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Abstract

This paper proposes to handle the practical problem
of learning a universal model for crowd counting across
scenes and datasets. We dissect that the crux of this prob-
lem is the catastrophic sensitivity of crowd counters to scale
shift, which is very common in the real world and caused
by factors such as different scene layouts and image reso-
lutions. Therefore it is difficult to train a universal model
that can be applied to various scenes. To address this prob-
lem, we propose scale alignment as a prime module for es-
tablishing a novel crowd counting framework. We derive
a closed-form solution to get the optimal image rescaling
factors for alignment by minimizing the distances between
their scale distributions. A novel neural network together
with a loss function based on an efficient sliced Wasser-
stein distance is also proposed for scale distribution es-
timation. Benefiting from the proposed method, we have
learned a universal model that generally works well on sev-
eral datasets where can even outperform state-of-the-art
models that are particularly fine-tuned for each dataset sig-
nificantly. Experiments also demonstrate the much better
generalizability of our model to unseen scenes.

1. Introduction
Recently, crowd counting has drawn great attention since

it has a variety of applications in the real world. Count-
ing people in the crowd is a challenging task due to se-
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Figure 1. (a) Scale distributions (in log-domain) of crowds in
four different datasets (before alignment). (b) Scale distributions
aligned by our method. Note that there exist significant scale shifts
within and across the datasets before alignment, while the distri-
butions can be well aligned through our method.

vere occlusions and large scale variations of objects caused
by factors such as different scene layouts, image resolu-
tions, and viewpoint changes. State-of-the-art crowd coun-
ters [55, 44, 28] usually pre-train deep neural networks
on large-scale classification datasets like ImageNet [9] and
then particularly fine-tune for each crowd counting dataset.
Despite the fact that significant progress has been made, ex-
isting methods usually follow the training-testing protocol
within a single dataset and suffer from significant cross-
dataset performance degeneration. On the one hand, the
accuracy drops a lot when models are applied to unseen
datasets (Table. 6). On the other hand, the model jointly
trained on multiple datasets is often inferior to models
specifically learned on each dataset (Table. 2), even though
much more training images are used. Such poor general-
izability of existing crowd counters has seriously restricted
their applications in the real scenario.

This paper proposes the practical problem of universal
cross-dataset crowd counting for real-world applications.
The goal is to effectively absorb knowledge from more
training data to improve the counting performance and re-
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duce deployment cost by obtaining a universal model that
can be applied to various scenes. Even though generaliza-
tion poses a challenge for any machine learning problem,
it is especially grievous for crowd counting in two critical
respects.

First of all, human annotation is highly labor-intensive
for crowd counting, where scenes could be over-crowded
with severe occlusions. According to [14], the entire anno-
tation process of UCF-QNRF involved 2,000 human-hours
to its completion merely for 1,535 images. Datasets re-
leased before that are even much smaller [13, 60]. Due to
such a small volume of some existing datasets, the learned
crowd counters may easily suffer from overfitting to some
extent [50]. Moreover, crowd density and scale distribu-
tions often vary substantially from scene to scene, and even
for different subareas within the same image due to factors
such as different scene layouts and perspective effects. For
example, the image resolution in UCF-QNRF [14] ranges
from 0.08 to 66.65 megapixels, where the number of per-
sons contained ranges from 49 to 12,865. The scale vari-
ation becomes severe when we take into account multiple
datasets together. As shown in Fig. 1(a), there exists a sig-
nificant scale shift between different datasets, and the aver-
age resolution of UCF-QNRF [14] is three times about that
of Shanghai A [60] ( Table. 1).

Because of such scale shift and data bias, it is difficult to
directly train a universal model using images from multiple
sources.

To further clarify this problem, we investigate how ro-
bust crowd counting is against scale shift quantitatively.
We test the performance of a state-of-the-art crowd counter
BL [28] concerning simple image rescaling. We rescale
the testing images of UCF-QNRF from 0.75 to 1.5 and dis-
sect how this can affect the models trained on images with
their original resolutions, i.e., scale is shifted from −25%
to +50%. The experimental results are catastrophic as can
be seen from Fig. 2. For instance, the MAE of BL [28] in-
creases more than 10 points from 88.7 to 100.3 and 103.5
when scales are shifted by −25% and +50%, respectively.
Moreover, there is still a loss of accuracy by 3 points even
if we slightly enlarge (+15% shift) images, albeit such a
slight amplification does not introduce significant distortion
visually or any information loss.

Inspired by the fact that facial analysis tasks such as
face recognition [43, 33] and expression estimation [3] of-
ten benefit from face alignment before analyzing the face
in unconstrained environments, we indicate a prime mod-
ule (termed scale alignment) before counting crowds in the
scene. Such a step aims to align scale distributions to fa-
cilitates learning a single model in various scenes. We first
calculate the scale distributions of all scenes and then nor-
malize them to a “standard” one, which is represented by
the Wasserstein barycenter [32] of all distributions. Scale
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Figure 2. Robustness of crowd counting against scale shift. The
curves show the results of BL [28] with respect to different scale
shifts of testing images on UCF-QNRF while trained on original
resolutions, e.g., +50% denotes that testing images are rescaled
by a factor of 1.5. Our proposed method SDA+BL is much more
robust than BL.

shift can be quantified as the sum of Wasserstein distances
from each scale distribution to the barycenter. Then, our tar-
get is to find the distribution transformation and the corre-
sponding image transformation to minimize the scale shift.
Particularly, the translation of distribution in the logarithmic
domain corresponds to image rescaling. On this basis, we
derive a closed-form solution to obtain the optimal trans-
lations and their corresponding rescaling factors. We can
easily handle intra-image scale variations at a finer level by
dividing the image into patches and seek the rescaling factor
for each patch. As shown in Fig. 1 (b), the scale shift be-
tween different datasets can be greatly reduced after scale
alignment. Moreover, we propose SDNet to predict scale
distributions of scenes end-to-end without the need to de-
tect each person. With noticing that scale distributions are
highly correlated with spatial positions due to perspective
effects, we propose a novel objective function based on a
joint distribution representation of scale and position and
sliced Wasserstein distance [17] to trained SDNet. To be
summarized, we make the following contributions:

• We propose to address the practical problem of uni-
versal cross-dataset crowd counting. We establish a
prime building block termed scale alignment for crowd
counting and demonstrate its necessity to this problem.

• We present a scale alignment method by translating
scale distributions to their Wasserstein barycenter and
derive a closed-form solution to get the optimal trans-
lations and corresponding image rescaling factors.

• We propose a novel neural network (SDNet) to directly
predict scale distributions for various scenes without
detecting each person. A novel loss function based on
a joint distribution representation of scale and position
and efficient sliced Wasserstein distance is also pro-
posed to optimize SDNet.
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Figure 3. The overall framework of our method. First, we divide images into non-overlapping patches and feed them into SDNet to predict
their scale distributions. Then, we perform scale distribution alignment and obtain the optimal rescaling factor for each patch. Finally, we
rescale patches and use them to learn the counting model.

2. Related Work

Cross-Scene Crowd Counting. The earlier works of crowd
counting are scene-specific so that the model learned for
a particular scene can only work in the same scene. The
major reason can be ascribed to that earlier benchmark
datasets like UCSD [5] and Mall [7] only consist of video
clips collected from one or two scenes. To meet the need
for crowd counting in real applications, several datasets
such as ShanghaiTech [60], UCF-QNRF [14] and JHU-
Crowd++ [40] are proposed, where the images are col-
lected from the Internet and consist of various scenes. The
emergence of such datasets has led crowd counting to a
much more challenging task and gained a lot of attention.
With the development of deep learning [53, 54, 6] and
such finely annotated datasets, there have made great pro-
gresses [46, 59, 60, 44, 36, 29, 47, 52] in this research area.
However, current methods usually do not take a strategy to
narrow the gaps between images and also do not generalize
well to unseen scenes.

Domain Adaptation for Crowd Counting. Recently, do-
main adaptation has gained increasing attention in crowd
counting for adapting the trained model to be used in an-
other domain [11, 18, 50, 10]. CODA [18] adopts an ad-
versarial training strategy to deal with density distribution
variations of source and target domain. Wang et al. [50]
build large-scale synthetic data and translate them to photo-
realistic images for crowd counting in real scenes. Han et
al. [10] introduce a semantic extractor to align features in
a semantic space. Wang et al. [51] propose to learn the
domain shift at the parameter-level and then transfer the
source model to the target model. However, there remain

significant limitations to our problem to deal with the scale
shift for conventional domain adaptation methods. Domain
adaptation usually does not leverage the target data to im-
prove performance on the source data and further obtain a
universal model.

Scale Handling for Crowd Counting. A variety of work
deal with large scale variations by multi-scale feature fu-
sion [25, 24, 29, 8, 39, 31, 24, 16, 2]. Some work pro-
poses to reconstruct the perspective map of the scene. PGC-
Net [57] fuses multi-scale features and PACNN [37] fuses
multi-scale densities according to the predicted perspective
map. [59] uses perspective maps to generate ground-truth
density maps. While many methods try to handle a wider
range of scales, our philosophy differs in that we try to align
the scales so that the problem can be easier to tackle. Some
work also considers to rescale the image. [1, 35, 34] first
classify image patches into different density levels, then
resize them with the fixed pre-defined ratio or feed them
into different CNN models according to the predicted den-
sity levels. L2SM [56] tries to predict rescaling factors for
image patches according to their density levels, then these
factors are used to resample feature maps to obtain the fi-
nal prediction. However, density does not directly indicate
scale, for example, density could be the same for scenes
with only of few of small or large objects. RPNet [58] es-
timates a perspective map and then warps images to make
people have similar scales in that image, but it does not han-
dle scale shifts between images.

3. Method
In this section, we first give the closed-form solution to

scale alignment and then describe a novel network structure
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Figure 4. The relationship between image rescaling and scale dis-
tribution translation in log-domain.
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Figure 5. Scale distribution alignment. (a) Scale distributions be-
fore alignment. (b) Calculation of the Wasserstein barycenter. (c)
Translating scale distributions to the barycenter. (d) Scale distri-
butions after alignment.

(SDNet) used to predict the scale distribution along with its
training loss. Fig. 3 visualizes the overall framework of our
method.

3.1. Scale Alignment for Crowd Counting

In this section, we establish a dividing-and-rescaling
strategy to adjust scales. Particularly, we first divide each
image into C × C non-overlapping patches, then seek the
optimal rescaling factor for each patch for alignment. In
this way, we can also handle intra-image scale variations in
addition to inter-image scale shift. The first task is to find
out the suitable scale distribution transformation and its cor-
responding image transformation. In particular, we observe
that once scale distribution is transformed into the logarith-
mic domain, image rescaling only induces a translation of
the distribution in that domain, as illustrated in Fig. 4.

Based on this property, we introduce the alignment pro-
cess, as illustrated in Fig. 5. First, we start by aligning
two scale distributions through translation (image rescal-

ing), then expand it to align multiple. The scale distribution
in logarithmic domain is defined as follows:

β =
1

M

M∑
m=1

δ(zm), (1)

whereM is the total number of people within the image, sm
is the scale of the m-th person, zm = log (sm) is the log-
arithmic scale, and δ(·) represents one-dimentional Dirac
delta function. Let’s denote two different scale distributions
as β and β̄, respectively. For aligning two scale distribu-
tions, we can translate one distribution towards another to
minimize the distance between them, the objective function
is defined as follows:

ε∗ = arg min
ε∈R

W 2
2 (βε, β̄), (2)

where βε(z) = β(z − ε) is the translated scale distribu-
tion, ε∗ is the optimal translation, exp (ε∗) is the corre-
sponding optimal rescaling factor, and W 2

2 (·, ·) represents
the 2-Wasserstein distance. We adopt Wasserstein distance
instead of usual distance such as p-norm distance or KL di-
vergence, because scale distributions have different support
sets and may not overlap. Wasserstein distance, represent-
ing the least cost of pushing one distribution towards an-
other, is just fit for this situation [32, 30, 21].

Calculating the exact 2-Wasserstein distance between
multi-dimensional distributions is costly, which requires
solving a linear programming problem [32]. However,
2-Wasserstein distance between one-dimensional distribu-
tions has a closed-form solution:

W 2
2 (u, v) =

∫ 1

0

(F−1
u (t)− F−1

v (t))2dt, (3)

where Fu is the cumulative distribution function (CDF), i.e.,
Fu(t) =

∫ t
−∞ Iu(x)dx, Iu(x) = du(x) is the probability

density function (PDF), and F−1
u is the corresponding in-

verse function. Based on the one-dimensional Wasserstein
distance, we can derive the optimal translation ε∗ as follows:

ε∗ = arg min
ε∈R

∫ 1

0

(F−1
β (t) + ε− F−1

β̄
(t))2dt

∇ε
∫ 1

0

(F−1
β (t) + ε− F−1

β̄
(t))2dt = 0

=⇒ ε∗ =

∫ 1

0

(F−1
β̄

(t)− F−1
β (t))dt

(4)

where βε(z) = β(z − ε) → F−1
βε (t) = F−1

β (t) + ε. With
the above formulation, we can align two arbitrary scale dis-
tributions with the optimal translation ε∗.

The strategy to align multiple scale distributions includes
two steps. First, we calculate the “mean” of all scale distri-
butions. Then, we translate each scale distribution to the
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Figure 6. The overall architecture of SDNet.

“mean” scale distribution using Eq. (4). The “mean” scale
distributions in the Wasserstein viewpoint actually is the
Wasserstein barycenter, which is defined as follows:

β̄ = arg min
β

1

N

N∑
n=1

W 2
2 (β, βn), (5)

whereN is the total number of scale distributions. The one-
dimensional Wasserstein barycenter also has a closed-form
solution. As proven in [4], it can be calculated as follows:

F−1
β̄

(t) =
1

N

N∑
n=1

F−1
βn

(t). (6)

Finally, the optimal translation of the nth scale distribu-
tion can be calculated as:

ε∗n =

∫ 1

0

(
1

N

N∑
n=1

F−1
βn

(t)− F−1
βn

(t))dt, (7)

and the corresponding optimal rescaling factor of the nth
image is equal to exp (ε∗n). Once we obtain the scale dis-
tribution of each patch, we can align all patches of multi-
ple datasets by the optimal rescaling factors. In the follow-
ing section, we propose a novel network structure to predict
scale distributions without detecting each person.

3.2. Scale Distribution Predictor (SDNet)

This section introduces how to predict the scale distri-
bution of a scene through a CNN model (SDNet). Since
the scale of a person is highly correlated with its position in
the image, we predict the spatial distribution and the scale
distribution at the same time, and use their joint distribu-
tion as the supervision. The ground-truth joint distribution
is defined as follows:

α =
1

M

M∑
m=1

δ(xm, ym, zm), (8)

where x is the abscissa, y is the ordinate, z is the logarithmic
scale, δ(·, ·, ·) is the three-dimensional Dirac delta function,
and M is the total number of points (people) in the image.

2 3 4 5
log s

P

Ground Truth
Prediction

(c) (d)

(a) (b)

Figure 7. Visualization of the outputs of SDNet. (a) Input image.
(b) Predicted scale map. (c) Predicted and the ground-truth scale
distribution’s CDF. (d) Predicted spatial map.

SDNet consists of a fully-convolutional-network (FCN)
with two independent output headers, as shown in Fig. 6.
These two headers share the same network structure but
have different weights, which are used to predicts the spatial
map and the scale map, respectively. We denote the output
spatial map as D (D has been normalized by its summa-
tion) and the output scale map as S. S,D ∈ RW×H have
the same spatial resolution, where W and H are the height
and width of each output. Then the predicted joint distribu-
tion is defined as follows:

αpre =

Q∑
q=1

Dxq,yqδ(d · xq, d · yq, Sxq,yq ), (9)

where Q = W × H is the total number of output pixels,
and xq, yq are the shared abscissa and the ordinate of the
two output (the scale map or the spatial map) respectively.
Dxq,yq is the value of the qth pixel in D, and Sxq,yq is the
value of qth pixel in S. Since FCN is adopted as the basic
framework, the spatial correspondence between the input
image and the outputs is retained. Thus, xq and yq can be
mapped back to the input spatial coordinate by multiplying
the downsample ratio d of SDNet.

As can be seen, the predicted joint distribution has fixed
spatial coordinates (determined by the shape of the output),
but has a learnable scale coordinate which is predicted by
SDNet. We can easily obtain the predicted spatial distri-
bution and the scale distribution by marginalizing the pre-
dicted joint distribution. The spatial distribution can be cal-
culated as

∑Q
q=1Dxq,yqδ(d · xq, d · yq), while the predicted

scale distribution is derived as follows:

βpre =

Q∑
q=1

Dxq,yqδ(Sxq,yq ). (10)
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We visualize the outputs of SDNet in Fig. 7. In the fol-
lowing section, we introduce the objective function used to
train SDNet, which is based on sliced Wasserstein distance.

3.3. The Training Objective

The ground-truth joint distribution α and the predicted
joint distribution αpre have different support sets. There-
fore, Wasserstein distance is a preferable solution to mea-
sure their divergence. We can design a objective func-
tion to minimize 2-Wasserstein distance between them, i.e.,
L = W 2

2 (α, αpre). However, as mentioned in Sec. 3.1,
calculating the exact 2-Wasserstein distance between multi-
dimensional distributions is costly. Therefore we adopt
sliced 2-Wasserstein distance [17] as an approximation. The
loss function is defined as follows:

L = SW 2
2 (α, αpre), (11)

where SW 2
2 (·, ·) indicates sliced 2-Wasserstein distance.

Sliced Wasserstein distance is proposed to efficiently ap-
proximate Wasserstein distance between multi-dimensional
distributions, which is built upon Wasserstein distance’s
one-dimensional closed-form solution (Eq. (3)). Specifi-
cally, It first obtains a family of one-dimensional marginal
distributions of multi-dimensional distributions through
random transform, then calculates the integration of one-
dimensional Wasserstein distances:

SW 2
2 (u, v) =

∫
Sd−1

W 2
2 (RIu(·, θ),RIv(·, θ))dθ, (12)

where Sd−1 ∈ Rd represents the d-dimentional unit sphere,
W 2

2 (RIu(·, θ),RIv(·, θ)) can be solved by Eq. (3), and
R represents the d-dimentional random transform, which
maps a function I to the set of its integrals over the hy-
droplanes of Rd as follows:

RI(h, θ) =

∫
Rd
I(x)δ(h− 〈x, θ〉)dx, (13)

where δ(·) represent the one-dimentional Dirac delta func-
tion, 〈·, ·〉 represents the Euclidean inner-product, and θ ∈
Sd−1. In practice, the integration over the unit sphere Sd−1

in Eq. (12) can be approximated by Monte Carlo sampling,
which draws samples {θl}Ll=1 from the uniform distribution
on Sd−1, where L is the total sample number. Finally, the
integration is replaced by a finite-sample average:

SW 2
2 (u, v) ≈ 1

L

L∑
l=1

W 2
2 (RIu(·, θl).RIv(·, θl)). (14)

Specifically, if θ = (0, 0, 1)t, the sliced loss is equal to
W 2

2 (β, βpre), which is the 2-Wasserstein distance between
the ground-truth and predicted scale distributions.

Table 1. Statistics of training datasets. Note that there exist signif-
icant dataset biases.

Dataset Images Avg. Resolution Total Count Avg. Count
UCF-QNRF 1201 2897x2006 1,006,800 838
Shanghai A 300 872x598 162,350 541

JHU-Crowd++ 2272 1450x919 844,387 372
UCF CC 50 50 902X654 63,969 1279

4. Experiments
In this section, we first introduce the public crowd count-

ing benchmarks used in our experiments. Second, the evalu-
ation metrics and the implementation details of our method
are described. Third, we compare our methods with base-
line and state-of-the-art methods. Finally, we conduct ex-
tensive experiments to study the effect of each component.

Datasets. Our experiments are conducted on four
widely-used counting benchmark datasets, i.e., UCF-
QNRF [14], Shanghai A [60], JHU-Crowd++ [40], and
UCF CC 50 [13]. We summarize basic information of these
datasets (training data)in Table. 1. Note that these datasets
consist of various free-view images in all kinds of environ-
ments on which our proposed method is especially focused.

Implement Details. For the crowd counting problem,
the scale of a person can be represented by the size of
its head, and some datasets (e.g., JHU-Crowd++[40]) pro-
vide bounding-box annotations to extract such information.
Manually annotating bounding-box is costly, and in most
cases, the dataset only provides point annotations. Never-
theless, we can estimate scales from the geometrical dis-
tribution of labeled points [60] roughly. We could also
leverage object detectors to obtain more accurate scales in
scenes without severe occlusions [22]. To keep it simple,
we only leverage the point annotations to estimate scales in
this work.

Scale Distribution Alignment (SDA) we proposed is a
pre-processing technology that can be plugin in front of any
crowd counting models. In experiments, We evaluate SDA
with four state-of-art crowd counting models, which are
CSRNET [20], BL [28], DM [49], and M-SFANET [42].
We use the same hyper-parameters given in the original pa-
pers and implement them with their official open-source
code [27, 19, 41, 48].

The network structure of SDNet is shown in Fig. 6. As
can be seen, SDNet is a fully convolutional network that
consists of a single backbone and two regression headers.
Specifically, we adopt VGG19 [38] truncated before the
last pooling layer as the backbone, and three-layer convo-
lutional regressors as the headers, i.e., Conv512×256×3×3 +
Conv256×128×3×3 + Conv128×1×3×3 (Input Channels ×
Output Channels × Kernel Height × Kernel Width). SD-
Net’s downsample ratio d is 16. We optimize SDNet by
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Table 2. Counting performance comparisons with baseline meth-
ods. (S) indicates that the model is trained on each dataset sepa-
rately. (M) indicates that the model is jointly trained on multiple
datasets.

UCF-QNRF Shanghai A JHU-Crowd++ UCF CC 50
Method MAE MSE MAE MSE MAE MSE MAE MSE
CSRNET(S) [20] 110.6 190.1 68.2 115.0 85.9 309.2 266.1 397.5
CSRNET(M) 158.0 163.4 76.6 119.5 91.1 276.3 323.7 401.9
SDA+CSRNET(M) 96.3 155.7 58.4 97.9 65.1 269.3 183.4 272.1
BL(S) [28] 88.7 154.8 62.8 101.8 67.1 268.9 229.3 308.2
BL(M) 97.3 168.5 66.1 108.7 66.7 270.4 231.1 313.2
SDA+BL(M) 79.2 134.8 53.6 84.4 58.3 254.5 169.4 243.6
M-SFANET(S) [42] 85.6 151.2 59.7 95.7 65.5 257.4 162.3 276.8
M-SFANET(M) 111.8 186.6 65.1 119.7 61.4 256.9 233.6 385.1
SDA+M-SFANET(M) 79.5 140.7 52.9 87.3 57.4 251.6 159.1 239.4
DM(S) [49] 85.6 148.3 59.7 95.7 66.0 261.4 211.0 291.5
DM(M) 102.6 171.4 63.3 113.5 64.4 229.5 263.9 417.5
SDA+DM(M) 80.7 146.3 55.0 92.7 59.3 248.9 197.5 264.1

Table 3. Counting performance comparisons with state-of-the-art
methods. RED indicates the best performance and BLUE indi-
cates the second-best.

UCF-QNRF Shanghai A JHU-Crowd++ UCF CC 50
Method MAE MSE MAE MSE MAE MSE MAE MSE
L2SM [56] 104.7 173.6 64.2 98.4 - - 188.4 315.3
S-DCNET [55] 104.4 176.1 58.3 95.0 277 426 204.2 301.3
AMSNET [12] 101.8 163.2 56.7 93.4 - - 208.4 297.3
AMRNET [26] 86.6 152.2 61.59 98.36 - - 184.0 265.8
LIBRANET [23] 88.1 143.7 55.9 97.1 - - 181.2 262.2
ASNET [15] 91.6 159.7 57.8 90.1 - - 174.8 251.6
RPNET [58] - - 61.2 96.9 - - - -
MNA [45] 85.8 150.6 61.9 99.6 67.7 258.5 - -
ADSCNET [2] 71.3 132.5 55.4 97.7 - - 198.4 267.3
CSRNET [20] 110.6 190.1 68.2 115.0 85.9 309.2 266.1 397.5
BL [28] 88.7 154.8 62.8 101.8 67.1 268.9 229.3 308.2
M-SFANET [42] 85.6 151.2 59.7 95.7 65.5 257.4 162.3 276.8
DM [49] 85.6 148.3 59.7 95.7 66.0 261.4 211.0 291.5
SDA+CSRNET 96.3 155.7 58.4 97.9 65.1 269.3 183.4 272.1
SDA+BL 79.2 134.8 53.6 84.4 58.3 254.5 169.4 243.6
SDA+M-SFANET 79.5 140.7 52.9 87.3 57.4 251.6 159.1 239.4
SDA+DM 80.7 146.3 55.0 92.7 59.3 248.9 197.5 264.1

Adam with the initial learning rate 10−5. Random horizon-
tal flip and random resizing are used to augment the training
data. We setC = 2 andL = 5 in our experiments. SDNet is
trained on the original images, and the general crowd count-
ing model is trained on the aligned images. We manually
check the training data and test data during multi-dataset
training to ensure that there is no data leakage. The train-
ing data is aligned according to the ground-truth scale dis-
tributions and the Wasserstein barycenter calculated from
them, while the testing data is aligned according to the scale
distributions predicted by SDNet and the same Wasserstein
barycenter used in the training phase.

Comparison with Baselines. We conduct experiments
with four state-of-art methods to illustrate the necessity of
scale alignment before training on multiple datasets. As
shown in Table. 2, the performance of the model trained on
multiple datasets before scale alignment is worse than that
of the same model trained on each dataset separately, even

Table 4. Upper-bound counting performance of scale alignment.
ALIGNED indicates the model is trained on images aligned ac-
cording to the ground-truth scale distribution.

UCF-QNRF Shanghai A JHU-Crowd++ UCF CC 50
Method MAE MSE MAE MSE MAE MSE MAE MSE
BL [28] 88.7 154.8 62.8 101.8 75.0 299.9 229.3 308.2
BL+ALIGNED 66.2 112.3 42.3 72.9 48.5 250.6 114.7 153.4
Improvement 22.5 42.5 20.5 28.9 26.5 49.3 114.6 154.8

Table 5. Ablation study. (S) indicates that the model is trained
on each dataset separately. (M) indicates that the model is jointly
trained on multiple dataset.

UCF-QNRF Shanghai A JHU-Crowd++ UCF CC 50
Method MAE MSE MAE MSE MAE MSE MAE MSE
BL(S) [28] 88.7 154.8 62.8 101.8 75.0 299.9 229.3 308.2
SDA+BL(S) 83.3 143.1 58.4 95.7 62.6 264.1 186.3 261.5
SDA+BL(M) 79.2 134.8 53.6 84.4 58.3 254.5 169.4 243.6

if more data is used for training. It is because that a single
counting model cannot handle such significant scale vari-
ations of multiple datasets (as shown in Fig. 1 (a)), which
makes the model under-fitting. In stark contrast, models
trained on multiple aligned datasets is not only better than
the model trained on multiple datasets before scale align-
ment, but also better than the model trained on each dataset
specifically.

Comparison with State of The Arts. We extensively
compare our method with other state-of-the-art methods on
four benchmark datasets. Quantitative results are illustrated
in Table. 3, and the highlights can be summarized as fol-
lows: 1) Our method achieves the best counting perfor-
mance on JHU-CROWD++, Shanghai A and UCF CC 50.
Moreover, all predictions are given by a universal model
rather than different models specifically trained on each
dataset. 2) Our method consistently improves all baseline
methods. It is proved that our method can be an effective
plug-in to the existing methods.

Ablation Studies. The experiment shown in Table. 4 ex-
plores the upper-bound performance of scale alignment. In-
stead of aligning images according to the scale distribution
βpre predicted by SDNet, we directly align images accord-
ing to the ground-truth scale distribution β, which avoids
the error introduced in the prediction of distribution. As
can be seen, BL+ALIGNED has made incredible improve-
ments over the baseline. MAEs are reduced by around 20-
100 points on the four datasets.

The relative contributions of SDA and multi-dataset
training are shown in Table. 5. From the second row of
the table we can see that SDA can improve the baseline
method trained each dataset separately. It is because that our
method can greatly decrease the scale variations. The third
row shows that the performance can be further improved if
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GT Count: 582 GT Count: 2154 GT Count: 181 GT Count: 712

BL: 613.9 BL: 2248.9 BL: 234.7 BL: 742.3

SDA+BL: 560.9 SDA+BL: 2186.3 SDA+BL: 175.3 SDA+BL: 706.8
scaling factor: 2.68 scaling factor: 3.19 scaling factor: 1.52 scaling factor: 1.60 scaling factor: 0.36 scaling factor: 0.40 scaling factor: 1.66 scaling factor: 1.50

scaling factor: 1.14 scaling factor: 1.27 scaling factor: 0.56 scaling factor: 0.86 scaling factor: 0.52 scaling factor: 0.24 scaling factor: 1.13 scaling factor: 1.12

Figure 8. Density maps estimated by BL (the second row) and our SDA+BL (the third row). We also present the scaling factors predicted
by our method for comparison across scenes. Please note how scale alignment affects on the density maps.

Table 6. Generalization to unseen datasets. The model is trained
on UCF-QNRF while tested on the other datasets.

UCF-QNRF→ Shanghai A JHU-Crowd++ UCF CC 50
Method MAE MSE MAE MSE MAE MSE
L2SM [56] 73.4 119.4 - - - -
S-DCNET [55] 61.8 102.8 - - - -
CSRNET [20] 75.3 138.7 91.4 317.0 389.8 659.6
SDA+CSRNET 67.3 107.4 80.8 290.2 296.5 426.1
Improvement 8.0 31.3 10.6 26.8 93.3 233.5
BL [28] 69.8 123.8 81.2 303.8 309.6 537.1
SDA+BL 60.5 98.3 76.9 287.4 244.7 354.2
Improvement 9.3 25.5 4.3 16.4 64.9 182.9
M-SFANET [42] 70.1 128.1 84.7 298.2 397.5 666.6
SDA+M-SFANET 62.5 103.4 79.1 283.0 314.9 456.9
Improvement 7.6 24.7 5.6 15.2 82.6 209.7
DM [49] 69.3 120.6 85.2 303.4 317.8 550.2
SDA+DM 59.2 97.4 79.8 289.7 261.6 384.3
Improvement 10.1 23.2 5.4 13.7 56.2 165.9

the model is trained on multiple aligned datasets. It proves
that CNN based counting methods can benefit from the in-
crease of data if they are properly aligned.

Generalization to Unseen Datasets. To further illustrate
that SDA can help the counting models better generalize
to unseen scenes, we perform the cross-dataset evaluation.
In this experiment, both SDNet and counting models are
trained on one dataset (UCF-QNRF) while evaluated on
others. The experimental result is shown in Table. 6. As

can be seen, Our method consistently improves baselines
as well as achieves the best cross-dataset evaluation perfor-
mance.

Visualizations. We visualize the estimated density maps
of the models trained with BL on the original images and
SDA+BL trained on the aligned images respectively in
Fig. 8. It can be seen that our SDA+BL is much more ro-
bust to the background like trees and gives more accurate
and sharper estimates in congested areas. Moreover, our
method successfully predicts large-scale people, which the
baseline model cannot predict.

5. Conclusion
In this work, we propose and address a practical prob-

lem of learning a universal model for counting crowd across
scenes and datasets. We dissect that the crux of this problem
is the sensitivity for crowd counting to scale shift. Then we
propose a simple yet effective scale alignment method in
which a closed-form solution is derived to obtain the op-
timal image rescaling factor. SDNet is further proposed
to predict scale distributions. We hope that the proposed
method can enlighten the study on adaptability and gener-
alizability of crowd counting and look forward to more re-
search efforts in this direction.
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