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Abstract

We present an unsupervised learning framework for de-
composing images into layers of automatically discovered
object models. Contrary to recent approaches that model im-
age layers with autoencoder networks, we represent them as
explicit transformations of a small set of prototypical images.
Our model has three main components: (i) a set of object pro-
totypes in the form of learnable images with a transparency
channel, which we refer to as sprites; (ii) differentiable para-
metric functions predicting occlusions and transformation
parameters necessary to instantiate the sprites in a given
image; (iii) a layered image formation model with occlu-
sion for compositing these instances into complete images
including background. By jointly learning the sprites and
occlusion/transformation predictors to reconstruct images,
our approach not only yields accurate layered image decom-
positions, but also identifies object categories and instance
parameters. We first validate our approach by providing
results on par with the state of the art on standard multi-
object synthetic benchmarks (Tetrominoes, Multi-dSprites,
CLEVR6). We then demonstrate the applicability of our
model to real images in tasks that include clustering (SVHN,
GTSRB), cosegmentation (Weizmann Horse) and object dis-
covery from unfiltered social network images. To the best
of our knowledge, our approach is the first layered image
decomposition algorithm that learns an explicit and shared
concept of object type, and is robust enough to be applied to
real images.

1. Introduction
The aim of this paper is to learn without any supervision

a layered decomposition of images, where each layer is a
transformed instance of a prototypical object. Such an inter-
pretable and layered model of images could be beneficial for
a plethora of applications like object discovery [16, 6], image
edition [72, 21], future frame prediction [71], object pose
estimation [53] or environment abstraction [1, 44]. Recent
works in this direction [6, 21, 46] typically learn layered im-

Figure 1: Our approach learns without supervision to decom-
pose images into layers modeled as transformed instances of
prototypical objects called sprites. We show an example of
decomposition on CLEVR [30] (top) and examples of discov-
ered sprites for Tetrominoes [21] and GTSRB [60] (bottom).
Transparency is visualized using light gray checkerboards.

age decompositions by generating layers with autoencoder
networks. In contrast, we explicitly model them as transfor-
mations of a set of prototypical images with transparency,
which we refer to as sprites. These sprites are mapped onto
their instances through geometric and colorimetric transfor-
mations resulting in what we call object layers. An image is
then assembled from ordered object layers so that each layer
occludes previous ones in regions where they overlap.
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Our composition model is reminiscent of the classic com-
puter graphics sprite model, popular in console and arcade
games from the 1980s. While classical sprites were simply
placed at different positions and composited with a back-
ground, we revisit the notion in a spirit similar to Jojic and
Frey’s work on video modeling [31] by using the term in a
more generic sense: our sprites can undergo rich geometric
transformations and color changes.

We jointly learn in an unsupervised manner both the
sprites and parametric functions predicting their transfor-
mations to explain images. This is related to the recent
deep transformation-invariant (DTI) method designed for
clustering by Monnier et al. [51]. Unlike this work, how-
ever, we handle images that involve a variable number of
objects with limited spatial supports, explained by different
transformations and potentially occluding each other. This
makes the problem very challenging because objects cannot
be treated independently and the possible number of image
compositions is exponential in the number of layers.

We experimentally demonstrate in Section 4.1 that our
method is on par with the state of the art on the synthetic
datasets commonly used for image decomposition evalua-
tion [21]. Because our approach explicitly models image
compositions and object transformations, it also enables us
to perform simple and controlled image manipulations on
these datasets. More importantly, we demonstrate that our
model can be applied to real images (Section 4.2), where it
successfully identifies objects and their spatial extent. For
example, we report an absolute 5% increase upon the state
of the art on the popular SVHN benchmark [52] and good
cosegmentation results on the Weizmann Horse database [4].
We also qualitatively show that our model successfully dis-
criminates foreground from background on challenging sets
of social network images.

Contributions. To summarize, we present:
• an unsupervised learning approach that explains images

as layered compositions of transformed sprites with a
background model;

• strong results on standard synthetic multi-object bench-
marks using the usual instance segmentation evaluation,
and an additional evaluation on semantic segmentation,
which to the best of our knowledge has never been re-
ported by competing methods; and

• results on real images for clustering and cosegmentation,
which we believe has never been demonstrated by earlier
unsupervised image decomposition models.

Code and data are available on our project webpage.

2. Related work
Layered image modeling. The idea of building images
by compositing successive layers can already be found in
the early work of Matheron [48] introducing the dead leaves

models, where an image is assembled as a set of templates
partially occluding one another and laid down in layers. Orig-
inally meant for material statistics analysis, this work was ex-
tended by Lee et al. [40] to a scale-invariant representation of
natural images. Jojic and Frey [31] proposed to decompose
video sequences into layers undergoing spatial modifications
- called flexible sprites - and demonstrated applications to
video editing. Leveraging this idea, Winn and Jojic [70]
introduced LOCUS, a method for learning an object model
from unlabeled images, and evaluated it for foreground seg-
mentation. Recently, approaches [73, 43, 57, 9, 3] have used
generative adversarial networks [19] to learn layered image
compositions, yet they are limited to foreground/background
modeling. While we also model a layered image forma-
tion process, we go beyond the simpler settings of image
sequences and foreground/background separation by decom-
posing images into multiple objects, each belonging to dif-
ferent categories and potentially occluding each other.

Image decomposition into objects. Our work is closely
related to a recent trend of works leveraging deep learning
to learn object-based image decomposition in an unsuper-
vised setting. A first line of works tackles the problem from
a spatial mixture model perspective where latent variables
encoding pixel assignment to groups are estimated. Sev-
eral works from Greff et al. [23, 22, 24] introduce spatial
mixtures, model complex pixel dependencies with neural net-
works and use an iterative refinement to estimate the mixture
parameters. MONet [6] jointly learns a recurrent segmenta-
tion network and a variational autoencoder (VAE) to predict
component mask and appearance. IODINE [21] instead
uses iterative variational inference to refine object represen-
tations jointly decoded with a spatial broadcast decoder [69]
as mixture assignments and components. Combining ideas
from MONet and IODINE, GENESIS [15] predicts, with
an autoregressive prior, object mask representations used
to autoencode masked regions of the input. Leveraging an
iterative attention mechanism [64], Slot Attention [46] pro-
duces object-centric representations decoded in a fashion
similar to IODINE. Other related methods are [63, 68, 74].
Another set of approaches builds upon the work of Eslami et
al. introducing AIR [16], a VAE-based model using spatial
attention [28] to iteratively specify regions to reconstruct.
This notably includes SQAIR [36], SPAIR [13] and the more
recent SPACE [44], which in particular incorporates spatial
mixtures to model complex backgrounds. To the best of our
knowledge, none of these approaches explicitly model ob-
ject categories, nor demonstrate applicability to real images.
In contrast, we represent each type of object by a different
prototype and show results on Internet images.

Transformation-invariant clustering. Identifying object
categories in an unsupervised way can be seen as a clus-
tering problem if each image contains a single object.
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Figure 2: Overview. Given an input image (highlighted in red) we predict for each layer the transformations to apply to the
sprites that best reconstruct the input. Transformed sprites and background can be composed into many possible reconstructions
given a predicted occlusion matrix δ. We introduce a greedy algorithm to select the best reconstruction (highlighted in green).

Most recent approaches perform clustering on learned fea-
tures [25, 29, 35, 62] and do not explicitly model the im-
age. In contrast, transformation-invariant clustering explic-
itly models transformations to align images before clus-
tering them. Frey and Jojic first introduced this frame-
work [17, 18] by integrating pixel permutation variables
within an Expectation-Maximization (EM) [14] procedure.
Several works [50, 39, 11, 12] developed a similar idea for
continuous parametric transformations in the simpler setting
of image alignment, which was later applied again for cluster-
ing by [45, 49, 42, 2]. Recently, Monnier et al. [51] general-
ize these ideas to global alignments and large-scale datasets
by leveraging neural networks to predict spatial alignments
- implemented as spatial transformers [28] -, color transfor-
mations and morphological modifications. Also related to
ours, SCAE [35] leverages the idea of capsule [26] to learn
affine-aware image features. However, discovered capsules
are used as features for clustering and applicability to image
decomposition into objects has not been demonstrated.

Cosegmentation and object discovery. Our method can
also be related to traditional approaches for object discov-
ery, where the task is to identify and locate objects with-
out supervision. A first group of methods [58, 56, 7, 59]
characterizes images as visual words to leverage methods
from topic modeling and localize objects. Another group of
methods aims at computing similarities between regions in
images and uses clustering models to discover objects. This
notably includes [20, 32, 65, 55, 33] for cosegmentation
and [54, 10, 66, 41, 67] for object discovery. Although such
approaches demonstrate strong results, they typically use
hand-crafted features like saliency measures or off-the-shelf
object proposal algorithms which are often supervised. More
importantly, they do not include an image formation model.

3. Approach
In this section, we first present our image formation model

(Sec. 3.1), then describe our unsupervised learning strategy
(Sec. 3.2). Figure 2 shows an overview of our approach.

Notations. We write a1:n the ordered set {a1, . . . , an}, ⊙
pixel-wise multiplication and use bold notations for images.
Given N colored images x1:N of size H ×W , we want to
learn their decomposition into L object layers defined by the
instantiations of K sprites.

3.1. Image formation model

Layered composition process. Motivated by early works
on layered image models [48, 31], we propose to decompose
an image into L object layers o1:L which are overlaid on top
of each other. Each object layer oℓ is a four-channel image
of size H ×W , three channels correspond to a colored RGB
appearance image ocℓ, and the last one oαℓ is a transparency
or alpha channel over ocℓ. Given layers o1:L, we define our
image formation process as a recursive composition:

∀ℓ > 0, cℓ = oαℓ ⊙ ocℓ + (1− oαℓ )⊙ cℓ−1, (1)

where c0 = 0, and the final result of the composition is cL.
Note that this process explicitly models occlusion: the first
layer corresponds to the farthest object from the camera, and
layer L is the closest, occluding all the others. In particular,
we model background by using a first layer with oα1 = 1.

Unfolding the recursive process in Eq. (1), the layered
composition process can be rewritten in the compact form:

Cδ(o1, . . . ,oL) =

L∑
ℓ=1

( L∏
j=1

(1− δjℓoαj )
)
⊙ oαℓ ⊙ ocℓ, (2)
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where δjℓ = 1[j>ℓ] is the indicator function of j > ℓ. δ is
a L× L binary matrix we call occlusion matrix: for given
indices j and ℓ, δjℓ = 1 if layer j occludes layer ℓ, and
δjℓ = 0 otherwise. This gives Eq. (2) a clear interpretation:
each layer appearance ocℓ is masked by its own transparency
channel oαℓ and other layers j occluding it, i.e. for which
δjℓ = 1. Note that we explicitly introduce the dependency on
δ in the composition process Cδ because we will later predict
it, which intuitively corresponds to a layer reordering.

Sprite modeling. We model each layer as an explicit trans-
formation of one of K learnable sprites s1:K , which can be
seen as prototypes representing the object categories. Each
sprite sk is a learnable four-channel image of arbitrary size,
an RGB appearance image sck and a transparency channel
sαk . To handle variable number of objects, we model object
absence with an empty sprite s0 = 0 added to the K sprite
candidates and penalize the use of non-empty sprites during
learning (see Sec. 3.2). Such modeling assumes we know
an upper bound of the maximal number of objects, which is
rather standard in such a setting [6, 21, 46].

Inspired by the recent deep transformation-invariant (DTI)
framework designed for clustering [51], we assume that we
have access to a family of differentiable transformations Tβ
parametrized by β - e.g. an affine transformation with β in R6

implemented with a spatial transformer [28] - and we model
each layer as the result of the transformation Tβ applied to
one of the K sprites. We define two sets of transformations
for a given layer ℓ: (i) T lay

ηℓ the transformations parametrized
by ηℓ and shared for all sprites in that layer, and (ii) T spr

νℓk the
transformations specific to each sprite and parametrized by
νℓk. More formally, for given layer ℓ and sprite k we write:

Tβℓk
(sk) = T lay

ηℓ
◦ T spr

νℓk
(sk), (3)

where βℓk = (ηℓ, νℓk) and T(ηℓ,νℓk) = T
lay
ηℓ ◦ T

spr
νℓk .

Although it could be included in T spr
νℓk , we separate T lay

ηℓ

to constrain transformations and avoid bad local minima.
For example, we use it to model a coarse spatial positioning
so that all sprites in a layer attend to the same object in the
image. On the contrary, we use T spr

νℓk to model sprite specific
deformations, such as local elastic deformations.

When modeling background, we consider a distinct set of
K ′ background prototypes b1:K′ , without transparency, and
different families of transformations T bkg

β′ . For simplicity,
we write the equations for the case without background and
omit sprite-specific transformations in the rest of the paper,
writing Tβℓ

(sk) instead of Tβℓk
(sk).

To summarize, our image formation model is defined
by the occlusion matrix δ, the per-layer sprite selection
(k1, . . . , kL), the corresponding transformation parameters
(β1, . . . , βL), and outputs an image x such that:

x = Cδ
(
Tβ1(sk1), . . . , TβL

(skL)
)
. (4)

We illustrate our image formation model in Figure 1 and
provide a detailed example in Figure 2.

3.2. Learning

We learn our image model without any supervision by
minimizing the objective function:

L(s1:K , ϕ1:L, ψ) =
N∑
i=1

min
k1,...,kL

(
λ

L∑
j=1

1[kj ̸=0]+∥∥∥xi − Cψ(xi)

(
Tϕ1(xi)(sk1), . . . , TϕL(xi)(skL)

)∥∥∥2
2

)
, (5)

where s1:K are the sprites, ϕ1:L and ψ are neural networks
predicting the transformation parameters and occlusion ma-
trix for a given image xi, λ is a scalar hyper-parameter and
1[kj ̸=0] is the indicator function of kj ̸= 0. The first sum is
over all images in the database, the minimum corresponds to
the selection of the sprite used for each layer and the second
sum counts the number of non-empty sprites. If λ > 0, this
loss encourages reconstructions using the minimal number
of non-empty sprites. In practice, we use λ = 10−4.

Note the similarity between our loss and the gradient-
based adaptation [5] of the K-means algorithm [47] where
the squared Euclidean distance to the closest prototype is
minimized, as well as with its transformation-invariant ver-
sion [51] including neural networks modeling transforma-
tions. In addition to the layered composition model described
in the previous section, the main two differences with our
model are the joint optimization over L sprite selections and
the occlusion modeling that we discuss next.

Sprites selection. Because the minimum in Eq. (5) is
taken over the (K + 1)L possible selections leading to as
many reconstructions, an exhaustive search over all combina-
tions quickly becomes impossible when dealing with many
objects and layers. Thus, we propose an iterative greedy al-
gorithm to estimate the minimum, described in Algorithm 1
and used when L > 2. While the solution it provides is of
course not guaranteed to be optimal, we found it performs
well in practice. At each iteration, we proceed layer by layer
and iteratively select for each layer the sprite kℓ minimizing
the loss, keeping all other object layers fixed. This reduces
the number of reconstructions to perform to T×(K+1)×L.
In practice, we have observed that convergence is reached
after 1 iteration for Tetrominoes and 2-3 iterations for Multi-
dSprites and CLEVR6, so we have respectively used T = 1
and T = 3 in these experiments. We experimentally show
in our ablation study presented in Sec. 4.1 that this greedy
approach yields performances comparable to an exhaustive
search when modeling small numbers of layers and sprites.

Occlusion modeling. Occlusion is modeled explicitly in
our composition process defined in Eq. (2) since o1, . . . ,oL
are ranked by depth. However, we experimentally observed
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Algorithm 1: Greedy sprite selection.
Input: image x, occlusion δ, (K + 1)× L object

layers candidates Tϕℓ(x)(sk), steps T
Output: sprite indices (k1, . . . , kL)
Initialization: ∀ℓ ∈ {1, . . . , L}, kℓ ← 0,oℓ ← 0

1 for t = 1, . . . , T do # iterations
2 for ℓ = 1, . . . , L do # loop on layers

3 kℓ ← mink

[
λ1[k ̸=0] +

4 ∥x− Cδ(o1:ℓ−1, Tϕℓ(x)(sk), oℓ+1:L)∥22
]

5 oℓ ← Tϕℓ(x)(skℓ)

6 end
7 end
8 return k1, . . . , kL

that layers learn to specialize to different regions in the
image. This seems to correspond to a local minimum of
the loss function, and the model does not manage to reorder
the layers to predict the correct occlusion. Therefore, we
relax the model and predict an occlusion matrix δ = ψ(x) ∈
[0, 1]L×L instead of keeping it fixed. More precisely, for
each image x we predict 1

2L(L − 1) values using a neural
network followed by a sigmoid function. These values are
then reshaped to a lower triangular L× L matrix with zero
diagonal, and the upper part is computed by symmetry such
that: ∀i < j, δij = 1− δji. While such predicted occlusion
matrix is not binary and does not directly translate into a
layer reordering, it still allows us to compute a composite
image using Eq. (2) and the masks associated to each object.
Note that such a matrix could model more complex occlusion
relationships such as non-transitive ones. At inference, we
simply replace δij by δij > 0.5 to obtain binary occlusion
relationships. We also tried computing the closest matrix
corresponding to a true layer reordering and obtained similar
results. Note that when we use a background model, its
occlusion relationships are fixed, i.e. ∀j > 1, δj1 = 1.

Training details. Two elements of our training strategy are
crucial to the success of learning. First, following [51] we
adopt a curriculum learning of the transformations, starting
by the simplest ones. Second, inspired by Tieleman [61] and
SCAE [35], we inject uniform noise in the masks in such a
way that masks are encouraged to be binary (see supplemen-
tary for details). This allows us to resolve the ambiguity that
would otherwise exist between the color and alpha channels
and obtain clear masks. We provide additional details about
networks’ architecture, computational cost, transformations
used and implementation in the supplementary material.

4. Experiments
Assessing the quality of an object-based image decompo-

sition model is ambiguous and difficult, and downstream ap-
plications on synthetic multi-object benchmarks such as [34]

are typically used as evaluations. Thus, recent approaches
(e.g. [6, 21, 15, 46]) first evaluate their ability to infer spatial
arrangements of objects through quantitative performances
for object instance discovery. The knowledge of the learned
concept of object is then evaluated qualitatively through
convincing object-centric image manipulation [6, 21], oc-
cluded region reconstructions [6, 46] or realistic generative
sampling [15]. None of these approaches explicitly model
categories for objects and, to the best of our knowledge, their
applicability is limited to synthetic imagery only.

In this section, we first evaluate and analyse our model on
the standard multi-object synthetic benchmarks (Sec. 4.1).
Then, we demonstrate that our approach can be applied to
real images (Sec. 4.2). We use the 2-layer version of our
model to perform clustering (4.2.1), cosegmentation (4.2.2),
as well as qualitative object discovery from unfiltered web
image collections (4.2.3).

4.1. Multi-object synthetic benchmarks

Datasets and evaluation. Tetrominoes [21] is a 60k
dataset generated by placing three Tetrominoes without over-
lap in a 35× 35 image. There is a total of 19 different Tetro-
minoes (counting discrete rotations). Multi-dSprites [34]
contains 60k images of size 64× 64 with 2 to 5 objects sam-
pled from a set of 3 different shapes: ellipse, heart, square.
CLEVR6 [30, 21] contains 34,963 synthetically generated
images of size 128 × 128. Each image is composed of a
variable number of objects (from 3 to 6), each sampled from
a set of 6 categories - 3 different shapes (sphere, cylinder,
cube) and 2 materials (rubber or metal) - and randomly ren-
dered. We thus train our method using one sprite per object
category and as many layers as the maximum number of
objects per image, with a background layer when necessary.
Following standard practices [21, 46], we evaluate object
instance segmentation on 320 images by averaging over all
images the Adjusted Ranked Index (ARI) computed using
ground-truth foreground pixels only (ARI-FG in our tables).
Note that because background pixels are filtered, ARI-FG
strongly favors methods like [21, 46] which oversegment
objects or do not discriminate foreground from background.
To limit the penalization of our model which explicitly mod-
els background, we reassign predicted background pixels
to the closest object layers before computing this metric.
However, we argue that foreground/background separation
is crucial for any downstream applications and also advocate
the use of a true ARI metric computed on all pixels (includ-
ing background) which we include in our results. In addition,
we think that the knowledge of object category should be
evaluated and include quantitative results for unsupervised
semantic segmentation in the supplementary material.

Results. Our results are compared quantitatively to state-
of-the-art approaches in Table 1. On Multi-dSprites, an out-
lier run out of 5 was automatically filtered based on its high
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Table 1: Multi-object instance discovery. Following stan-
dard practices, we report ARI-FG (ARI on foreground pixels
only) averaged over 5 runs. We also report our results with
the real ARI, a metric we advocate for future comparisons.
We mark results (△) where one outlier run is filtered out.

Method Metric Tetrominoes Multi-dSprites CLEVR6

MONet [6] ARI-FG - 90.4 ± 0.8 96.2 ± 0.6
IODINE [21] ARI-FG 99.2 ± 0.4 76.7 ± 5.6 98.8 ± 0.0
Slot Att. [46] ARI-FG 99.5△± 0.2 91.3 ± 0.3 98.8 ± 0.3
Ours ARI-FG 99.6 ± 0.2 92.5△± 0.3 97.2± 0.2

Ours ARI 99.8 ± 0.1 95.1△± 0.1 90.7 ± 0.1

Figure 3: Multi-object discovery. From left to right, we
show inputs, reconstructions, semantic (each color corre-
sponds to a different sprite) and instance segmentations, and
first decomposition layers colored w.r.t. their instance mask.

reconstruction loss compared to the others. Our method ob-
tains results on par with the best competing methods across
all benchmarks. While our approach is more successful on
benchmarks depicting 2D scenes, it still provides good re-
sults on CLEVR6 where images include 3D effects. We
provide our results using the real ARI metric which we
believe to be more interesting as it is not biased towards
oversegmenting methods. While this measure is not reported
by competing methods, a CLEVR6 decomposition example
shown in official IODINE implementation1 gives a perfect
100% ARI-FG score but reaches 20% in terms of ARI.

Compared to all competing methods, our approach ex-
plicitly models categories for objects. In particular, it is able
to learn prototypical images that can be associated to each
object category. The sprites discovered from CLEVR6 and
Tetrominoes are shown in Fig. 1. Note how learned sprites
on Tetrominoes are sharp and how we can identify material

1https://github.com/deepmind/deepmind-research/blob/master/iodine

Figure 4: Object-centric image manipulation. Given a
query image (top left) from CLEVR6 [30], we show the
closest reconstruction (top right) and several image manipu-
lations (next four rows). From top to bottom, we respectively
use different sprites, change the objects color, vary their po-
sitions and modify the scale.

in CLEVR6 by learning two different sprites for each shape.
In Fig. 3, we show some qualitative results obtained on the

three benchmarks. Given sample images, we show from left
to right the final reconstruction, semantic segmentation (eval-
uated quantitatively in the supplementary material) where
each color corresponds to a different sprite, instance segmen-
tation, and the first four layers of the image decomposition.
Note how we manage to successfully predict occlusions,
model variable number of objects, separate the different in-
stances, as well as identify the object categories and their
spatial extents. More random decomposition results are
shown in the supplementary and on our webpage.

Compared to other approaches which typically need a
form of supervision to interpret learned representations as
object visual variations, our method has the advantage to give
a direct access to the object instance parameters, enabling us
to directly manipulate them in images. In Fig. 4, we show
different object-centric image manipulations such as objects
swapping as well as color, position and scale variations. Note
that we are also able to render out of distribution instances,
like the pink sphere or the gigantic cylinder.

Ablation study. We analyze the main components of our
model in Table 2. For computational reasons, we evaluate our
greedy algorithm on Multi-dSprites2 - the subset of Multi-
dSprites containing only 2 objects - and show comparable
performances to an exhaustive search over all combinations.
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Table 2: Ablation study. Results are averaged over 5 runs.

Dataset Model ARI-FG ARI

Multi-dSprites2 Full 95.5 ± 2.1 95.2 ± 1.9
w/o greedy algo. 94.4 ± 2.7 95.9 ± 0.3

Multi-dSprites Full 91.5 ± 2.2 95.0 ± 0.3
w/o occ. prediction 85.7 ± 2.2 94.2 ± 0.2

Tetrominoes Full 99.6 ± 0.2 99.8 ± 0.1
w/o shared transfo. 95.3 ± 3.7 82.6 ± 12.2

Occlusion prediction is evaluated on Multi-dSprites which
contains many occlusions. Because our model with fixed oc-
clusion does not manage to reorder the layers, performances
are significantly better when occlusion is learned. Finally,
we compare results obtained on Tetrominoes when modeling
sprite-specific transformations only, without shared ones,
and show a clear gap between the two settings. We provide
analyses on the effects of K and λ in the supplementary.

Limitations. Our optimization model can be stuck in local
minima. A typical failure mode on Multi-dSprites can be
seen in the reconstructions in Fig. 3 where a triangular shape
is learned instead of the heart. This sprite can be aligned
to a target heart shape using three different equivalent ro-
tations, and our model does not manage to converge to a
consistent one. This problem could be overcome by either
modeling more sprites, manually computing reconstructions
with different discrete rotations, or guiding transformation
predictions with supervised sprite transformations.

4.2. Real image benchmarks

4.2.1 Clustering

Datasets. We evaluate our model on two real image clus-
tering datasets using 2 layers, one for the background and
one for the foreground object. SVHN [52] is a standard clus-
tering dataset composed of digits extracted from house num-
bers cropped from Google Street View images. Following
standard practices [27, 35, 51], we evaluate on the labeled
subset (99,289 images), but also use 530k unlabeled extra
samples for training. We also report results on traffic sign
images using a balanced subset of the GTSRB dataset [60]
which we call GTSRB-8. We selected classes with 1000 to
1500 instances in the training split, yielding 8 classes and
10,650 images which we resize to 28× 28.

Results. We compare our model to state-of-the-art meth-
ods in Table 3 using global clustering accuracy, where the
cluster-to-class mapping is computed using the Hungarian
algorithm [37]. We train our 2-layer model with as many
sprites as classes and a single background prototype. On
both benchmarks, our approach provides competitive results.
In particular, we improve state of the art on the standard
SVHN benchmark by an absolute 5% increase.

Table 3: Clustering comparisons. We report average clus-
tering accuracy. We mark methods we ran ourselves with
official implementations (⋆), use data augmentation (▽) or
ad-hoc representations († for GIST, ‡ for Sobel filters).

Method Runs GTSRB-8 SVHN

Clustering on learned features
ADC [25] 20 - 38.6▽

SCAE [35] 5 - 55.3‡

IMSAT [27] 12 26.9▽⋆ 57.3▽†

SCAN [62] 5 90.4▽⋆ 54.2▽⋆

Clustering on pixel values
DTI-Clustering [51] 10 54.3⋆ 57.4
Ours 10 89.4 63.1

Figure 5: Qualitative clustering results. We compare pro-
totypes learned using DTI-Clustering and our discovered
sprites on GTSRB-8 (left) and SVHN (right).

Similar to DTI-Clustering, our method performs cluster-
ing in pixel-space exclusively and has the advantage of pro-
viding interpretable results. Figure 5 shows learned sprites
on the GTSRB-8 and SVHN datasets and compares them to
prototypes learned with DTI-Clustering. Note in particular
the sharpness of the discovered GTSRB-8 sprites.

4.2.2 Cosegmentation

Dataset. We use the Weizmann Horse database [4] to eval-
uate quantitatively the quality of our masks. It is composed
of 327 side-view horse images resized to 128 × 128. Al-
though relatively simple compared to more recent cosegmen-
tation datasets, it presents significant challenges compared
to previous synthetic benchmarks because of the diversity
of both horses and backgrounds. The dataset was mainly
used by classical (non-deep) methods which were trained
and evaluated on 30 images for computational reasons while
we train and evaluate on the full set.

Results. We compare our 2-layer approach with a single
sprite to classical cosegmentation methods in Table 4 and
report segmentation accuracy - mean % of pixels correctly
classified as foreground or background - averaged over 5
runs. Our results compare favorably to these classical ap-
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Table 4: Weizmann Horse cosegmentation comparisons.

Method [55] [32] [38] [8] [75] Ours

Accuracy (%) 74.9 80.1 84.6 86.4 87.6 87.9

Figure 6: Qualitative cosegmentation results. Sprite and
mask (left) learned from Weizmann Horse [4] and some re-
sult examples (right) giving for each input, its reconstruction,
the layered composition and extracted foreground.

proaches. Although more recent approaches could outper-
form our method on this dataset, we argue that obtaining
performances on par with such competing methods is already
a strong result for our layered image decomposition model.

We present in Fig. 6 some visual results of our approach.
First, the discovered sprite clearly depicts a horse shape and
its masks is sharp and accurate. Learning such an inter-
pretable sprite from this real images collection is already
interesting and validates that our sprite-based modeling gen-
eralizes to real images. Second, although the transformations
modeled are quite simple (a combination of color and spatial
transformations), we demonstrate good reconstructions and
decompositions, yielding accurate foreground extractions.

4.2.3 Unfiltered web image collections

We demonstrate our approach’s robustness by visualizing
sprites discovered from web image collections. We use the
same Instagram collections introduced in [51], where each
collection is associated to a specific hashtag and contains
around 15k images resized and center cropped to 128× 128.
We apply our model with 40 sprites and a background.

Figure 7 shows the 8 best qualitative sprites discovered
from Instagram collections associated to #santaphoto and
#weddingkiss. Even in this case where images are mostly
noise, our approach manages to discover meaningful sprites
and segmentations with clear visual variations. For example,
we can distinguish standing santas from seating ones, as well
as the ones alone or surrounded by children. We additionally
show examples of reconstructions and image compositions
for some of the 8 sprites shown for #santaphoto.

Figure 7: Web image results. We show the 8 best qualitative
sprites among 40 discovered from Instagram collections (top)
as well as decomposition results for samples represented by
one of the sprites shown for #santaphoto (bottom).

5. Conclusion

We have introduced a new unsupervised model which
jointly learns sprites, transformations and occlusions to de-
compose images into object layers. Beyond standard multi-
object synthetic benchmarks, we have demonstrated that our
model leads to actual improvements for real image clustering
with a 5% boost over the state of the art on SVHN and can
provide good segmentation results. We even show it is ro-
bust enough to provide meaningful results on unfiltered web
image collections. Although our object modeling involves
unique prototypical images and small sets of transformations
limiting their instances diversity, we argue that accounting
for such diversity while maintaining a category-based decom-
position model is extremely challenging, and our approach
is the first to explore this direction as far as we know.
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