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Abstract

Few-shot Learning has been studied to mimic human
visual capabilities and learn effective models without the
need of exhaustive human annotation. Even though the
idea of meta-learning for adaptation has dominated the
few-shot learning methods, how to train a feature extrac-
tor is still a challenge. In this paper, we focus on the design
of training strategy to obtain an elemental representation
such that the prototype of each novel class can be estimated
from a few labeled samples. We propose a two-stage train-
ing scheme, Partner-Assisted Learning (PAL), which first
trains a Partner Encoder to model pair-wise similarities
and extract features serving as soft-anchors, and then trains
a Main Encoder by aligning its outputs with soft-anchors
while attempting to maximize classification performance.
Two alignment constraints from logit-level and feature-level
are designed individually. For each few-shot task, we per-
form prototype classification. Our method consistently out-
performs the state-of-the-art methods on four benchmarks.
Detailed ablation studies of PAL are provided to justify the
selection of each component involved in training.

1. Introduction

Deep learning has achieved impressive success in many
vision tasks, such as image classification [21, 38, 17], object
detection [36, 34, 37], and image segmentation [26, 3, 16],
especially when sufficient labeled data is available for train-
ing. However, data annotation can be expensive and large
scale annotated data is not always available [13, 24, 43, 49].

Few-shot learning has been proposed to mimic human
vision systems, which is capable of learning the visual ap-
pearance of new objects with only a few (e.g., 1 or 5) in-
stances [24, 46]. To facilitate few-shot learning for fast
model adaptation, meta-learning has been employed to sim-
ulate few-shot tasks during training, by either designing
an optimal algorithm for adaptation [10, 30] or learn-
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Figure 1: (a) Prototype classification calculates the few-shot prototypes
and classifies a sample by comparing its similarity to each prototype. (b)
The discriminative feature distribution with compact clusters benefits the
prototype classification [47, 25]. (c) We propose a Partner-Assisted Learn-
ing framework, in which a pre-trained partner encoder, fP , is used to gen-
erate soft-anchors to regularize the learning of main encoder, fM , which
will be used at the inference time.

ing a shared feature space for prototype-based classifica-
tion [41, 31, 23]. As shown in Fig. 1(a), prototype classi-
fication methods [6, 8, 41, 45] estimate the few-shot pro-
totypes by averaging the features of a few labeled samples
(i.e., support). A new sample (i.e., query) is classified by
comparing its cosine similarity with all prototypes using
nearest neighborhood search. As illustrated in Fig. 1(b),
in a classification context, the feature distribution is sup-
posed to be (1) compact within each cluster (i.e., supporting
high intra-class similarities), and (2) discriminative between
clusters (i.e. supporting large inter-class distances).

Recent work has shown that pretraining a model on a
large scale (base) dataset with full supervision can serve as a
strong baseline [6] for the novel few-shot tasks by perform-
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ing prototype classification [6, 8, 41, 45]. For each base
class, conventional fully-supervised pretraining using class
labels [45, 6] learns a unique weight vector, which serves
as a hard-anchor. By minimizing the cross-entropy loss
with respect to (w.r.t.) the class label, each image feature
is pushed towards its corresponding class anchor. There-
fore, for each class, the average of features is expected to
represent the class during few-shot classification.

The feature extractor pretrained on the base classes for
classification may suppress details irrelevant to the base do-
main [4], while these details could be discriminative for
novel classes. Thus, incorporating instance comparison to
preserve details can facilitate few-shot learning on novel do-
mains. Knowledge distillation formulates a teacher-student
setting and compares the outputs from two models for the
same image [45]. For each image, the teacher model gen-
erates soft-labels to model the proximity between different
classes. By comparing the outputs of teacher model and
student model, the student model is trained with the soft-
label so that more details indicating class relationship could
be preserved. Thus, the student model achieves higher ac-
curacy on few-shot tasks. Despite the success of knowl-
edge distillation, the performance improvement is still lim-
ited since the teacher model has once been rigidly optimized
according to hard-anchors of base classes.

Besides comparing the outputs of the same instance from
two networks using cosine similarity, a single network can
be trained for pair-wise comparison, so that its outputs of
a few randomly selected support samples can dynamically
represent the class center [41]. Metric-based meta-learning
methods, such as prototypical network [41], have been pro-
posed to learn to represent a class by aggregating support
features. This way, representative centers are dynamically
estimated according to a few labeled data. Similarly, super-
vised contrastive learning [19] performs pair-wise compari-
son, where each feature is sampled from the training set and
individually represents the class without aggregation.

Inspired by the dynamic and individual representative
employed in prototypical learning and supervised con-
trastive learning, to improve the generalization ability of
feature extractor, we propose to extract features that can be
used to dynamically represent classes, and set those features
as soft-anchors to regularize the feature extractor trained
with hard-anchors. Comparing with knowledge distillation,
instead of aiming to iterate the feature extractor that has al-
ready been optimized w.r.t hard-anchors, our method uses
diverse features on the base domain to regularize a new fea-
ture extractor which is trained with class label under cross-
entropy loss from scratch. The contributions of this paper
are as follows:

• We propose Partner-Assisted Learning (PAL): a frame-
work for representation learning in few-shot classifica-
tion setting, in which the Partner Encoder and Main

Encoder are trained sequentially such that the features
from Partner Encoder are used as soft-anchors to reg-
ularize the training of Main Encoder from scratch.

• We propose two alignment approaches on both feature-
level and logit-level, which utilizes the soft-anchors for
regularization during training with class labels.

• We show that PAL consistently achieves state-of-the-
art performance on four few-shot benchmarks, and
improves the classification accuracy in a supervised
learning setting. We also provide comprehensive ab-
lation studies to justify the design of each component.

2. Related Work
Prototype Classification has been widely used in metric-
based methods for few-shot classification. Prototypical net-
works [41] simulate few-shot tasks using episodes during
meta-training. In each episode, a few labeled training sam-
ples are randomly sampled and then class prototype is es-
timated by averaging the extracted features. The quality of
the estimated class prototype is evaluated by classifying the
query features. Similarly, models trained by the supervised
contrastive loss (SupCT) [19] learn to maximize the sim-
ilarity between all instances of the same class so that all
instances are clustered together and each class can be repre-
sented by every instance feature of that class. Furthermore,
the concept of meta-learning is also employed to estimate
the task-adaptive metric by learning to scale the metric or
add margins for prototype classification, which has shown
clear benefit on few-shot tasks [31, 23, 14, 15].

Recently, networks pretrained with fully-supervised
classification tasks [6] have been treated as strong baselines
for few-shot classification. A unique prototype for each
class is learned through class labels, i.e., one-hot vectors, to
indicate the discrimination between classes. Furthermore,
RFS [45] shows further improvements using knowledge dis-
tillation with soft labels based on the conventional network
trained with cross-entropy loss.
Regularization to Cross-Entropy (CE) loss. CE loss [29]
is widely used in fully-supervised tasks due to its simplic-
ity, where it learns a classification hyperplane in a high-
dimensional representation space. Regularization can be
added to encourage the intra-class compactness, by setting
large margin [25]. Various loss functions, such as center
loss [48], L-GM loss [47], and Ring Loss [53] have been
introduced to emphasize certain embedding distributions in
the latent space. In face recognition, triplet loss [40] has
widely been used where an image triplet is constructed by
sampling a positive pair and a negative pair as anchors.
Knowledge Transfer between Networks: Knowledge
Distillation [18] has been proposed to perform uni-direction
knowledge transfer, which uses a strong teacher model to
train a simple student model on the same task. Other work
on knowledge distillation also show the advantages in semi-
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supervised learning [44, 5]. The strong teacher model is
pretrained with one-hot vectors, and then generates soft-
labels for the student model. Although the teacher model
can serve as a strong baseline, the large negative logits
may hurt the distillation process and such logits need to be
smoothed by modifying the Softmax operation [18]. Con-
trarily, mutual learning [52] studies bi-direction knowledge
sharing, where two networks are trained jointly from scratch
with the same objective. Both uni-direction and bi-direction
knowledge transfer have demonstrated ability to learn a bet-
ter representation than a single network.

3. Partner-Assisted Learning

In this section, we present the proposed Partner-Assisted
Learning (PAL) to learn an embedding function. As illus-
trated in Fig. 2, PAL consists of Partner and Main Encoders.
Task formulation and notation are defined in Section 3.1.
The objective for the Partner Encoder is presented in Sec-
tion 3.2. The framework of imposing alignment constraints
for the Main Encoder is discussed in Section 3.3.

3.1. Learning-Task Formulation

In the few-shot learning, we are first given a base dataset
Dbase, which consists of abundant amount of labeled sam-
ples. All sample labels in Dbase belong to the base class set
Cbase. Then, we are given a novel set Dnovel, from which
each episode Depi is sampled. All sample labels in Dnovel

are from the novel class set Cnovel where the class sets for
base and novel are disjoint, i.e., Cbase ∩ Cnovel = ∅. Each
episode Depi = (DS ,DQ) is composed of a support set DS
for prototype estimation and a query set DQ for evaluation.
For anN -wayK-shot task, theDS ∪DQ in an episode con-
tains N novel classes drawn from Cnovel, and DS contains
K labeled samples for each class.

As illustrated in Fig. 2, Dbase is first used to train the
Partner Encoder fP to generate soft-anchors. Then, fP
is fixed and Dbase is used to train the Main Encoder fM ,
which is regularized by the alignment constraints on either
logit-level or feature-level from fP under the PAL frame-
work. During the few-shot evaluation, similar to [45, 6], we
directly use the pre-trained fM to estimate the prototype of
each class usingDS and classify the testing samples inDQ.

3.2. Partner Encoder

A Partner Encoder fP is trained using supervised con-
trastive learning (SupCT) to do clustering and perform pair-
wise comparison among all feature instances. The features
of the same class are pushed together while the features
from different classes are pushed away. The detail of su-
pervised contrastive learning is presented below.
Supervised Contrastive Learning: Given a batch Draw
with B images, i.e., |Draw| = B, an augmented batch with

2B samples is generated by performing two separate aug-
mentations on each image,

D = Concat(Aug(Draw),Aug(Draw)), (1)

where Aug indicates a data augmentation function-group
which randomly transforms images. For each image D(i)
where i ∈ I ≡ {1...2B}, a positive index set Ipos(i) ⊂
I \{i} is selected, such that all imagesD(j) for j ∈ Ipos(i)
are of the same class as D(i). Then, the supervised con-
trastive loss is defined as

LSupCT (D) =
∑
i∈I

−1

|Ipos(i)|
∑

j∈Ipos(i)

Θ(i, j) (2)

Θ(i, j) = log
exp(zfP ,D(i) · zfP ,D(j)/τ)∑

a∈I\{i} exp(zfP ,D(i) · zfP ,D(a)/τ)

where zfP ,x denotes the feature of image x extracted by the
Partner Encoder fP after l2-normalization, and τ is a tem-
perature hyperparameter used to rescale the affinity score.
Minimizing LSupCT (D) trains the model to maximize the
similarity between features of the same class (positive pair)
while pushing away the features from different classes (neg-
ative pair). According to Eq. (2), as noted in [19], the dis-
agreement between the two features in a positive pair is in-
duced by the variation between image instances and differ-
ence resulting from data augmentation.

As an alternative to LSupCT , the unsupervised con-
trastive loss LCT (D) shares the same formulation as
LSupCT (D) while semantic information of class label is
excluded. Then, the positive index set for each i ∈ I is
Ipos(i) = {i + B} for i ≤ B and Ipos(i) = {i − B} for
i > B, i.e., the disagreement between the two features in a
positive pair is only induced by exhaustive augmentation.

In PAL, we use LSupCT to train the Partner Encoder.
LCT is used as an alternative to LSupCT for ablation study.
Since LSupCT models instance-level similarity between
features in positive pairs and push away features of different
classes, as shown in our experiments in Section 4.3, among
the considered alternative variants, the features extracted
from LSupCT -trained Partner Encoder facilitates the train-
ing of Main Encoder most.

3.3. Main Encoder

In this section, we first review the soft-labels introduced
in knowledge distillation, and then introduce the alignment
constraints at the logit- and feature-level imposed by Part-
ner Encoder during Main Encoder training.

3.3.1 Knowledge Distillation Preliminary

As discussed in [45], the teacher model provides soft-labels
depicting the fact that some classes are relatively close to
each other. The soft-labels p ∈ R|Cbase| are calculated from
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Figure 2: Training pipeline of Partner-Assisted Learning. (a) Train the Partner Encoder fP by supervised contrastive learning LSupCT to model the
pair-wise similarity among all features. (b) Train the Main Encoder fM by imposing either logit-level or feature-level alignments using the pretrained fP .
Both fP and fM use ResNet-12[17] and each gray block denotes a fully-connected layer.

the output logits v ∈ R|Cbase| through softmax operation
p = Softmax(v/τ), where the temperature τ can scale the
logits and a higher τ produces a softer probability distribu-
tion over base classes.

In addition to the cross-entropy loss on student model,
the KL-divergence LKL is used as objective in teacher-
student setting for knowledge distillation and is defined as

LKL(pt,x||ps,x) =
∑

c∈|Cbase|

pt,x(c) log
pt,x(c)

ps,x(c)
(3)

=
∑

c∈|Cbase|

pt,x(c) logpt,x(c)−
∑

c∈|Cbase|

pt,x(c) logps,x(c)

= −H(pt,x) +H(pt,x,ps,x),

where pt,x and ps,x are the output probability distribu-
tion of the same image x by teacher model and student
model. Minimizing LKL will minimize the cross-entropy
H(pt,x,ps,x) between teacher soft-label and student pre-
diction. When the teacher is also trained, the negative en-
tropy of its output −H(pt,x) is minimized.

Since the teacher model is pretrained to learn hard-
anchors for classification, and then predicts logits through
the single linear mapping, the logits output is not well-
constrained and negative logits with large absolute value
exist [18]. As experimentally demonstrated in [18], a high
temperature has to be set for cross-entropy H(pt,x,ps,x)
between the student prediction and the soft-label during
student model training, so that the effect of large negative
logits from teacher model can be mitigated and the student
model can work better.

Instead of first training a model that has once been rigidly
optimized to hard-anchors and then setting a high temper-
ature to reduce impact from large negative logits, when
training a Main Encoder from scratch with class labels, we

propose to use the features extracted by Partner Encoder
as soft-anchors for providing alignment regularization. To
constrain the logit value of classifier, we first design the
classifier as the cosine similarity function between feature
representations and class weight vectors. Then, in addi-
tion to minimizing cross-entropy loss for each sample, we
use the features of Partner Encoder to regularize Main En-
coder and design the constraint method at either logit-level
or feature-level alignment.

3.3.2 Logit-Level Alignment

During knowledge distillation, given a query feature of a
target class, we calculate affinity score as the dot-product
between the query feature and well-trained class weight
vector for each base candidate class. The affinity scores
can then be used to describe the relationship between all
classes. A candidate class is close to the target class if the
corresponding affinity score is high.

Similarly, we use the cosine similarity between the all
class weight vectors and the well-trained query features to
generate soft labels, and then minimize the cross-entropy,

Llogit = H(pp,x′ ,pm,x),

between the soft label pp,x′ generated by Partner Encoder
and the prediction pm,x from Main Encoder, while the im-
age x′ and x are of the same class. As the Partner Encoder
has been well trained for clustering by maximizing the co-
sine similarity between features in all positive pairs, we fix
the Partner Encoder and then extracts features as soft an-
chors. Since the Main Encoder is also trained by maxi-
mizing the cosine similarity between the query feature and
the class weight vectors, we assume the features by Partner
and Main Encoders share a common feature space. Thus,
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Figure 3: Visualization on five base classes using model trained by (a) supervised contrastive loss LSupCT and (b) cross-entropy loss LCE , and visualisa-
tion on five novel classes using model learned by (c) LCE and (d) PAL (our method). (a) LSupCT is used to cluster all features using class label, and the
features in each cluster can be used as soft-anchors, while (b) LCE trains network to learn hard-anchors for classification. The feature distribution on novel
classes by (d) PAL benefits the prototype classification compared with (c) the distribution of LCE . More visualization can be found in supp. material.

we feed features from Partner Encoder into the shared clas-
sifier and calculate pp,x′ .

In terms of implementation,Partner Encoder shares the
classifier of Main Encoder to generate cosine similarities
as logits. Since the class weight vectors are randomly ini-
tialized before training, we adopt a warm-up strategy and
increase the weight of Llogit from 0 to 1 as the loss con-
verges and the class weight vectors are gradually learned
for each class. Notably, our logit-level constraint is differ-
ent from knowledge distillation and does not minimize the
negative entropy of Partner Encoder. Since the Partner En-
coder is not trained to learn hard-anchors, minimizing the
negative entropy of Partner Encoder is not needed. Mean-
while, as demonstrated by the ablation study in Table 5,
since the classifier is randomly initialized at the beginning,
comparing with our proposed logit-level alignment (Row2),
minimizing the negative entropy of pp,x′ (Row3) will con-
fuse the shared classifier and has negative impact on both
classifier and Main Encoder.

3.3.3 Feature-Level Alignment

Feature-level alignment is achieved by pair-wise compari-
son between the features extracted by Partner and Main En-
coders. As stated in Section 3.3.1, Main Encoder is trained
with a classifier based on cosine similarity for generating
logits and range of logits value is bounded. Equivalently,
learning such a classifier effectively learns a unique anchor
for each class and every feature is trained to maximize the
cosine similarity with its corresponding class anchor.

During the training process of Partner Encoder with
LSupCT , features that belong to the same class are clus-
tered together and separated from features of other classes.
Therefore, the clusters of base classes can be considered as
a pool and each feature can be considered as a soft-anchor
for alignment. For each image, in addition to the super-
vised classification signal provided class label, a subset of
soft-anchors is sampled from the pools.

Specifically, similar to the idea in supervised contrastive

loss, we do pair-wise comparison for feature-level align-
ment. Given the batch DM consisting of |DM | features ex-
tracted by Main Encoder, for each feature instance indexed
by i ∈ IM = {1...|DM |}, according to class labels, a set of
positive features D+

P,DM (i) and negative features D−P,DM (i)

are randomly sampled from the pools by Partner Encoder,
such that all features in D+

P,DM (i) are of the same class as
DM (i) and every feature in D−P,DM (i) is of a different class
from DM (i). Then, we define feature-level constraint as

Lfeat(DM ) =
∑
i∈IM

−1

|DP,DM (i)|
∑

j∈{1...|D+
P,DM (i)

|}

Θ(i, j),

(4)

Θ(i, j) = log
exp(DM (i) · D+

P,DM (i)(j)/τ)∑
a∈IP,DM (i)

exp(DM (i) · DP,DM (i)(a)/τ)
,

where DP,DM (i) = D+
P,DM (i) ∪D

−
P,DM (i), and IP,DM (i) =

{1...|DP,DM (i)|}.

3.3.4 Main Encoder Training

In summary, in addition to the cross-entropy loss for each
sample LCE = H(1y(x),pm,x) where 1y(x) denotes one-
hot vector of class label, we include both logit-level and
feature-level alignments in the final training objective of
Main Encoder while the Partner Encoder used to extract
soft anchors is fixed. In practice, we found that using ei-
ther Llogit or Lfeat provides clear benefit in regularizing
the Main Encoder, whereas summing up both of them pro-
duces the best performance.

4. Experimental Evaluation
We evaluated PAL on four benchmark datasets to

demonstrate its robustness: miniImagenet [46], tieredIm-
agenet [35], CIFAR-FS [2], and FC100 [31]. Results are
shown in Table 1 and Table 2. Detailed ablation studies are
discussed in Section 4.3.
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Table 1: PAL Result on miniImageNet and tieredImageNet datasets. †: Results are generated on Train+Val set

Algorithm Backbone miniImageNet, 5-way tieredImageNet, 5-way
1-shot 5-shot 1-shot 5-shot

MAML [10] 32-32-32-32 48.70± 1.84 63.11± 0.92 51.67± 1.81 70.30± 1.75
Prototypical Networks [41]† 64-64-64-64 49.42± 0.78 68.20± 0.66 53.31± 0.89 72.69± 0.74

SNAIL [27] ResNet-12 55.71± 0.99 68.88± 0.92 - -
AdaResNet [28] ResNet-12 56.88± 0.62 71.94± 0.57 - -

TADAM [31] ResNet-12 58.50± 0.30 76.70± 0.30 - -
Shot-Free [33] ResNet-12 59.04± n/a 77.64± n/a 63.52± n/a 82.59± n/a
TEWAM [32] ResNet-12 60.07± n/a 75.90± n/a - -

MTL [42] ResNet-12 61.20± 1.80 75.50± 0.80 - -
Variational FSL [51] ResNet-12 61.23± 0.26 77.69± 0.17 - -

MetaOptNet [22] ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53
Fine-tuning [8] WRN-28-10 57.73± 0.62 78.17± 0.49 66.58± 0.70 85.55± 0.48

LEO-trainval [39]† WRN-28-10 61.76± 0.08 77.59± 0.12 66.33± 0.05 81.44± 0.09
Diversity w/Cooperation [9] ResNet-18 59.48± 0.65 75.62± 0.48 - -
Associative-Alignment [1] ResNet-18 59.88± 0.67 80.35± 0.73 69.29± 0.56 85.97± 0.49

AdaMargin [23] ResNet-12 67.10± 0.52 79.54± 0.60 - -
DeepEMD [50] ResNet-12 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58
MABAS [20] ResNet-12 65.08± 0.86 82.70± 0.54 - -

RFS-simple [45] ResNet-12 62.02± 0.63 79.64± 0.44 69.74± 0.72 84.41± 0.55
RFS-distill [45] ResNet-12 64.82± 0.60 82.14± 0.43 71.52± 0.69 86.03± 0.49

PAL (Ours) ResNet-12 69.37± 0.64 84.40± 0.44 72.25± 0.72 86.95± 0.47

4.1. Benchmark Datasets & Training Setup

Datasets derived from ImageNet [7]: miniImageNet [46,
12] and tieredImageNet [35]. MiniImageNet [46] contains
100 classes, the class split for (training, few-shot validation,
few-shot testing) is (64,16,20). Each base class has 600 im-
ages for training and 300 images for fully-supervised classi-
fication evaluation [12]. TieredImageNet [35] contains 608
classes with the class split (351,97,160) and around 450K
images from base dataset for network training. All images
for the two sets are sized to 84×84.
Dataset derived from CIFAR100: CIFAR-FS [2] and
FC100 [31]. CIFAR-FS [2] contains 100 classes with the
class split for (64,16,20). FC100 [31] contains 100 classes
with the class split (60,20,20). Each class has 600 images
and all images for the two sets are of 32×32.

The hierarchical class structure, i.e., some leaf classes
can be ground together to a coarse class, are considered for
the class split of the TieredImageNet and FC100. The leaf
classes under the same coarse have more semantic correla-
tion. As there is no overlap of coarse class between the base
class set and the novel class set, the adaptation from the base
class set to the novel class set will be more challenging.
Training Setup: On all benchmark datasets, we run ex-
periments using ResNet12 [17] as the backbone optimized
using stochastic gradient decent (SGD). We use an initial
learning rate of 0.03 with a decay factor of 10 starting

at the 60-th epoch, and train for 90 epochs. The batch
size is 64 on Mini-ImageNet, CIFAR-FS and FC100, and
is 400 on tiered-ImageNet. The temperature scaling fac-
tor τ in LSupCT (Eq. (2)) and Lfeat (Eq. (4)) is 0.5 on
ImageNet-derived datasets, and is 0.1 on CIFAR-derived
datasets. We adopt the data augmentation methods used
in SupCT [19] and include image rotation prediction for
reducing the bias [11]. For each dataset, hyper-parameter
settings are the same for both Partner and Main Encoder.

4.2. Comparison With State-Of-The-Art

We compare the performance of PAL with state-of-the
art (SOTA) methods. The idea of multi-task training is
adopted in [31] and combines the objectives of classifica-
tion task and 5-way few-shot task during training. Similarly,
a strong baseline is first obtained through pretraining, and
the idea of transfer learning is then used to perform train-
ing on hard-task [42] or through finetuning [8]. Recently,
knowledge distillation has been implemented by [45] and
improves the performance on few-shot tasks clearly. De-
spite the success of previous work, PAL outperforms SOTA
methods on all four benchmark datasets in both 1-shot and
5-shot scenarios, which demonstrates the advantages of the
proposed PAL learning scheme, where we train Partner En-
coder and Main Encoder under different objective and im-
pose constraint by logit-level alignment and feature-level
alignment. Besides, AdaMargin [23] introduces external

10578



Table 2: PAL Result on CIFAR-FS and FC100 datasets.

Algorithm Backbone CIFAR-FS, 5-way FC100, 5-way
1-shot 5-shot 1-shot 5-shot

MAML [10] 32-32-32-32 58.9± 1.9 71.5± 1.0 - -
Prototypical Networks [41] 64-64-64-64 55.5± 0.7 72.0± 0.6 35.3± 0.6 48.6± 0.6

Relation Networks [43] 64-96-128-256 55.0± 1.0 69.3± 0.8 - -
R2D2 [2] 96-192-384-512 65.3± 0.2 79.4± 0.1 - -

TADAM [31] ResNet-12 - - 40.1± 0.4 56.1± 0.4
Shot-Free [33] ResNet-12 69.2± n/a 84.7± n/a - -
TEWAM [32] ResNet-12 70.4± n/a 81.3± n/a - -

Prototypical Networks [41] ResNet-12 72.2± 0.7 83.5± 0.5 37.5± 0.6 52.5± 0.6
Boosting [11] WRN-28-10 73.6± 0.3 86.0± 0.2 - -

MetaOptNet [22] ResNet-12 72.6± 0.7 84.3± 0.5 41.1± 0.6 55.5± 0.6
Associative-Alignment [1] ResNet-18 - - 45.8± 0.5 59.7± 0.6

DeepEMD [50] ResNet-12 - - 46.5± 0.8 63.2± 0.7
MABAS [20] ResNet-12 73.5± 0.9 85.5± 0.7 42.3± 0.8 57.6± 0.8

RFS-simple [45] ResNet-12 71.5± 0.8 86.0± 0.5 42.6± 0.7 59.1± 0.6
RFS-distill [45] ResNet-12 73.9± 0.8 86.9± 0.5 44.6± 0.7 60.9± 0.6

PAL (Ours) ResNet-12 77.1± 0.7 88.0± 0.5 47.2± 0.6 64.0± 0.6

structured semantic knowledge to model the relationship
between classes, and meta-learn a discriminative feature
space. However, our method still achieves better result on
the few-shot tasks. Furthermore, by comparing the perfor-
mance boost between mini-ImageNet and tieredImagenet,
and between CIFAR-FS and FC100, we notice that PAL’s
advantage could be better revealed on the dataset without
hierarchical structure (mini-ImageNet, CIFAR-FS), but can
still facilitate the few-shot tasks with hierarchical structure
(tieredImagenet and FC100).

4.3. Discussion

Partner-Assisted Learning involves supervised con-
trastive loss and cross-entropy loss during training. A clear
uni-direction from the Partner Encoder fP to the Main En-
coder fM is set by sampling features of fP as soft anchors
to assist the training of fM in addition to class labels. To
this end, we study the alternatives of PAL by (1) altering
the integration direction of the two objective types and (2)
changing the objective of Partner Encoder training. We also
studied (3) the impact of different alignment losses, which
serves as a comparison with knowledge distillation.
Integration of Objectives: PAL uses LSupCT to pretrain
fP to extract soft-anchors, which are then used to regularize
fM trained by LCE , i.e., LSupCT → LCE . We study the
variants by altering the integration direction and have
• Uni-direction LCE → LSupCT , LSupCT → LCE ,
• Mutual-learning LSupCT ↔ LCE : contemporarily train

two networks from scratch and use the model under LCE

for evaluation,
• Multi-task learning on one network: LSupCT +LCE ,

Table 3: Ablation study of mini-ImageNet on the performance by different
training scheme combining two objectives. Our method works best on the
few-shot classification.

Train Scheme 5-Way Few-shot Base1-Shot 5-Shots
LCE 63.76 81.17 80.90
LSupCT 62.29 76.32 n/a

LCE + LSupCT 67.53 82.14 83 .20
LSupCT ↔ LCE 65.21 81.53 80.13
LCE → LSupCT 66.54 81.83 80.39

LSupCT → LCE [ours] 69.37 84.40 82.98
∗ Single objective LSupCT don’t train a base classifier.

• Single-Objective training: LCE , LSupCT .
As shown in Table 3, we observe that the network trained

using PAL (LSupCT → LCE) generalizes best with a clear
margin on the few-shot classification on novel classes. On
the base classes test samples, PAL continues to achieve high
top-1 accuracy that is very close to the best score by multi-
task learning, model trained with (LSupCT +LCE), and PAL
clearly outperforms the rest methods. Meanwhile, com-
pared to the two single-objective methods, even though the
model trained by LSupCT is not as strong as the model
trained by LCE , it can still be used to regularize the training
under LCE and boost the performance.
Impact of Partner Encoder on Main Encoder is studied
by evaluating the performance of Main Encoder, i.e., accu-
racy of few-shot tasks and conventional classification task
on base test data. We select Partner Encoders trained by
LCE , LCT , and LSupCT for comparison. Both Lfeat and
Llogit are used for all three methods for fair comparison.
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As shown in Table 4, the alignment losses consistently
introduce performance improvements on few-shot tasks,
and our method (LSupCT → LCE) continues to achieve
the best performance on both few-shot and fully-supervised
tasks. SinceLCT does not utilize the class label information
during training, the extracted soft-anchors are not as dis-
criminative as the other two methods and the performance
improvement is limited. Meanwhile, if both the Main En-
coder and the Partner Encoder are trained under the LCE ,
the features are mainly learned w.r.t hard-anchors. There-
fore, the knowledge is similar for the two networks and the
performance improvement is limited. In contrast, super-
vised contrastive loss includes both the label information
and pair-wise similarity comparison among all features, so
that it could preserve more details to facilitate the training
of Main Encoder.
Alignment versus Knowledge Distillation: Although
teacher-student model with knowledge distillation can train
a good feature extractor for few-shot prototype classifica-
tion, a good teacher is a critical prerequisite for training the
student. As discussed in Section 3.3.1, the negative entropy
of teacher model is minimized if the teacher model is also
tuned during distillation. To this end, as shown in Table 5,
we quantitatively investigate the effectiveness of both Lfeat
and Llogit by applying various combinations. We also com-
pare with the performance under teacher-student setting and
set the KL-divergence as the logit-level loss.

By comparing Row1,2,4,5, using either Lfeat or Llogit can
regularize the training of fM , and clearly improve perfor-
mance on both few-shot and fully-supervised tasks. Us-
ing Lfeat only can even outperform the multi-task training
(Row3 in Table 3). Meanwhile, adding these two losses can
achieve the best scores on few-shot tasks. By comparing
Row2,3 or Row5,6, minimizing the negative entropy of out-
puts from fP has negative impact on the training of fM .
As the fP is pretrained to perform pair-wise comparison,
the distance between all features and all feature clusters has
already been modeled. Since fP is not trained to do clas-
sification, the details irrelevant to classification on base do-
main could be preserved. Therefore, minimizing the nega-
tive entropy of fP may make probability output of fP less
sensitive to the instance-level distances and then embed the
soft-anchors with more uncertainty. Even though the Part-
ner Encoder (trained under LSupCT ) is not as strong as
the teacher model (trained under LCE) in few-shot tasks,
it can provide meaningful soft-anchors to assist the training
of Main Encoder in our proposed PAL framework.
PAL versus Mutual Learning: Mutual learning trains
two peer networks jointly from scratch either under the
same task [52] or different tasks (Row4 in Table 3). The
alignment between probability distribution outputs is ap-
plied [52]. Even though the two networks are expected to
learn in different direction, the optimization direction is still

Table 4: Ablation study of mini-ImageNet on the Main Encoder perfor-
mance affected by different Partner Encoder.The Partner Encoder trained
by LSupCT benefits the training of Main Encoder most.

Loss of fP
5-Way Few Shot Base1-Shot 5-Shots

- 63.76± 0.62 81.17± 0.45 80.90
LCT → LCE 65.89± 0.67 80.84± 0.48 80.66
LCE → LCE 66.95± 0.65 81.54± 0.48 81.45
LSupCT → LCE 69.37± 0.64 84.40± 0.44 82.98

Table 5: Ablation study on mini-ImageNet on alignment losses. Both
feature-level and logit-level losses facilitates the training of Main Encoder
consistently.

Alignment losses 5-way few-shot Basefeature logit 1-shot 5-shots
- - 63.76± 0.62 81.17± 0.45 80.90
- Llogit 66.35± 0.63 81.32± 0.46 82.50
- LKL 64.76± 0.62 80.58± 0.47 81.98
Lfeat - 68.03± 0.63 83.38± 0.44 83.94
Lfeat Llogit 69.37± 0.64 84.40± 0.44 82 .98
Lfeat LKL 68.75± 0.62 82.83± 0.45 83.40

not clearly modeled in such framework. In contrast, our
method sets the features extracted by Partner Encoder as
soft-anchors to model the distance of positive pair and neg-
ative pair, and then train Main Encoder through alignment.

5. Conclusion
In this paper, we have proposed the Partner Assisted

Learning (PAL) to obtain an essential feature extractor for
few-shot classification. We pre-train the Partner Encoder
with supervised contrastive learning to obtain soft-anchors.
Then, we fix the partner model and impose the constraints
at either feature-level or logit-level to train the Main En-
coder from scratch while seeking for classification. With
the main model, both the classification accuracy on novel
classes (few-shot) and on base classes (large-scale) are
improved. Detailed ablation study is performed to com-
pare potential variants of PAL and our method outperforms
clearly all variants on few-shot tasks. Experiments on four
benchmarks demonstrate the effectiveness of our method.
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