and the
depth resolution of the scene and the regularization network
of multiple 3D convolution layers.

Motivated by the demand for large-scale reconstruction,
[9, 22, 23] propose to further enhance the efficiency of
MVSNet which can be categorized into RNN-based method
and CNN-based method. RNN-based MVS [22, 23] reduces
memory requirement by replacing the regularization net-
work with cubic 3D convolutions with convolutional GRU
and LSTM for regularizing the cost volume sequentially
along the depth dimension. RNN-based methods suffer
from great time consumption in exchange for low memory
cost. In contrast, CNN-based MVS [5, 9, 24, 27] preserve
regularization with cubic 3D CNN, and adopt a coarse-to-
fine structure for depth estimation. CasMVSNet [9] raises
a multi-stage pipeline for predicting depth initially with a
low-resolution cost volume at the coarse stage and refine
predicted coarse depth at high resolution in a narrow depth
range. To further increase the reconstruction resolution with
limited cost, CVP-MVSNet [24] and UCSNet [5] propose
to modify the construction of fine-stage cost volume. To
maintain a predictable the computational cost, both methods
adopt a fixed number of depths for the cost volume. CVP-
MVSNet constructs the cost volume with a proposed opti-
mal depth resolution of half pixel which results in a narrow
range for depth prediction in fine stage. Despite achieving
high depth resolution, the reconstruction quality of CVP-
MVSNet is heavily affected by the narrow range restricted
by depth resolution and hypothesis number. UCSNet solve
this problem by predicting an appropriate range adaptive to
the confidence of depth prediction in the previous stage and
adjust the depth resolution accordingly. However, the ef-
fectiveness of CVP-MVSNe and UCSNet highly depends
on the quality of coarse-stage depth prediction thus is not
robust to real-life complicated scenes.

To this end, we propose an EPP-MVSNet for extending
the trade-off of reconstruction accuracy and computational
cost. Enlightened by [9], we also adopt a coarse-to-fine
structure and propose further improvements for construct-
ing compact and non-redundant cost volumes. Distinct from
previous works, we optimize the construction of coarse cost
volume by assembling high resolution features which en-
hance the prediction accuracy of coarse stage. Moreover,
we estimate the confidence of depth prediction by probabil-
ity entropy of cost volumes and adjust the hypothesis range
accordingly. In addition to our effort on enhancing recon-
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Figure 2. Structure of EPP-MVSNet. The proposed network leverages coarse and fine depth prediction and adopt different network
accordingly. The coarse depth map D0 is predicted by regressing an assembled cost volume constructed with proposed epipolar-assembling
method and regularized with pair-wise and fused regularization network. In the fine stage, we adopt the entropy-based refining strategy for
constructing cost volume within a non-redundant range. Afterwards, the fine cost volume is regularized with fused regularization network
and regressed to generate depth map

struction quality, we also exploit the excessiveness of the
cost regularization and build a light-weighted network.

3. Method

In this section, we start with an introduction of the over-
all structure of the EPP-MVSNet and further present the
novel epipolar-assembling module and the entropy-based
refining strategy for cost volume construction as well as
the proposed light-weighted network for cost regulariza-
tion. EPP-MVSNet adopts a multi-stage structure for pre-
dicting depth in a coarse-to-fine manner (See Figure 2).
At each stage k, the depth map Dk and the correspond-
ing probability volume P k are inferred with four key pro-
cedures, feature extraction, cost volume construction, reg-
ularization and regression. To start with, given reference
image I0 and source images {Ii}Ni=1, a pyramid feature ex-
traction is applied for generating features maps at coarse
or fine spatial resolution. Then, the cost volumes are
constructed by firstly build feature volumes by homogra-
phy warping feature maps at several hypothesized depths
and further calculating the matching cost between refer-
ence and source feature volumes. Specifically, we utilize
the epipolar-assembling kernel (Section 3.1.1) and entropy-
based refining strategy (Section 3.1.2) respectively for the
cost volume construction at coarse and fine stages. Thirdly,
the cost volumes are regularized with a light-weighted net-
work integrated with Pseudo-3D CNN which is specifically
introduced in Section 3.2). Finally, the regularized cost vol-

ume is regressed to generate the depth map and a corre-
sponding probability map.

3.1. Cost volume construction

The cost volume is constructed by calculating the cor-
relation between reference and source features. We first
utilize the differentiable homography [19, 25] for feature
volume construction by warping all feature maps into the
fronto-parallel plane of reference view at a set of hypothe-
sized depth d :

pn = Kn · (r0,n · (K−1
0 · p · d) + t0,n), (1)

where pn represents the transformed pixel corresponds to
pixel p on source image In at hypothesized depth d . Kn

denotes the intrinsic matrix of source image In and r0,n and
t0,n denote the relative rotation and transformation parame-
ters between reference image I0 and source image In. Given
the feature map and hypothesized depths, a feature volume
Fn of source image warped to the reference view can be
calculated according to Equation 1. Then, we construct the
cost volume by calculating matching cost between reference
and source feature volumes using the proposed epipolar-
assembling module and entropy-based refining accordingly
at coarse and fine stages.

3.1.1 Epipolar-assembling module

For the coarse stage, we propose the epipolar-assembling
module for constructing cost volume. According to [3, 22,
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25], constructing a high resolution cost volume with narrow
interval between hypothesized depths leads to full utiliza-
tion of multi-view images and greatly improves reconstruc-
tion accuracy. As shown in Figure 3(a) which visualizes the
point-correspondence of homography warping source and
reference images, we observe that for each reference point
pr, the correspondence source points psm are discretely sam-
pled along the epipolar-line at different depth hypothesis
dm. With the hypothesis range fixed in the coarse stage, the
interval between sampled source points psm can be narrowed
by increasing hypothesis number M which inevitably re-
sults in the growth of volume size and high cost on the
memory and computation. To this end, we aim to break the
constraint of network efficiency for utilizing high resolu-
tion cost volume by integrating features at adaptive interval
to scattered sampled points along the epipolar-line:

costa(psm) =

∫ psm+α
2

psm−α
2

Ω(cost(x ))dx, (2)

where α denotes intervals between the sampled points psm
and the Ω(·) represents the proposed epipolar-assembling
kernel. Based on Equation 2, cost(x ) within the range of
(psm − α

2 , p
s
m + α

2 ) are assembled to costa(psm). We dis-
cretize the Equation 2 for the implementation of epipolar-
assembling module.

(a)

(b)

Figure 3. Epipolar-assembling module: Figure 3(a) visualizes the
point correspondence between reference and source images at dif-
ferent depth hypothesises and the dense interpolation of points
along the epipolar line. Figure 3(b) shows the assembling network
for assembled cost volume construction

To start with, the positions of the sampled source po-
ints are acquired using Equation 1 at depth hypothesis
{dm}Mm=1, we further interpolate even number of points

along the epipolar line by a maximal interval of half pixel
which proposed by [24] as the optimal interval and con-
struct a high resolution cost volume by measuring the group
correlation between reference point and the densely inter-
polated points. It is notable that, the hypothesized depth is
generated using the inverse depth setting [22] which leads
to a relatively uniform interval between the sampled points.
Then, the cost volume is downsized by assembling cost vol-
umes of interpolated points through a network shown in
Figure 3(b). We design the assembling network with two
steps, aggregation and pooling. Given the high resolution
cost volume, each volume aggregates the neighboring fea-
tures using three convolution layers of 3 × 1 × 1 kernels
for an appropriate receptive field. Further, the cost volume
is downsized by a max-pooling operation along the depth
direction with the window size adaptive to the interpolation
rate.

Through the aggregation and pooling process, we man-
age to assemble the dense feature to the scattered sampled
points and construct a compact and limited-sized cost vol-
ume. It is notable that the proposed epipolar-assembling
kernel not only makes full use of the information from im-
ages but also adaptively assembles features at the optimal
resolution in spite of the variation of the depth interval
caused by the diversity of camera positions. Our exper-
iments in Section 5 confirm that reconstruction using the
proposed assembled cost volume achieves comparable re-
sults with reconstructing with high resolution cost volumes.

3.1.2 Entropy-based refining strategy

Adopt multi-stage structure, depth map Dk+1 is pre-
dicted by refining Dk in a narrower range. Consequently,
the depth hypothesises for fine cost volumes are determined.
As shown in Figure 4, for each pixel, the center of the

Figure 4. Variation of hypothesized depths at coarse-to-fine stages

hypothesized depths {dk+1
m }Mm=1 is the predicted depth in

stage k and the hypothesis range is narrowed typically by
a fixed factor often determined by the experiments [9, 27].
Narrowing range with a fixed factor may either cause the
truth depth locating excluded from the refining range in the
case of poor coarse depth prediction or introducing redun-
dancy for refining an accurate depth within a wide range.
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In contrast, we propose to narrow the hypothesis range with
little redundancy based on the confidence of last-stage pre-
diction by using the proposed entropy-based refining strat-
egy. To further present the insight of the philosophy of the
entropy-based refinement for depth prediction confidence,
we refer to the original definition of entropy [18] that the
entropy of variable is the average level of “information” and
“surprise” inherent in the variable’s possible outcomes. As
in our case, given M possible outcomes, Ek estimates the
amount of “surprise” in the depth prediction of stage k and
MEk(p) is the sufficient number of states for describing the
“surprise”.

Given the probability volume Pk, the confidence for
depth prediction at stage k is estimated by the entropy of
the predicted probability for each hypothesis depth:

Ek(p) = −
M−1∑
m=0

P k(p, dkm) logM P k(p, dkm), (3)

where P k(p, dkm) denotes the probability for the depth value
of pixel p being hypothesis depth dkm and the number of
hypothesis depth for stage k is represented as M . Greater
entropy indicates less confidence for Dk which naturally
requires a greater range of hypothesis depth. The hypothesis
depth range for stage k + 1 is determined by:

rk+1 = (
Mλ·Ek(p)

M
) · rk, (4)

where rk is the hypothesis depth range for stage k. Con-
sequently, the cost volume can be constructed by calculat-
ing the group-correlation between reference and source fea-
ture volumes warped at the determined depth hypothesises.
Because the confidence for depth map is approximated by
simply averaging pixel-wise entropy, we introduce a hyper-
parameter λ for tuning the narrowing factor of hypothesis
depth range. Adopting the entropy-based refining strategy
enables adaptive adjustment for the hypothesis range with
little redundancy. With a fixed number of hypothesis depth,
the fine cost volume with non-redundant range and rela-
tively high resolution can be constructed.

3.2. Light-weighted regularization

In this section, the proposed light-weighted cost regu-
larization network is introduced. Enlightened by [27], we
adopt two 3D U-nets [15] for regularizing pair-wise and
fused cost volumes and further optimize the network. In
the coarse stage, given the cost volumes of each pair of ref-
erence and source feature volumes, F0 and Fn, we exert a
pair-wise regularization on the cost volume which is a two-
block 3D U-net and a visibility map is jointly inferred. The
fused cost volume is constructed by the linear combination
of pair-wise cost volumes using visibility map as weights.

Then, the fused cost volume is further regularized through
a two-block 3D U-net network. Finally, the coarse depth is
regressed from the cost volume with the soft-argmin oper-
ation. As for the fine stage, we directly fuse the pair-wise
cost volumes using the up-sampled visibility map inferred
at the coarse stage, and the combined cost volume is regu-
larized by the fused regularization network.

Further more, considering the physical interpretation of
the cost volume, we argue that the cost volume of neigh-
boring pixels at different depths convolved by normal cubic
CNN has little coherence which leads to redundant compu-
tation and high cost. Following [14], we replace normal 3D
convolution operators with Pseudo-3D convolutions.

(a) (b)

Figure 5. Comparison between the normal 3D convolution in Fig-
ure 5(a) and the Pseudo-3D convolution in Figure 5(b)

Illustrated in Figure 5, the proposed Pseudo-3D adopts
CNN separately on the spatial and the depth dimension. For
the spatial convolution with kernel size of 1×3×3, the cost
volumes of adjacent pixels are convolved and on the depth
domain the cost volumes of a pixel at different depth hy-
pothesises are convolved by a convolution with kernel size
of 3 × 1 × 1. Evidently, the computational cost is greatly
reduced and the reconstruction quality is also improved.

4. Experiments
4.1. Implementation

4.1.1 Training

Our network is trained on BlendedMVS dataset [26] for
Tanks & Temples [13] and ETH3D [17] benchmarking. We
also evaluate our method on DTU [1] evaluation set and the
training setting is shown in Section 5. BlendedMVS is a
large-scale dataset consist of over 17k high-resolution im-
ages and 113 scenes covering various scenes including ar-
chitectures and sculptures. During the training, we set the
image resolution to 512 × 640 and the number of source
images in a group N = 3, and output depth map size is
256 × 320. We adopt three stages structure consists of a
coarse stage and two fine stages and train it by the sum-
mation L1 loss of depth maps predicted at all stages and
the uncertainty loss [27] of probability volume at the coarse
stage. For each stage, the number of hypothesis depths is
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intermediate advanced DTU(mm)
Method mean Fam. Franc. Horse Light. M60 Pan. Play. Train mean Audi. Ballr. Courtr. Museum Palace Temple Acc. Comp. Overall
COLMAP [16] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94 0.400 0.664 0.532
ACMM [20] 57.27 57.27 69.24 51.45 46.97 55.07 57.64 60.08 54.58 34.02 23.41 32.91 41.47 48.13 26.17 36.69 - - -
CVP-MVSNet [24] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - - 0.296 0.406 0.351
CasMVSNet [9] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11 0.325 0.385 0.355
UCSNet [5] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - - 0.338 0.349 0.344
Vis-MVSNet [27] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 - - - - - - - 0.369 0.361 0.365
PatchmatchNet [19] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29 0.427 0.277 0.352
Ours 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75 0.413 0.296 0.355

Table 1. F-score (higher is better) results on the Tanks & Temples benchmark [13] and quantitative result (lower is better) on the evaluation
set of DTU [1]. The overall best results are marked as bold numbers.

(a) Family (b) Francis (c) Train

(d) Panther (e) Playground

Figure 6. Point clouds on Tanks & Temples intermediate dataset [13].

respectively M1 = 32, M2 = 16, M3 = 8. The learn-
ing rate is set to be 0.001, and the network is trained for 10
epochs with a batch size of 4 using Adam [12] as optimizer.
The learning rate is reduced by half at epoch 6, 8 and 9,
respectively.

4.1.2 Evaluation

We evaluate the EPP-MVSNet on Tanks & Temples,
ETH3D and DTU dataset without fine-tuning process and
compare it with other state-of-the-art learning-based meth-
ods. For evaluation, we set the hypothesis depth number
to be M1,M2,M3 = 32, 16, 8 and the interval threshold
for coarse-stage pixel interpolation is set to be 0.5. We
adopt the dynamic consistency checking approach proposed
in [23] for generating point cloud from the depth maps.
Tanks & Temples Dataset. Tanks & Temples (TNT) is a
benchmarks for realistic scenes includes both outdoor and
indoor scenes. We evaluate EPP-MVSNet on the inter-
mediate and advanced TNT dataset. For evaluation, we
set the input image size to 1920 × 1056, and adopt 7
source images for each inference process. As shown in Ta-
ble 1, our method outperforms others on the overall qual-

ity and achieve the highest mean F-score in the intermedi-
ate benchmark (until March 17, 2021). For example, EPP-
MVSNet shows significant improvement on each scenes
compared to the coarse-to-fine method CasMVSNet [9].
While comparing to CVP-MVSNet [24] and UCSNet [5]
which also propose to increase the reconstruction resolu-
tion, EPP-MVSNet shows respectively 7.65 and 6.85 higher
results on mean F-score. Furthermore, compared to SOTA
method Vis-MVSNet [27], our method performs better on
most scenes. For the most challenging advanced dataset,
our method EPP-MVSNet still performs best among all the
methods, which contains some traditional MVS methods
like [20]. The generated point cloud is shown in Figure 6,
it is obvious that the proposed methods manage to generate
dense point cloud with fine details well reserved.

ETH3D Dataset. ETH3D provides diverse types of scenes
ranging from complicated natural scenes to man-made in-
door and outdoor environments with relatively large varia-
tion of view-points thus reconstruction on ETH3D dataset
requires more robustness and generalization ability of the
network. We set the input image size to 3072 × 2048 and
the number of source images N to 7. For most learning-
based methods shows poor performance on the ETH3D
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benchmark, we further present results of traditional meth-
ods for comparison. As is shown in Table 2, our method out-
performs learning-based methods PVSNet [21] and Patch-
matchNet [19], and shows competitive results with tradi-
tional MVS methods [20].
DTU Dataset. DTU dataset contains more than 100 scenes
which collected by a robot arm with a structured light scan-
ner. We use a resolution of 1600×1184 and set the num-
ber of source images to 4 on evaluation set. As shown in
Table 1, Our method shows comparable results with other
SOTA methods.

Method Training Test
Gipuma [8] 36.48 45.18
PMVS [7] 46.06 44.16

COLMAP [16] 67.66 73.01
ACMM [20] 78.86 80.78
PVSNet [21] 67.48 72.08

PatchmatchNet [19] 64.21 73.12
Ours 74.00 83.40

Table 2. F1 score (in %) comparisons of point clouds on ETH3D
high-res benchmark at evaluation threshold 2cm.

Memory and Run-time Comparison. The computational
cost of EPP-MVSNet is compared with the mentioned
learning-based methods by competing memory consump-
tion and run-time. For fair comparison, we use a fixed input
size of 1920 × 1056 and the same source images number
4 for all competing methods. As shown in Table 3, our
method EPP-MVSNet reduces 30.3% and 36.1% run-time
compared to CasMVSNet [9] and Vis-MVSNet [27] respec-
tively.

Method Time(ms) Mem.(GB)
CasMVSNet [9] 792.2 9.5

Vis-MVSNet [27] 864.2 4.5
PatchmatchNet [19] 317.7 3.2

Ours 552.2 8.2

Table 3. Comparison of the running time(ms per view) and mem-
ory consumption between our methods and other SOTA learning-
based multi-view stereo methods [9, 19, 27] on Tanks & Tem-
ples [13].

5. Ablation study
We conduct extensive ablation study for validating en-

hancements brought up by the proposed modules. Here we
use DTU training set [1] to train our method and all test on
DTU evaluation set. Training setting is the same as Sec-
tion 4.1.1 except with a batch size of 8 and a initial learning
rate of 0.0015. While testing, we follow the same setting
which is shown in Section 4.1.2.

Method Depth Num. Acc.(mm) Comp.(mm) Overall(mm)
32 0.7903 0.6195 0.7049
96 0.6692 0.5871 0.6282w/o EAM

160 0.5521 0.7074 0.6298
Ours 32 0.6451 0.5389 0.5920

Table 4. Ablation study of reconstructing w/o the epipolar-
assembling module(EAM) on the 1st stage.

EAM kernel Acc.(mm) Comp.(mm) Overall(mm)
Conv 3× 1× 1 + Max pool (ours) 0.6451 0.5389 0.5920
Conv 3× 1× 1 + Average pool 0.6541 0.5447 0.5994
Conv 5× 1× 1 + Max pool 0.6413 0.5428 0.5921
Conv 1× 1× 1 + Max pool 0.8112 0.6213 0.7163

Table 5. Ablation study for different kernels adopted for the
epipolar-assembling module(EAM).

(a) Ablation study of EAM (b) Ablation study of EAM kernel

Figure 7. Comparison of reconstruction accuracy(mm) and com-
pleteness(mm) for reconstructing w/o the proposed epipolar-
assembling module(EAM) and with various assembling kernels on
DTU evaluation set [1].

Epipolar-assembling module. To quantitatively measure
the effectiveness of aggregation, we only use depth pre-
diction results of 1st stage to reconstruct point clouds.
As stated in Section 3.1.1, the epipolar-assembling mod-
ule aims to construct a compact cost volume with high
resolution features and limited size. We compare our
epipolar-assembling method with three depth number set-
tings on cost volume without assembling network. Compar-
ing results constructed with same resolution cost volume,
we observe that utilizing the proposed epipolar-assembling
network significantly improves the reconstruction qual-
ity.(0.5920 vs. 0.7049, overall quality) Even compared with
3× and 5× resolution case, our method still performs better
on completeness and overall quality. It is shown in Fig-
ure 7(a) and Table 4 that utilization of aggregated cost vol-
ume benefits the reconstruction quality by a great amount
comparing to constructing cost volume with much higher
resolution. It is worthy to clarify that although adopting
adaptive window size for epipolar-assembling, the average
window size for the whole DTU evaluation set is 1.408.
Thus, it can be concluded that not only does the proposed
method effectively aggregate high-resolution features but
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also manage to adaptively aggregates at an optimal reso-
lution.
Kernel for epipolar-assembling. Firstly, we demon-
strate the enhancement brought by the proposed epipolar-
assembling module by evaluating the point clouds qual-
ity reconstructed from 1st stage outputs. By replacing the
epipolar-assembling kernel, we experiment on different net-
work architectures for aggregating high-resolution feature.
Apart from the adopted kernel which composes of 3 layers
of convolutions with kernel size of 3×1×1 and a max pool-
ing operation, we alter the size of convolution kernel and
replace the pooling operation. In Table 5 and Figure 7(b),
the accuracy and completeness of point cloud reconstructed
using different assemble kernel are illustrated. Comparing
results of using max and average pooling, kernel with max
pooling outperforms kernel with average pooling on both
accuracy and completeness. Using max pooling operation,
we compare the results with different convolution kernel
size. We observe that adopting kernel size of 3×1×1 and
5×1×1 leads to comparable results which are both signif-
icantly better than results inferred with convolution kernel
size of 1×1×1.

Method Acc.(mm) Comp.(mm) Overall(mm)
1st stage 0.6451 0.5389 0.5920

3rd stage w/o ER 0.4255 0.2935 0.3595
3rd stage 0.4137 0.2968 0.3553

Table 6. Ablation study of entropy based refining strategy (ER) on
DTU [1].

Entropy-based refining strategy. We further inspect the
entropy-based refine strategy by comparing 3rd stage’s re-
constructed results based on 1st stage’s depth prediction
using epipolar-assembling module. Our method achieves
0.4137 on accuracy and 0.3553 on overall quality, which en-
hanced 0.0188 and 0.0038 compared to baseline (3rd stage
w/o ER). It is noticed that improvement on 3rd stage is par-
ticularly challenging, which means the entropy-based re-
fine strategy practically reduces redundancy depth range for
next stage to generate better depth prediction.

Volume size Run-time(ms)
3D Block Pseudo-3D Block

32×296×400 23.6 16.4
64×296×400 46.6 31.7
32×148×200 6.0 4.4

Table 7. Run-time ablation study of Pseudo-3D block on DTU [1].
We test run-time of normal 3D block(contains two 3×3×3 convo-
lution layer which followed with BN and ReLU) and our Pseudo-
3D block(contains one 1×3×3 convolution layer and one 3×1×1
convolution layer, followed with BN and ReLU at last) on cost vol-
ume of different shape(D ×H ×W ).

Method Acc.(mm) Comp.(mm) Overall(mm) Time(ms) Mem.(GB)
3D CNN 0.4160 0.2989 0.3575 624.9 5.2

Pseudo-3D CNN 0.4137 0.2968 0.3553 340.6 3.1

Table 8. Comparison of reconstruction quality and computational
cost between integrating Pseudo-3D CNN and normal 3D CNN
for cost regularization in the proposed network under the case of a
fixed window size of 3 for the epipolar-assembling kernel.

Pseudo-3D convolution. Experiments are further con-
ducted for showing the beneficial effect of regularization
using Pseudo-3D convolution. We compare the reconstruc-
tion quality and computational cost of adopting Pseudo-3D
CNN and 3D CNN in the regularization network. Accord-
ing to Table 8, adopting Pseudo-3D CNN for regularization
results in comparable accuracy and completeness with nor-
mal 3D CNN. To present the advantageous effect brought
by integrating Pseudo-3D convolution, we compare the per-
formance of Pseudo-3D convolution with normal cubic 3D
convolution. As shown in Table 7, the 3D block reduce re-
spectively 30.5%, 32.0%, 26.7% for operating on volume
sizes of 32×296×400, 64×296×400, 32×148×200 run-
time in each cases. To fully analyse the computational en-
hancement relative to the whole network, we also exhibit
the time and memory consumption comparison between 3D
CNN and Pseudo-3D CNN. With a fixed window size for
epipolar-assembling kernel of 3, the run-time reduced by
45.5% and the memory requirement is reduced by 40.4%
while using Pseudo-3D instead of the normal 3D CNN.

6. Conclusion

We present EPP-MVSNet, a novel learning-based meth-
od with the proposed light-weighted coarse-to-fine network
for effective and efficient high resolution depth prediction.
Initially, we adopt the adaptive epipolar-assembling kernel
for the construction of a compact cost volume with aggre-
gated high resolution feature resulting in the high accuracy
of coarse depth prediction. Then, we refine the depth pre-
diction in narrow range predicted by the proposed entropy-
based range prediction strategy. We further enhance the
efficiency of the network by optimizing the cost regular-
ization network and integrating Pseudo-3D operation. The
proposed EPP-MVSNet achieves the highest F-Score on the
Tanks & Temples benchmark and achieves relatively low
memory and time consumption comparing to the state-of-
the-art learning-based methods.
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