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Abstract

Weakly supervised object localization (WSOL) aims to
localize objects with only image-level labels, which has bet-
ter scalability and practicability than fully supervised meth-
ods in the actual deployment. However, with only image-
level labels, learning object classification models tends to
activate object parts and ignore the whole object, while ex-
panding object parts into the whole object may deteriorate
classification performance. To alleviate this problem, we
propose foreground activation maps (FAM), whose aim is
to optimize object localization and classification jointly via
an object-aware attention module and a part-aware atten-
tion module in a unified model, where the two tasks can
complement and enhance each other. To the best of our
knowledge, this is the first work that can achieve remark-
able performance for both tasks by optimizing them jointly
via FAM for WSOL. Besides, the designed two modules
can effectively highlight foreground objects for localization
and discover discriminative parts for classification. Ex-
tensive experiments with four backbones on two standard
benchmarks demonstrate that our FAM performs favorably
against state-of-the-art WSOL methods.

1. Introduction

Object localization aims to recognize objects and iden-
tify their locations in the given images [38]. Because of its
broad applications such as autonomous driving [4, 5], face
recognition [52, 30], and person re-identification [57, 28,
21], object localization has attracted increasing attention in
the research community. However, most existing methods
tackle this task in a fully supervised setting [13, 12, 40] by
using precise bounding box annotations. Thus, their scal-
ability and practicability are limited in real-world applica-
tion scenarios because it is expensive and time-consuming
to gather massive labeled fine-grained data.

To overcome the above limitations, several recent meth-
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Figure 1. The motivation of our method. In CAM-based methods,
object localization is learned as a by-product of the classification,
and the model has to rely on class-specific image regions for local-
ization. In this situation, optimizing object classification tends to
activate object parts instead of the whole object, while expanding
object parts into the whole object could deteriorate classification
performance. Unlike the CAM, our FAM aims to discover fore-
ground maps of all classes for localization and select discrimina-
tive parts for classification. Meanwhile, the two tasks can comple-
ment and enhance each other in a collaborative way.

ods have been proposed by using weakly supervised learn-
ing models [63, 7, 2, 41, 43] that require only image-level
category labels. However, without box-level annotations,
it is challenging to localize objects accurately [60]. Re-
cently, class activation maps (CAM) based methods [63, 41]
have been proposed to handle this challenge. These meth-
ods use a global average pooling layer and a final fully con-
nected layer (weights of the classifier) to obtain localization
maps, which identify discriminative regions for specific ob-
ject classes [63]. Thus, they perform object localization by
using class-specific image regions. In other words, object
localization is learned as a by-product of the classification,
as shown in Figure 1. Unfortunately, this idea tends to be
biased on the most discriminative object part to increase
the classification accuracy while ignoring less discrimina-
tive object regions, leading to decreased localization accu-
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Figure 2. Examples of birds on the CUB-200-2011 dataset. Ob-
ject localization is to highlight the whole foreground object, and
object classification is to select the most discriminative parts.
racy. In pursuit of highlighting the whole object, several
techniques have been proposed, which can be mainly cate-
gorized into two categories. The first category [51, 61, 26]
aims to expand the range of the most discriminative part by
exploring context information. However, since there may be
large differences among object parts, it is hard to expand the
range of the most discriminative part to other object parts,
resulting in incomplete object localization. The other cat-
egory [7, 43, 60, 22, 50] is to erase the most discrimina-
tive part and then force the model to discover other relevant
parts. Although these approaches can expand class activa-
tion maps, they often highlight background regions [54].
To the best of our knowledge, most previous methods
utilize the CAM for object classification and localization.
Here, object classification is to select the most discrimina-
tive object parts, and object localization is to highlight the
whole foreground object [41, 47, 23], as shown in Figure 2.
However, the CAM achieves object localization as a by-
product of object classification, and the model has to rely on
class-specific image regions for object localization. In this
situation, optimizing object classification tends to activate
object parts instead of the whole object, while expanding
object parts into the whole object could deteriorate classi-
fication performance. To alleviate this problem, we argue
that it is better to use foreground activation maps (FAM),
which are not class-specific and aim to discover foreground
maps of all classes from the background for object localiza-
tion, as illustrated in Figure 1. The FAM proposes a new
perspective for WSOL by optimizing object localization
and classification jointly in a unified model, where the two
tasks can complement and enhance each other. (1) Object
localization can help object classification. Given a dataset,
a well-learned object localization model is designed to iden-
tify foreground and background regions. As shown in Fig-
ure 2, the CUB-200-2011 dataset includes 200 species of
birds, which are foreground objects with similar foreground
patterns and are different from background regions. As a
result, the localization model of FAM can highlight fore-
ground regions. Guided by the learned foreground regions,
the classification model can directly choose the most dis-
criminative parts without background interference [24, 31].

(2) Object classification can help object localization. The
classifier of FAM is to find the discriminative parts for each
class. As shown in Figure 2, different kinds of birds have
different discriminative regions [63]. With the guidance of
the well-learned classifier, the localization model of FAM
is to cover all the discriminative parts. Therefore, the FAM
is designed to distinguish foreground regions for localiza-
tion and select the discriminative parts for classification to
achieve remarkable performance for both tasks.

Motivated by the above discussions, we propose fore-
ground activation maps (FAM) to optimize object local-
ization and classification jointly in a unified model via an
object-aware attention module and a part-aware attention
module. Here, the first module is designed to distinguish
foreground from background for localization, and the sec-
ond module is proposed to exploit discriminative object
parts for classification. In the object-aware attention mod-
ule, we design a foreground memory mechanism to iden-
tify foreground and background regions in a given dataset,
which can deal with large appearance variations of dif-
ferent objects. In specific, we store multiple foreground
appearance templates as memory keys, and save multiple
foreground classifiers as memory values. Each foreground
classifier is designed to determine the likelihood that one
specific appearance pattern belongs to a foreground object.
Given the feature map of an input image, we can read from
the memory and get a set of pixel-wise classifiers by treat-
ing each pixel as a query, then a foreground map is obtained
based on the pixel-wise classifiers. And based on the fact
that foreground object usually occupies a small portion of
the image, we add a sparsity constrain on the foreground
map, which serves as a prior to guide the learning of the
memory. Together with the subsequent classification mod-
ule, the memory keys and values can be learned through
the whole dataset during training. In the part-aware atten-
tion module, we design a part discovery module to generate
several part-aware activation maps. Each part-aware acti-
vation map denotes the spatial distribution of one specific
part; that is to say, the part-aware activation map has high
response values at the pixels belonging to that part. The
part-aware features are produced by the attention weighted
pooling from the feature map. Because different parts may
have different importance for object classification, we ex-
ploit part diversity and part importance to constrain the part-
aware feature learning in the proposed part discovery mod-
ule. By jointly optimizing the object-aware and part-aware
attention modules, we can achieve robust object localization
and classification simultaneously.

The major contributions of this work can be summarized
as follows. (1) We propose foreground activation maps
(FAM) for weakly supervised object localization (WSOL)
to optimize object localization and classification jointly via
an object-aware attention module and a part-aware attention
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module in a unified model, where the two tasks can comple-
ment and enhance each other. To the best of our knowledge,
this is the first work that can achieve remarkable perfor-
mance for both tasks by optimizing them jointly via FAM
for WSOL. (2) The designed two modules (object-aware
and part-aware attention modules) can effectively highlight
foreground objects for localization and discover discrimi-
native parts for classification. (3) Extensive experimental
results with four different backbones on two challenging
benchmarks show that our FAM performs favorably against
state-of-the-art WSOL methods.

2. Related Work

Weakly Supervised Object Localization (WSOL). Given
images only with class labels, the WSOL task is to pre-
dict both object positions and categories [58, 6]. In [38],
it is the first end-to-end approach for weakly supervised
object localization. However, the localization is limited
to a point rather than the full extent of the object. Later,
Zhou et al. [63] generate Class Activation Maps (CAM)
with a global average pooling layer and a final fully con-
nected layer (weights of the classifier) to obtain localization
maps. To remove the reliance on specific network architec-
tures, Gradient-weighted Class Activation Mapping (Grad-
CAM) [41] is proposed. While simple and effective, the
CAM-based methods tend to be biased on the most dis-
criminative part. To mitigate this issue, several methods
explore object context information to expand the range of
the most discriminative part, and the context information
can come from different spatial positions [51, 26] or dif-
ferent layers [61]. For example, Wei et al. [S1] employ
a dilated convolution to consider spatial contexts at vari-
ous ratios. Several other methods adopt an erasing strat-
egy [43, 22, 49, 50, 27, 18], whose aim is to erase the most
discriminative part so that the model needs to seek the rel-
evant object parts from what remains. In [43], the model
is designed to hide grid-like patches during training ran-
domly. To erase the most discriminative part effectively,
Zhang et al. [60] learn parallel adversarial classifiers to find
complementary parts for target objects, and more sophisti-
cated erasing strategies are designed in later works [7, 34].
Besides from the above works, some other approaches
explore divergent activations [53], class-agnostic localiza-
tion maps [58], geometry constrained network [32] and
inter-image information [62] to improve localization perfor-
mance. Most existing methods achieve object localization
as a by-product of object classification. Unlike these meth-
ods, we propose foreground activation maps to achieve ob-
jectlocalization and classification in a collaborative manner.
Memory Networks. Memory networks refer to the archi-
tectures that have access to an addressable memory repos-
itory for prediction [14, 35]. Different from LSTM [17]
and GRU [8], which involve an internal memory implic-

itly updated in a recurrent process, memory networks ex-
plore an explicit memory that can be read or written with
an addressing procedure [11, 14, 25, 45, 48]. The address-
ing methods can be classified into content-based address-
ing and location-based addressing. The content-based ad-
dressing [15, 35, 36] measures the similarity between the
query and memory keys to find relevant memory cells. The
localization-based addressing [14], on the other hand, en-
ables a simple operation on the query to find out the ad-
dresses, regardless of the content of memory keys. Graves
et al. [14] first propose Neural Turing Machine (NTM),
which can interact with a memory matrix using selective
read and write operations. Later, the work of [35, 59] pro-
poses a key-value memory to store information in the form
of key-value pairs, which can directly learn the correlation
between the input and underlying concepts in memory. To
make the read/write operations scalable with a large amount
of memory, Chandar et al. [3] propose to organize memory
hierarchically and Rae et al. [39] make read and write op-
erations sparse to reduce the cost of operations. Thanks to
the addressing design, memory networks typically update
query-related memory cells instead of the whole memory.
This happens to help to learn the training data structure,
such as some common semantic representations [20, 9] or
visual patterns [55, 37] sharing among words or images.
For weakly supervised object localization, this is the first
work to explore multiple foreground patterns in a given
dataset with a memory network, which helps to deal with
large appearance variations of different objects. As a result,
the FAM can better identify foreground and background re-
gions for object localization and classification jointly.

3. Approach

In WSOL, given an image I, let X € RF*Wx*C denote
the feature map extracted from a backbone network. where
H, W, and C denote the height, width and channel num-
ber of the feature map, respectively. During training, each
image is associated with a ground truth label y € R¥, and
L refers to the number of categories. During testing, given
an image, the outputs are a predicted category label ¢ and
the localized object bounding box B = (x*,y*, h*, w*),
where (z*,y*) denotes the center coordinate, and (h*, w™)
denotes the height and width.

As illustrated in Figure 3, the FAM consists of two mod-
ules including an object-aware attention module and a part-
aware attention module. The first module is designed to dis-
tinguish foreground from background for localization, and
the second module is proposed to exploit discriminative ob-
ject parts for classification. The details are as follows.

3.1. Object-aware Attention Module

Given a specific dataset with several object categories,
foreground objects have similar foreground patterns, which
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Figure 3. The architecture of our FAM including an object-aware attention module and a part-aware attention module. By optimizing the
object-aware attention module and the part-aware attention module jointly, the FAM can achieve robust object localization and classification
in a collaborative manner. In this figure, “1 x 1 Conv” denotes a convolutional layer with a 1 x 1 kernel size and “FC” denotes the fully
connected layer. Besides, “GAP” represents a global average pooling layer [29]. For more details, please refer to the paper.

are different from the background and can be memorized to
identify foreground and background regions by using a fore-
ground memory mechanism. Generally, in a given dataset,
different objects may have large appearance variations.
Therefore, we need to generate appearance-adaptive fore-
ground classifiers with dynamic weights to handle appear-
ance variations. In specific, we design N keys {ky }2_; and
values {v,,}2_; in the memory. Each key denotes a spe-
cific appearance template, and each value represents a key-
related foreground classifier. Given a feature map, we first
read from the memory and get a set of pixel-related fore-
ground classifiers. These foreground classifiers are adaptive
to appearance variations and can be used to generate a fore-
ground map. In practice, the memory keys are embedded
as C/16 dimensional vectors to improve the efficiency of
memory reading, and values are embedded as 1 X 1 convo-
lutional kernels whose dimension is C.

To read from the memory, we feed the feature map
X € REXWXC into an encoder to acquire a set of queries
Q € RHXWXC/16  The set contains H x W queries,
each of which is represented as g;; € RS/!6, where
i=12,...,Handj = 1,2,...,W. The similarity s7;
between each query g;, ; and the n-th key ky, is given as

.
i _ Gijkn

A Ay no= — 1
i,J Zgzlﬂ;""j ﬂz,g /—0/16 1)

where n = 1,2,..., N and T refers to the transpose oper-
ation. With the similarity score s;';, we can get the pixel-
wise foreground classifier w; ; € RC for the query qi,j
adaptively by blending memory values {v,, }2_; as

N
wi ;=Y st vn. @
n=1

Thus, the generated foreground classifiers are adaptive
to appearance variations. Given the feature map X €

REXWXC 4, € RC indicates the pixel feature located at

(4,7) on the feature map. To generate the foreground map
M e REXW the i-th row and j-th column of M is first
calculated by

M;; = w] ; @i 5. (3)

The overall foreground map M is obtained by performing
the same operation for all pixels on the feature map, and
then is normalized by a sigmoid function.

Based on the fact that the foreground object usually oc-
cupies a small portion of the image, we add a sparsity con-
strain on the foreground map for background suppression,
which serves as a prior to guide the learning of the memory.

H W
Lopa = 75 > D M. @

=1 j=1

Together with the subsequent classification module, as de-
fined in (10), even without box-level annotations, we can
learn foreground maps that highlight nearly the entire ob-
ject. The intuition behind this idea is simple; the classifi-
cation loss requires that object-related regions are activated
to classify the image correctly, but the sparsity loss requires
the foreground map to focus on as few pixels as possible.
As aresult, these two loss terms together can suppress back-
ground regions and highlight foreground regions only.

3.2. Part-aware Attention Module

While the object-aware attention module can effectively
highlight foreground objects for localization, the part-aware
attention module is designed to exploit discriminative ob-
ject parts for classification. We first multiply the foreground
map M € R¥*W and the feature map X € RHTXWXC o
generate the foreground feature map X € RE*WxC,

Xije =Xijc- M, )
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Figure 4. Visualization comparison with CAM [63]. The predicted bounding boxes are in yellow and the ground truth boxes are in green.
Our method can highlight nearly the entire object and produce precise bounding boxes for images on CUB-200-2011 and ILSVRC 2016.

where ¢, j, and c¢ index the height, width and channel num-
ber of the foreground feature map.

Then, based on the foreground feature map X, we gen-
erate part-aware activation maps A € R¥XW>K o mine
K object parts through a part discovery module f(-|6), pa-
rameterized by 6. To discover object parts in a simple and
effective way, this module is implemented as a convolution
layer followed by a sigmoid function to change the channel
size of the foreground feature map to K.

A= f(X|0). (6)

where A = {AF}K | denotes a set of part-aware activa-
tion maps, and the A* € R7*W corresponds to the k-th
part-aware activation map. Each part-aware activation map
denotes the spatial distribution of one specific part. That
is to say, the part-aware activation map has high response
values at the pixels belonging to that part. Based on the
feature map X, we generate a set of part-aware features
P = {p*}X | by the attention weighted pooling, and the
k-th part-aware feature p* = [p},p§, ..., pk]is given as

;AW
pE = T Z Z Xije - AYS, @)

i=1j=1

wherec=1,2,...,C.

To discover different object parts with only image-level
labels, we impose a diversity loss [33, 56] to expand the
discrepancy among part-aware features {p"’}kK= , as

L,:¥§; f: (", p™)
d T K (K = 1)

2 2 Tl

®)

Because different parts have different importance for object
classification, we feed the part-aware features into an im-
portance prediction module g(:|¢), parameterized by ¢, to
evaluate their importance and generate importance weights
{t*}X . The importance prediction module g(-|¢) is a lin-
ear layer followed by a softmax operation to output proba-
bilities between 0 and 1. The final object feature 0 € R is

obtained by a weighted sum of the part-aware features.
K
th = g(p*l¢), o= Ztk -p*. )
k=1

We obtain the category prediction § = h(o|o) through a
classification module h(:|o), parameterized by o and im-
plemented as a fully connected layer. Finally, the class-
balanced cross entropy loss is employed between the cate-
gory prediction and the ground truth label for classification.

L
Lea(y,§) = = > v - logij. (10)
=1

Where L denotes the number of categories, and ¢; and y;
are the [-th element of ¢y and vy, respectively.

3.3. Joint Training

By optimizing the object-aware and part-aware attention
modules jointly, the FAM can achieve robust object local-
ization and classification in a collaborative manner. For
WSOL, with only image-level category labels, our FAM is
trained by minimizing the overall objective as follows

Lfinal = Lcla + )\spaLspa + Adideiva (11)

where Agp, and Ag;, are the balance parameters. When
Ly, is jointly learned with L., L, of all categories con-
strains L, only suppress the background that not related
to any class labels, since filtering out the foreground leads
to a large L.;,. Thus, our FAM can generate foreground
maps of all classes to cover nearly the entire object, while
CAM uses activation maps of the highest probability class
that only activate the most discriminative parts [7].

To perform object localization, the bilinear interpolation
is used for upsampling the foreground map to the original
image size. We identify the discriminative regions by a hard
threshold as in [63, 61]. The detection bounding box B is
the coverage of the largest connected area obtained by using
the threshold truncation on the foreground map [63].
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Table 1. Comparison of the proposed method with other state-of-the-art algorithms.

CUB-200-2011 ILSVRC 2016
Method Backbone Top-1 Loc Top-1 Cls GT-known Top-1 Loc Top-1 Cls GT-known
CAM (cvpr2016) VGG16 34.41 67.55 - 42.80 66.60 59.00
ACoL (cvpr2018) VGG16 45.92 71.90 45.90 45.83 67.50 62.96
ADL (cvpr,2019) VGG16 52.36 65.27 - 44.92 69.48 -
DANet (iccv,2019) VGG16 52.52 75.40 67.70 - - -
EIL (cvpr2020) VGG16 57.46 74.77 - 46.81 70.27 -
PSOL (cvpr,2020) VGG16 66.30 - - 50.89 - 64.03
GCNet (eccv,2020) VGG16 63.24 76.80 81.10 - - -
RCAM (eccv,2020) VGG16 58.96 75.01 76.30 44.62 68.67 60.73
FAM (ours) VGG16 69.26 77.26 89.26 51.96 70.90 71.73
ADL (cvpr,2019) ResNet50-SE 62.29 80.34 - 48.53 75.85 -
PSOL (cvpr,2020) ResNet50 70.68 - - 53.98 - 65.44
RCAM (eccv,2020) ResNet50 59.53 75.03 77.58 49.42 75.82 62.20
FAM (ours) ResNet50 73.74 82.72 85.73 54.46 76.48 64.56
CAM (cvpr2016) MobileNetV1 43.70 71.94 - 41.66 68.38 -
HasS (icev,2017) MobileNetV 1 44.67 66.64 - 41.87 67.48 -
ADL (cvpr,2019) MobileNetV1 47.74 70.43 - 43.01 67.77 -
RCAM (eccv,2020) MobileNetV 1 59.41 73.51 78.60 44.78 67.15 61.69
FAM (ours) MobileNetV1 65.67 76.38 85.71 46.24 70.28 62.05
SPG (eccv,2018) InceptionV3 46.64 - - 48.60 - 64.69
ADL (cvpr,2019) InceptionV3 53.03 74.55 - 48.71 72.83 -
DANet (iccv,2019) InceptionV3 49.45 71.20 - 48.71 72.83 -
PSOL (cvpr,2020) InceptionV3 65.51 - - 54.82 - 65.21
I2C (eccv,2020) InceptionV3 55.59 - - 53.11 73.30 68.50
GCNet (eccv,2020) InceptionV3 - - - 49.06 77.40 68.50
FAM (ours) InceptionV3 70.67 81.25 87.25 55.24 77.63 68.62

3.4. Discussions

In this paper, we propose a new perspective for the
WSOL task by using FAM. Since CAM-based methods
achieve object localization as a by-product of object clas-
sification, optimizing classification tends to activate object
parts not the whole object, while expanding object parts
into the whole object could deteriorate classification per-
formance. Unlike these methods, our FAM utilizes object-
aware and part-aware attention modules to perform object
localization and classification jointly. Meanwhile, these two
tasks can complement each other in a collaborative manner.

4. Experiments

4.1. Experimental Settings

Datasets. We conduct experiments on the most popular
benchmarks including CUB-200-2011 [46] and ILSVRC
2016 [10]. The CUB-200-2011 includes 200 categories of
birds and contains 11,768 images. The ILSVRC 2016 is
a large-scale dataset with 1,000 different classes, consisting
of over 1.2 million images of 1,000 categories. Each dataset
is divided into three subsets: train-weaksup, train-fullsup
and test [62, 6]. Following the protocol in previous meth-
ods [63, 7, 41, 43, 60, 61], for both datasets, we train the
model with the train-weaksup set and evaluate the perfor-
mance with the test set. We use the train-fullsup set for the
hyperparameter search, since checking the test results with
different hyperparameters violates the WSOL protocol.

Evaluation Metrics. Following standard evaluation met-
rics [7], we use three metrics to evaluate our model. The

first metric is Localization Accuracy, which measures the
ratio of the images with the right class and the bounding box
of ToU greater than 50%. The second metric is GT-known
Localization Accuracy. Unlike the Localization Accuracy,
the ground truth class label is given to eliminate the influ-
ence caused by classification accuracy when evaluating the
localization accuracy. The third metric is Classification Ac-
curacy, which represents the ratio of correct classification.
Implementation Details. We implement the proposed al-
gorithm based on four popular backbone networks includ-
ing VGG16 [42], MobileNetV1 [19], ResNet50 [16] and In-
ceptionV3 [44]. The model is fine-tuned on the pre-trained
weights of ILSVRC [10]. The input images are randomly
cropped to 224 x 224 pixels after being resized to 256 x 256
pixels. Empirically, the weight A, for the sparsity loss and
the \y;, for the diversity loss are set to be 0.04 and 0.01.

4.2. Comparison with State-of-the-art Methods

We compare our method with various recent WSOL
methods including CAM [63], HaS [43], ACoL [60],
SPG [61], ADL [7], DANet [53], EIL [34], PSOL [58], GC-
Net [32], RCAM [1] and I2C [62]. We report the accuracy
from the original papers or reproduced works [7, 58, 34].
Table 1 shows the comparison with state-of-the-art methods
on CUB-200-2011 test set and ILSVRC 2016 validation set.
Localization Performance: We consistently observe that
our FAM outperforms all baseline methods upon all the
backbones on both datasets for localization accuracy, es-
pecially on CUB-200-2011 dataset. The CUB-200-2011 is
a fine-grained dataset which contains many categories of
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Figure 5. Visualization of the learned part-aware activation maps,
which mainly focus on different discriminative object parts.

birds, where the intra-class variation is much larger than
the inter-class variation. In this case, the image region
used to distinguish a certain class may be quite small [58].
Thus, exploiting class-specific image regions for localiza-
tion would lead to sub-optimal performance. The FAM
aims to discover foreground maps of all classes from the
background, which can boost localization performance. In
specific, FAM-ResNet50 achieves 73.74% and 85.73% ac-
curacy in Top-1 localization and GT-known localization,
which exceeds the performance of all other methods by
a large margin. Compared to the state-of-the-art method
PSOL, FAM-InceptionV3 boosts the Top-1 localization ac-
curacy by 5.16%. On ILSVRC 2016 dataset, which includes
a wide variety of classes, FAM-InceptionV3 reports 55.24%
and 68.62% accuracy in Top-1 and GT-known localization
and sets a new state-of-the-art performance. Besides, FAM-
MobilenetV1 obtains 1.46% performance gain over the re-
cent RCAM method. The results show that our method
performs well on both fine-grained and large scale datasets,
which substantially verifies the effectiveness of our model.

Classification Performance: While some other methods
compromise classification accuracy for improving localiza-
tion, our method achieves the best localization accuracy
without damaging the classification accuracy. For example,
compared with CAM, HaS-MobileNetV1 reports 0.97%
higher Top-1 localization accuracy at the cost of 5.30% clas-
sification performance on CUB-200-2011 set, since the ran-
dom dropout of informative regions would lead to classifi-
cation degradation. In comparison, FAM-MobileNetV1 ob-
tains the best localization performance, and improves the
classification accuracy by 4.44% over the baseline approach
CAM, since our FAM avoids the dropout of the important
information and exploit discriminative parts for classifica-
tion. In conclusion, by learning object localization and
classification in a collaborative manner, our model achieves
significant improvement for object localization as well as
maintains remarkable classification accuracy.

Besides, according to the results in Table 1, We also
find that the localization maps should not be class-specific.
PSOL aims to generate localization maps that are not re-
lated to classification labels, which achieves promising lo-
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Figure 6. Statistical analysis of the predicted bounding boxes on
CUB-200-2011 dataset.

calization performance compared with CAM-based meth-
ods. Meanwhile, the FAM can also distinguish foreground
regions for object localization and consistently performs
better than baseline methods on two datasets.
Visualization: Figure 4 visualizes the localization results
generated on CUB-200-2011 and ILSVRC 2016 datasets
for qualitative evaluation. From the results, we observe that
our FAM captures the whole object better than CAM [63].
For example, as shown in Figure 4, the heatmap and bound-
ing box of the right-most sample extracted from CAM only
highlight the head of the rabbit, while our method covers
nearly the entire area of the rabbit. Besides, in CAM-based
methods, the threshold value needs to be tuned manually
and carefully so as to extract suitable bounding boxes from
the activation maps. Our FAM can distinguish foreground
from background with high confidence, so that we can sim-
ply set the threshold value to be 0.5 for all datasets. Figure 5
visualizes the learned part-aware activation maps, which are
successful in discovering diverse object parts. For exam-
ple, the 1°¢ part-aware activation map mainly focuses on the
head region while the 2"¢ part-aware activation map mainly
focuses on the leg region. This also shows the effectiveness
of our proposed part diversity mechanism.

Statistical Analysis: In Figure 6, we show the distribution
of the IoU between the predicted bounding boxes and the
ground-truth bounding boxes on CUB-200-2011 dataset.
Note that the average IoU of CAM-VGG16 is 61.4%. The
average ToU of FAM-VGGI16 is boosted to 70.5% with a
9.1% performance gain. The comparison of the IoU dis-
tribution between CAM-VGG16 and FAM-VGG16 shows
that the FAM improves the IoU rates and enhances the qual-
ity of the predicted bounding boxes.

4.3. Ablation Studies

To look deeper into the proposed method, we perform a
series of ablation studies with VGG16 as the backbone on
CUB-200-2011 set, and detailed analyses are as follows.
Effectiveness of the Object-aware Attention Module:
This module is designed to discover foreground maps for
object localization, and has two components: the sparsity
loss and the foreground memory design. Results indicate
each design is necessary. (1) Without the sparsity loss, the
FAM cannot guarantee that the foreground map is tight and
compact to eliminate irrelevant background regions. As
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Table 2. Ablation studies about the proposed object-aware atten-
tion module on CUB-200-2011 test set.

Sfl)jl;:;ly Ff/[r:ﬁ]r ]2)1;1}1,d GT-known  Top-1 Cls
X X 51.81 71.97
v X 73.95 72.36
v v 82.53 72.52

Table 3. Ablation studies about the part-aware attention module on
CUB-200-2011 test set.

Diversity  Importance
Loss Prediction | 1°P-! Cls  GT-known
X X 72.52 82.53
X 4 75.63 86.82
v v 77.26 89.26

shown in Table 2, the GT-known localization accuracy in-
creases from 51.81% to 73.95% when the sparsity loss is
introduced. As discussed in [54], when optimizing image
classification, the model would identify background regions
as a class other than the correct class instead of suppress-
ing background regions. In this case, the model may high-
light both foreground and background regions for object lo-
calization. The sparsity loss is imposed to deal with this
problem and boosts the GT-known localization accuracy by
22.14%. (2) As shown in Table 2, with the foreground mem-
ory design, the GT-known localization accuracy is further
increased to 82.53%. This is because this design can mem-
orize multiple foreground appearances in a given dataset,
which can deal with large appearance variations of different
objects. Thus, the model has a stronger ability to distin-
guish foreground regions from background for object local-
ization. Note that we use three 1 x 1 convolution layers to
generate foreground maps with similar parameters when the
foreground memory design is removed.

Effectiveness of the Part-aware Attention Module: In
this module, whose aim is to select discriminative parts for
object classification, there are two designs including the di-
versity loss and the importance prediction module. (1) As
shown in Table 3, with the diversity loss, the classification
performance is promoted from 72.52% to 74.13%. The
results indicate that the diversity loss can help the model
discover different object parts for better classification. (2)
Since different parts may have different importance for clas-
sification, it is necessary to design an importance prediction
module. With the importance prediction module, the classi-
fication accuracy is increased by 3.13%.

Relationship between Object Localization and Classifi-
cation: The results also verify that the two tasks can help
each other in a collaborative manner. (1) Object localiza-
tion can help object classification. With the object-aware at-
tention module, the classification accuracy is boosted from
71.97% to 72.52%, as shown in Table 2. This is because the
foreground maps learned by the localization model can help
the classifier to avoid background interferences and achieve
better performance. (2) Object classification can help object
localization. As shown in Figure 4, with only image-level
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Figure 7. Evaluation of the hyperparameters Aspa, Adiv » the num-
ber of foreground templates [V, and the number of object parts K.

labels, the classifier of FAM can help the localization model
to discover foreground maps that highlight nearly the en-
tire object. Besides, better classification results can further
improve the localization accuracy. As shown in Table 3,
with the part-aware attention module, the localization per-
formance can be improved by 6.73% (82.53% vs. 89.26%).
Hyperparameter Evaluations: We evaluate how A, and
Adiv affect our model learning. Here, Ay, and Ag;,, control
the relative importance of the sparsity loss and the diversity
loss. As shown in Figure 7, our model achieves much better
performance when A, = 0.04, Ay, = 0.01. We then
explore the influence of the template number in Figure 7.
The best performance is achieved when N = 3. Similarly,
we explore the influence of the part number in Figure 7. The
performance continues to grow until K = 5, which means
that it is sufficient for classification by mining five parts.

5. Conclusion

In this paper, we propose a new perspective for weakly
supervised object localization to optimize object localiza-
tion and classification jointly by using foreground activation
maps. Here, we design an object-aware attention module to
effectively highlight foreground objects for object localiza-
tion and a part-aware attention module to mine discrimina-
tive parts for object classification. By jointly learning the
two modules in a unified model, the two tasks can help each
other. Experiments show the effectiveness.
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