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Abstract

Unsupervised domain adaption has proven to be an ef-
fective approach for alleviating the intensive workload of
manual annotation by aligning the synthetic source-domain
data and the real-world target-domain samples. Unfor-
tunately, mapping the target-domain distribution to the
source-domain unconditionally may distort the essential
structural information of the target-domain data. To this
end, we firstly propose to introduce a novel multi-anchor
based active learning strategy to assist domain adaptation
regarding the semantic segmentation task. By innovatively
adopting multiple anchors instead of a single centroid, the
source domain can be better characterized as a multimodal
distribution, thus more representative and complimentary
samples are selected from the target domain. With little
workload to manually annotate these active samples, the
distortion of the target-domain distribution can be effec-
tively alleviated, resulting in a large performance gain. The
multi-anchor strategy is additionally employed to model the
target-distribution. By regularizing the latent representa-
tion of the target samples compact around multiple anchors
through a novel soft alignment loss, more precise segmenta-
tion can be achieved. Extensive experiments are conducted
on public datasets to demonstrate that the proposed ap-
proach outperforms state-of-the-art methods significantly,
along with thorough ablation study to verify the effective-
ness of each component. The code will be released soon at
https://github.com/munanning/MADA.

1. Introduction
Semantic segmentation has always been a fundamental

task in computer vision. Benefiting from the rapid develop-
ment of deep learning, many advanced segmentation meth-
ods have been proposed and achieved great breakthroughs
with high accuracies for various tasks, such as autonomous
driving [16], scene parsing [8, 44], object detection [26, 61]
and human-computer interaction [43]. However, the re-
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quirement of large amount of data with accurate pixel-wise
annotation limits their usage in many practical applications,
e.g., medical image segmentation [28, 40, 42, 41, 36] and
auto-driving tasks [6].

To avoid the intensive workload of manual annotation,
a lot of efforts have been made on unsupervised domain
adaptation (UDA) [5, 20, 21, 55], which aims at aligning
the target-domain distribution towards the source-domain
distribution, so that networks trained with the supervision
of only the synthetic source data can be applied to the real-
world target data. However, forcing the target-domain fea-
tures to fit the source-domain distribution may destroy the
latent structural pattern of the target domain, resulting in
inferior performance. As illustrated by the t-SNE [19] vi-
sualization in Fig. 1, the distributions of the source and
target domains present both overlap (region ①) and obvi-
ous discrepancies (regions ② and ③). When the adapted
target-domain features (red dots) obtained with a typical
UDA method based on adversarial training [55]—despite
generally aligned with the source domain distributions (blue
squares)—show a clear distortion of the target-domain dis-
tribution in region ②, the adapted network presents unsatis-
factory performance. Worse segmentation can be observed
in region ③ when some specific targets are aligned neither
with the source domain nor the target domain. A promising
strategy to efficiently prevent such distortion of the target-
domain distribution with minimal annotation workload is
active learning (AL) [49]. By introducing little extra man-
ual annotation for a few selected samples from the target do-
main, the performance can be significantly boosted regard-
ing the classification and the detection tasks [51]. However,
the sample selection methods in all previous active learn-
ing studies [51] assumed a unimodal source-domain distri-
bution and neglected the potential multimodal distribution,
resulting in sub-optimal active samples and inferior perfor-
mance, as demonstrated in Table 4.

To address the above issues, we firstly propose to adopt
the active learning strategy to assist domain adaptation (DA)
regarding the semantic segmentation task, so that the es-
sential structural pattern of the target domain can be main-
tained with minimal manual annotation workload. In ad-
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Figure 1. Visualization (t-SNE [19]) of the target-domain distribution distortion problem in UDA (left). The blue and yellow squares are the
average latent representation of different category samples from the target-domain extracted by two networks trained with the source- and
target-domain data, respectively, where we can observe little overlap (region ①) along with large discrepancy (regions ② and ③) between
the two distributions. The red dots denote the adapted target-domain features by a typical adversarial (adv.) training based UDA method
[55]. A general alignment to the source-domain distribution can be observed in region ①, while an obvious distortion of the target-domain
distribution is displayed in region ② and ③, yielding unsatisfactory performance as presented on the right figures. By adopting active
learning for the domain adaptation, such distortion is effectively alleviated, as demonstrated by the correctly distributed green dots.

dition, a multi-anchor strategy is proposed to better char-
acterize the source-domain features as well as the target-
domain features. Specifically, the proposed Multi-anchor
Active Domain Adaptation (MADA) framework consists of
two stages. In the first stage, with the network pretrained
in an adversarial UDA [55] manner, a multi-anchor based
active sample selection strategy is proposed to identify the
most complementary and representative samples for man-
ual annotation by exploiting the feature distributions across
the target and source domains. Then in the second stage,
the segmentation network is fine-tuned in a semi-supervised
learning manner. The annotations of the source samples and
the few selected target samples are used for supervision,
while all the available image information is additionally ap-
plied for optimization with a pseudo label loss and the pro-
posed multi-anchor soft-alignment loss. In summary, our
paper makes the following contributions:

• To the best of our knowledge, our work is the first
study to adopt active learning to assist the domain
adaptation regarding the semantic segmentation tasks.
With little manual annotation workload of few target-
domain samples, the distortion of the target-domain
feature distribution can be effectively prevented and
superior segmentation performance can be achieved.

• Assuming a multimodal distribution in practical situa-
tions, we propose to adopt multiple anchors obtained
via clustering-based method to characterize the feature
distribution of the source-domain, so that the represen-
tative target-domain samples which are the most com-
plimentary to the source-domain can be selected.

• The multi-anchor strategy is used further to model the
target-domain feature distribution. With the proposed

multi-anchor soft-alignment loss, we show that explic-
itly pushing the features of the target samples towards
multiple anchors leads to better latent representation,
thus notably improve the segmentation performance.

• We conduct extensive experiments to demonstrate the
superiority of the proposed MADA framework, along
with thorough ablation studies to evaluate the effec-
tiveness of the multi-anchor strategy on modeling the
feature distribution.

2. Related Work
2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) has been pro-
posed for years, aiming to address the domain shift problem
in a wide variety of computer vision tasks including clas-
sification [17], detection [4], and segmentation [55]. Re-
cent UDA methods can be roughly divided into two groups:
maximum mean discrepancy (MMD) based and adversar-
ial learning based. The MMD kernel was first introduced
in [33], which measured the discrepancy of features from
different domains quantitatively. Subsequent studies pro-
posed several improved MMD kernels for more accurate
measurement of the domain discrepancy, including MK-
MMD [33], JMMD [34], CMD [59] and CORAL [52].
Minimization of the discrepancy yielded by these kernels
forced features from different domains to align with each
other, thus addressing the domain shift problem. However,
it is impractical to directly adopt the MMD-based methods
in segmentation tasks, because these methods required com-
plex computation in the high-dimension feature space.

In contrast, adversarial learning based methods are pre-
ferred for UDA of segmentation tasks, where the two do-
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main distributions are drawn together via a domain discrim-
inator. The classical appearance matching method Cycle-
GAN [63] constructed two adversarial subnets to translate
unpaired source and target images. BDL [32] leveraged la-
bel consistency to improve the UDA performance. DISE [1]
proposed a disentangled representation learning architec-
ture [25] to preserve structural information during image
translation. Feature aligning methods such as CLAN [35]
and CAG [62] utilized category-based distribution align-
ment to adapt the source and target domains in the feature
and output spaces. AdvEnt [57] designed a novel loss func-
tion to maximize the prediction certainty in the target do-
main to boost the UDA performance.

Despite the encouraging progress, UDA methods uncon-
ditionally force the distributions of the two domains to be
similar, which may distort the underlying latent distribution
of the target domain if it presents intrinsic difference from
that of the source domain. A promising strategy to prevent
such distortion with minimal annotation workload is active
learning (AL) [49], which we adopt in this work.

2.2. Active Learning and Domain Adaptation

AL aims at optimal performance at a low annotation
cost, by actively selecting the few samples that are most
helpful to performance improvement, if labeled [7]. Over
the past decade, several sample selection strategies have
been proposed for AL, including uncertainty-based [31, 48],
diversity-based [12, 22], representativeness-based [23, 10,
39], and expected model change based [14, 29, 56]. These
strategies have been successfully applied to various com-
puter vision tasks, such as image classification [45], object
detection [30, 27, 60], and image segmentation [53]. In this
work, we argue that it is beneficial to introduce AL to the
DA problem, to avoid distortion of the target-domain dis-
tribution. First, AL only entails minimal annotation cost,
which is acceptable in many scenarios considering the po-
tential performance gain. Second, with a proper sample se-
lection strategy, AL can identify the samples most repre-
sentative of the exclusive components in the target-domain
distribution for annotation. Hence, how to select the AL
samples becomes a critical issue.

As far as the authors are aware of, only few studies at-
tempted applying AL to DA problems. An early work by
Chattopadhyay et al. [2] proposed to use the MMD distance
between the source and target domains for active sample se-
lection during the DA process. However, it is practically
prohibitive to apply MMD distances for segmentation DA
problems, as mentioned earlier. More recently, Huang et
al. [24] proposed to fine-tune pre-trained models for classi-
fication tasks and involved additional active sample selec-
tion in every iteration. In contrast, our framework takes a
step forward to make dense predictions for segmentation
tasks, and simplifies the active learning process to a one-

time sample selection. Being closely related to our work,
Active Adversarial Domain Adaptation (AADA) [51] pro-
posed AL for DA with the adversarial learning [15] strategy,
where representative samples were selected by jointly con-
sidering diversity and uncertainty criteria. In this work, by
modeling both the source and target distributions as mul-
timodal (in contrast to the implicit unimodal assumption
in previous works such as AADA), our method captures
more comprehensive information from both domains and
can achieve substantial performance improvement (experi-
mentally validated in Section 4.5).

3. Method
The proposed method consists of two main stages: ac-

tive target sample selection based on multiple anchors of
the source domain (Fig. 2(a)), and semi-supervised domain
adaptation enhanced by a novel multi-anchor soft alignment
loss (Figs. 2(b), 2(c) and 2(d)). Below we first formally de-
fine our problem setting, then elaborate the two stages.

3.1. Problem Setting

The goal of semantic segmentation is to train a model M
to map a sample x in the image space X to a prediction y
in the label space Y , where x ∈ RH×W×3 with H denot-
ing the height, W for the width, and 3 for the color chan-
nels, and y ∈ {0, 1}H×W×C with C denoting the number of
segmentation categories. For DA, there are Ns image-label
pairs Xs = {(xs, ys)} in the source domain, and Nt unla-
beled images Xt = {xt} in the target domain. For AL, Na

active samples are selected in the target domain for annota-
tion, where Na ≪ Nt, so that the target-domain data consist
of Na image-label pairs Xt

L = {(xt
L, y

t
L)} and Nt−Na un-

labeled images Xt
U = {xt

U}. Given the scenario, the target
of this work is to optimize the segmentation performance of
M in the target domain while keeping Na small.

3.2. Multi-anchor based Active Sample Selection

Multiple Anchoring Mechanism. In this work, we pro-
pose an efficient anchoring mechanism to model the domain
distributions, and close the gap between network predic-
tions and the anchors by forming compact clusters around
the anchors. Previously, CAG [62] averaged all image-level
features of the source domain to obtain a centroid represent-
ing the entire domain, which implicity assumed a unimodal
distribution. In practice, however, the distribution of a do-
main may actually comprise more than a single mode [9].
Although different images may contain the same categories
of objects (e.g., road, car, human, and vegetable), they can
be classified into various scenes (e.g., highway, uptown, and
suburb) based on their overall representative distributions.
By concatenating the features of different categories into an
image-level ‘connected’ vector, we perform clustering on
them to estimate scene-specific representative distributions
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Figure 2. Overview of the proposed MADA framework.

with cluster centers, denoted as ‘anchors’. We then mea-
sure the distance between each target sample and its nearest
source anchor, and select the furthest samples. Below we
first elaborate our multiple anchoring mechanism (demon-
strated with the source domain), then describe how to use it
for active target sample selection.

As a warm-up, we first employ the common adversarial
training [55] strategy to narrow the gap between the source
and target domains. After that, we freeze the feature en-
coder fE and calculate the feature map F s

c (x
s) of a source

sample xs for a certain category c by:

F s
c (x

s) =
1

|Λs
c|
ysc ⊗ fE (xs)|c , (1)

where ysc denotes the label map for category c, fE (xs)|c
is the networks’ output for category c, ⊗ denotes element-
wise multiplication for extraction of category-exclusive in-
formation, and |Λs

c| is the number of pixels belonging to
the specific category. The final feature vector F s(xs) of the
source image xs is obtained by first flattening the F s

c (x)
of each category into a vector followed by connecting the
vectors of all categories into a long vector. Then, we apply
the K-means method [38] to feature vectors of all source
images to group them into K clusters, by minimizing the
following error:

K∑
k=1

∑
x∈Ck

∥F s(xs)−As
k∥

2
2 , (2)

where ∥·∥22 denotes the L2 distance, and As
k is the centroid

of the cluster Ck:

As
k =

1

|Ck|
∑
x∈Ck

F s(xs), (3)

where |Ck| denotes the number of images belonging to Ck.
The centroids {As

k} are used as the source-domain anchors,
against which the target images will be compared for active
sample selection. Note that the cluster number K is not the
same as the number of segmentation category C, and the
impact of different K is explored in Section 4.6.
Active Target Sample Selection Against Source Anchors.
For single-domain AL, uncertainty-based metrics were ex-
tensively used to select the samples which are the most
difficult to segment [50]. For multi-domain AL, however,
we argue that the more dissimilar the target samples are to
the source-domain, the more complimentary they are to the
segmentation network. Here, we measure the dissimilar-
ity by the distance between the target-domain samples and
the source-domain anchors to assess the importance of unla-
beled target-domain samples to domain adaptation. Specif-
ically, we first calculate the per category feature map of a
target-domain image xt:

F t
c (x

t) =
1

|Λt
c|
ŷtc ⊗ fE

(
xt
)∣∣

c
, (4)

where ŷtc is the predicted label map for category c, and |Λt
c|

is the number of pixels belonging to the specific category
according to ŷtc. Then, we combine F t

c (x
t) of all categories

to obtain the image-level feature vector F t(xt). Eventually,
we calculate the L2 distances from F t(xt) to all source-
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domain anchors, and define the smallest of them as the dis-
tance from the target-domain sample to the source domain:

D(xt) = min
k

∥∥F t(xt)−As
k

∥∥2
2
. (5)

Intuitively, this definition assigns the target-domain sample
to the closest anchor of the source domain’s, which corre-
sponds to a mode in the multimodal source-domain distri-
bution. Based on the distance, we can identify the target-
domain samples that are far away from the entire source
domain and thus are expected to contain target domain spe-
cific information. Therefore, we select them as active sam-
ples and annotate them for subsequent training, hoping to
learn unique components of the target-domain distribution
from these active annotations.

3.3. Semi-supervised Domain Adaptation

Step-1: Injecting Target-domain Specific Knowledge.
The actively selected and annotated target-domain samples
are added to the training process to learn information exclu-
sive to the target domain (Fig. 2(b)). Training data in this
step consist of two parts: the labeled source samples Xs

and the active target samples Xt
L, and the model fE is fine-

tuned with typical cross-entropy based segmentation losses:

Lseg = LCE (xs, ys) + LCE

(
xt
L, y

t
L

)
, (6)

where the cross-entropy loss LCE is defined as:

LCE = − 1

HW

H×W∑
i=1

C∑
c=1

yi,c log (pi,c) , (7)

where yi denotes the label for pixel i, and pi is the proba-
bility predicted by the model fC(fE), and fC is a classifier.
As experimentally validated (Section 4.5), our multi-anchor
based active sample selecting strategy is superior to previ-
ous strategies, and the model gets a steady improvement in
performance with the actively selected samples.
Step-2: Computing Target-domain Anchors and Pseudo
Labels. To fully utilize the unlabeled target data Xt

U , we
use the fine-tuned model to compute pseudo labels {ŷt} for
unlabeled target-domain samples as well as target-domain
anchors {At

v}Vv=1 (Fig. 2(c)), where V represents the num-
ber of target-domain anchors. Notably, as the target-domain
anchors are a potentially biased estimation of the actual
target-domain distribution, it is natural to correct them dy-
namically. As indicated by Xie et al. [58], re-clustering at
each epoch could lead to the collapse of the training process
due to jumps in cluster centroids between epochs. There-
fore, we treat the target-domain anchors as a memory bank,
and employ the exponential moving average (EMA) [54] to
progressively update each anchor in a smooth manner:

At
v = αAt

v + (1− α)F t(xt), (8)

where α is set to 0.999 following [54], and F t(xt) is uti-
lized to update the closest anchor. With both {ŷt} and {At

v}
computed, we proceed to the next step for semi-supervised
domain adaptation.
Step-3: Semi-supervised Adaptation. Lastly, we com-
bine the source data Xs, labeled target samples Xt

L, and
unlabeled target samples Xt

U for a semi-supervised train-
ing (i.e., a further fine-tuning of fE) for domain adaptation
(Fig. 2(d)). Notably, we propose a novel soft alignment loss
to explicitly close the gap between the sample features and
anchors in the target domain:

Lt
dis = V

/∑V

v=1

1

∥F t(xt)−At
v∥

2
2

. (9)

Intuitively, by minimizing the soft alignment loss, features
of the target-domain samples output by the model are drawn
towards the target-domain anchors, encouraging a more
faithful learning of the underlying target-domain distribu-
tion represented by these anchors. Besides, to make a full
use of Xt

U , we exploit the pseudo labels ŷt to provide fur-
ther supervision:

Lpseudo = LCE

(
xt
U , ŷ

t
)
. (10)

Thus, the overall loss function for the semi-supervised
learning can be formulated as:

Lsemi = Lseg + Lt
dis + Lpseudo. (11)

The entire training pipeline is summarized in Algorithm 1.

4. Experiments

4.1. Datasets

To demonstrate the superiority of our proposed method,
two challenging synthia-2-real adaptation tasks, i.e.,
GTA5 [46] → Cityscapes [8] and SYNTHIA [47] →
Cityscapes are applied for evaluation. To be specific:

• GTA5 → Cityscapes: The GTA5 dataset consists of
24,966 synthetic images with 19-class segmentation,
which is consistent with the Cityscapses dataset.

• SYNTHIA → Cityscapes: Following the previous
study [32], the SYNTHIA-RAND-CITYSCAPES set
with 9,400 synthetic images containing 16-class seg-
mentation is utilized for training.

In both sets, Cityscapes serves as the target domain, with
2,975 images for training and 500 images for evaluation.
The segmentation performance is measured with the mean-
Intersection-over-Union (mIoU) [13] metric.
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Table 1. Comparison with other DA methods on the GTA5 to Cityscapes adaptation task. Best results are shown in bold.

GTA5 → Cityscapses

Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
g

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
bi

ke

bi
cy

cl
e

mIoU

AdaptSeg [55] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
CLAN [35] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdvEnt [57] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
BDL [32] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
CAG [62] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
AADA [51] 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3
MADA (Ours) 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9

Table 2. Comparison with other DA methods on the SYNTHIA to Cityscapes adaptation task. Best results are shown in bold.

SYNTHIA → Cityscapses

Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
g

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
bi

ke

bi
cy

cl
e

mIoU mIoU*
AdaptSeg [55] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 - 45.9
CLAN [35] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
AdvEnt [57] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 -
BDL [32] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
CAG [62] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 50.9
AADA [51] 91.3 57.6 86.9 37.6 48.3 45.0 50.4 58.5 88.2 90.3 69.4 37.9 89.9 44.5 32.8 62.5 61.9 66.2
MADA (Ours) 96.5 74.6 88.8 45.9 43.8 46.7 52.4 60.5 89.7 92.2 74.1 51.2 90.9 60.3 52.4 69.4 68.1 73.3

4.2. Implementation Details

We employ the DeepLab v3+ [3] as the feature extractor
fE , which is composed of the backbone ResNet-101 [18]
pretrained on ImageNet [11] and the Atrous Spatial Pyra-
mid Pooling (ASPP) module. The classifier fC is a typical
convolutional layer with C channels and 1 × 1 kernel size
to transform the latent representation to semantic segmen-
tation. During the warm-up, the discriminator fD consists
of 5 convolutional layers of kernel size 3 × 3 and stride
2 with numbers of filters set to {64, 128, 256, 512, 1}. The
first three convolutional layers are followed with a Rectified
Linear Unit (ReLU) layer, while the fourth one is followed
by a leaky ReLU [37] parameterized by 0.2. The proposed
method is implemented on PyTorch with a TITAN Tesla
V100 GPU. The input images are randomly resized with
a ratio in [0.5, 1.5] and then cropped to 896 × 512 pixels.

For warm-up, we train the model for 20 epochs in an
adversarial manner with a cross entropy loss and an adver-
sarial loss weighted by 0.01. For fine-tuning in the second
stage, we use the SGD optimizer to train our model for 50
epochs. The learning rate is initially set to 2.5 × 10−4 and
decayed by poly learning rate policy with a power of 0.9.

Except for the comparison study in Section 4.7, we select
5% target-domain samples as active samples for all exper-
iments , which takes little annotation workload but brings
large performance gain.

4.3. Main Results

As presented in Table 1 and Table 2, the proposed frame-
work is compared with five UDA methods [55, 35, 57, 32,
62] and an active DA approach [51]. As expected, we
observe substantial improvements over the UDA methods,
suggesting that with carefully selected active samples, little
manual annotation workload can lead to large performance
gains. In addition, the proposed method outperforms an-
other active DA method, i.e., AADA, by a large margin
(5.6% mIOU), demonstrating the effectiveness of the pro-
posed multi-anchor strategy. The visualization of three ex-
ample images, which are the same as those in Fig. 1, is dis-
played in Fig. 3 for qualitative comparison. We can observe
that by alleviating the distortion of target features, fewer
segmentation errors as well as more precise boundaries can
be obtained with the proposed MADA method.

4.4. Ablation Study

To verify the effectiveness of each component, we per-
form an ablation study with the following variants: M(0):
the baseline adversarial learning method [55] without any
active annotation; M(1): extending M(0) by additionally
introducing the active samples with cross entropy loss for
training; M(2): extending M(1) by adding the proposed
multi-anchor soft alignment loss on target samples for op-
timization; M(3): extending M(2) by progressively updat-
ing the target anchors with EMA; M(4): adding the pseudo
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Figure 3. Qualitative results of DA segmentation for GTA5 → Cityscapes. For each image, we show the results of the typical adversarial
method [55], state-of-the-art UDA method [62] and our proposed MADA, respectively. The black region in “Ground truth” is excluded
from evaluation because it does not belong to any of the 19 classes.

Algorithm 1 Multi-anchor Active Domain Adaptation
(MADA)
Notation: Source-domain set {(xs, ys)}, selected active sample

set
{(

xt
L, y

t
L

)}
, and unlabeled target-domain set

{
xt
U

}
. En-

coder fE , feature vector set of the source domain {F s(xs)}
and feature vector set of the target domain

{
F t(xt)

}
. Num-

ber of iterations N .
Stage 1:

1: Warm-up fE with adversarial training [55] to obtain
{F s(xs)}.

2: Apply K-means on {F s(xs)} to group the source-domain
samples into K clusters;

3: Compute the centroid As
k of the clusters (Eq. (3)) to serve as

the source-domain anchors;
4: Calculate the distance from each target-domain sample to

{As
k} (Eq. (5));

5: Select 5% target-domain samples with the smallest distances
as active samples for annotation, getting set

{(
xt
L, y

t
L

)}
.

Stage 2:
6: Fine-tune fE with both {(xs, ys)} and

{(
xt
L, y

t
L

)}
by mini-

mizing Lseg (Eq. (6)), and obtain
{
F t(xt)

}
;

7: Initialize At
v with K-means clustering on

{
F t(xt)

}
;

8: for i = 1, ..., N do
9: Calculate Lseg (Eq. (6)) with {(xs, ys)} and

{(
xt
L, y

t
L

)}
;

10: Calculate Lt
dis (Eq. (9)) with

{
xt
}

and Lpseudo (Eq. (10))
with

{
xt
U

}
;

11: Update fE by gradient descending ∇(Lseg + Lt
dis +

Lpseudo) (Eq. (11));
12: Update At

v with EMA (Eq. (8));
13: end for

label loss for optimization in addition to M(3); M(u): per-
forming fully-supervised segmentation with the annotation
of both the source and target datasets as the upper bound. As
shown in Table 3, the consistent and notable improvements
from M(0) to M(4) on two public datasets demonstrate the
effectiveness of each strategy. Furthermore, MADA with
only 5% of the target-domain samples actively annotated
achieves a comparable performance with that of the upper

Table 3. Ablation study. G → C denotes the GTA5 → Cityscapes
scenario and S → C denotes the SYNTHIA → Cityscapes sce-
nario.

G → C S → C

Method A B C D mIoU mIoU
M(0) 42.5 42.9
M(1) ✓ 61.6 65.0
M(2) ✓ ✓ 63.2 66.6
M(3) ✓ ✓ ✓ 63.8 67.6
M(4) ✓ ✓ ✓ ✓ 64.9 68.1
M(u) 69.3 70.8

A: Training with active samples
B: Soft-anchor alignment loss
C: Updating target anchor with EMA
D: Pseudo training for unlabled target samples

bound, suggesting that the proposed framework can select
complimentary samples to effectively close the gap between
UDA and full supervision.

The visualization of the feature distribution with/without
active learning is presented in Fig 1. With the proposed
MADA framework, the target-specific information can be
maintained as its original multimodal distribution.

4.5. Comparison of Sample Selection Methods

The performance of active learning depends heavily on
the sample selection methods. On Table 4, we compare the
proposed anchor-based method with the following popu-
lar sample selection approaches on the GTA5 to Cityscapes
adaptation task.
Random Selection. Samples are randomly selected with
equal probability from the target domain.
Entropy-based Uncertainty Method. The AdvEnt [57] is
applied to obtain the prediction map entropy of each sample
in the target domain and the ones with top 5% entropy are
chosen for manual annotation:

Eent =
−1

log(C)

C∑
c=1

H×W∑
i=1

pti,c log(p
t
i,c). (12)
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Table 4. Experiments on different active sample selection methods. Best results are shown in bold.

GTA5 → Cityscapses

Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
g

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
bi

ke

bi
cy

cl
e

mIoU
Random 92.8 64.5 85.8 38.0 34.8 43.7 50.1 56.9 87.9 40.4 87.7 69.0 30.8 89.4 51.1 43.8 21.7 29.9 59.4 56.7
Entropy [57] 93.9 65.4 87.7 42.2 48.4 46.7 47.3 57.0 88.5 44.3 90.4 70.8 32.8 90.0 53.8 49.9 30.0 41.1 63.6 60.2
Adversarial [55] 91.8 59.2 87.5 37.8 45.2 45.5 51.5 56.9 88.5 43.0 90.3 69.0 37.1 89.9 54.5 46.1 35.9 28.1 61.3 58.9
AADA [51] 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3
Proposed 92.4 61.4 87.4 39.5 45.9 45.2 50.6 57.5 87.8 42.4 89.2 72.7 44.9 90.0 54.7 50.5 43.4 47.8 66.9 61.6

Adversarial-based Diversity Method. With the discrimi-
nator fD trained in the warm-up stage as [55], we select the
samples with least predicted probabilities, i.e., the ones that
are most distinguishable from the source domain:

Eadv =
1− fD(fE(x

t)

fD(fE(xt))
. (13)

AADA Method. In addition to the discriminator-based di-
versity, the AADA [51] method also takes the certainty of
prediction into consideration:

EAADA = EentEadv. (14)

Note that for a fair comparison, all the comparison ex-
periments are subject to the same experimental setup. The
same percentage of active samples, 5%, are selected, while
no unlabeled samples are used for optimization. We can ob-
serve that the proposed multi-anchor strategy delivers the
best segmentation performance in mIoU, suggesting that
better active samples are selected by our proposed strategy.

4.6. Impact of the Number of Anchors

We evaluate the impact of different anchor numbers on
modeling the source and target domains with the GTA5 to
Cityscapes adaptation task, where the number of anchors
varies from 1 to 100 in both domains. As shown in Fig. 4,
for both domains, using multiple anchors was consistently
better than using a single centroid, and using 5–10 anchors
stably yielded superior performance. This might be because
there are only limited types of scenarios in these datasets,
and a few anchors are sufficient to represent their distri-
butions. We therefore use 10 clusters considering the top
performance in both domains.

4.7. Impact of the Number of Active Samples

In order to verify the stability of our proposed method,
comparative experiments for different percentages of active
samples are conducted. As shown in Table 5, as the per-
centage of samples increases from 1% to 20%, the mIoU
increases steadily from 56.7% to 64.1%. We also introduce
the upper bound by optimizing with all target labels, the nar-
row gap of 7.7% in mIoU between using only 5% of target-
domain data for AL and the upper bound demonstrates that

the proposed method can effectively exploit the information
from active samples.

Table 5. Experiments on different number of active samples.
GTA5 → Cityscapse

Percentage 1% 2% 5% 10% 20% 100%
mIoU 56.7 59.1 61.6 62.7 64.1 69.3

mIoU Gap −12.6 −10.2 −7.7 −6.6 −5.2 -

Figure 4. Experiments on different number of anchors for the
source domain (a) and target domain (b).

5. Conclusion
In this paper, we proposed the Multi-anchor Active Do-

main Adaptation (MADA) framework, for distortion-free
source-to-target domain adaptation of segmentation mod-
els at minimal annotation cost. MADA introduced anchor-
based active sample selection into DA, for selection of lim-
ited target-domain samples that were most complementary
to the source-domain distribution and meanwhile unique
to the target-domain distribution. Adding active annota-
tion of these selected target-domain samples for training
can effectively prevent distortion of the target-domain dis-
tribution that could otherwise happen in typical UDA meth-
ods. Different from previous works which assumed uni-
modal distributions for both the source and target domains,
MADA proposed to use multiple anchors to realize mul-
timodal distributions for both domains. On top of that,
MADA further proposed a multi-anchor soft-alignment loss
to explicitly push the target-domain features towards these
anchors, for full utilization of the unlabeled target-domain
samples. Experimental results on two public benchmark
datasets demonstrated the effectiveness of (i) introducing
AL into DA, (ii) multiple anchors versus a single centroid,
and (iii) adding the soft-alignment loss, as well as the supe-
rior performance of MADA towards existing state-of-the-art
UDA and active DA methods.

9119



References
[1] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-

Chen Chiu. All about structure: Adapting structural infor-
mation across domains for boosting semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1900–1909, 2019.

[2] Rita Chattopadhyay, Wei Fan, Ian Davidson, Sethuraman
Panchanathan, and Jieping Ye. Joint transfer and batch-mode
active learning. In International Conference on Machine
Learning, pages 253–261, 2013.

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018.

[4] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
Luc Van Gool. Domain adaptive faster r-cnn for object de-
tection in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3339–3348,
2018.

[5] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,
Yu-Chiang Frank Wang, and Min Sun. No more discrimina-
tion: Cross city adaptation of road scene segmenters. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1992–2001, 2017.

[6] Sungha Choi, Joanne T Kim, and Jaegul Choo. Cars can’t
fly up in the sky: Improving urban-scene segmentation
via height-driven attention networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9373–9383, 2020.

[7] David A Cohn, Zoubin Ghahramani, and Michael I Jordan.
Active learning with statistical models. Journal of artificial
intelligence research, 4:129–145, 1996.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016.

[9] Hengji Cui, Dong Wei, Kai Ma, Shi Gu, and Yefeng Zheng.
A unified framework for generalized low-shot medical im-
age segmentation with scarce data. IEEE Transactions on
Medical Imaging, 2020.

[10] Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for
active learning. In Proceedings of the 25th international con-
ference on Machine learning, pages 208–215, 2008.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[12] Suyog Dutt Jain and Kristen Grauman. Active image seg-
mentation propagation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2864–2873, 2016.

[13] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. Inter-
national journal of computer vision, 111(1):98–136, 2015.

[14] Alexander Freytag, Erik Rodner, and Joachim Denzler. Se-
lecting influential examples: Active learning with expected
model output changes. In European Conference on Com-
puter Vision, pages 562–577. Springer, 2014.

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016.

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE, 2012.

[17] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain
adaptation for large-scale sentiment classification: A deep
learning approach. In ICML, 2011.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[19] Geoffrey Hinton and Sam T Roweis. Stochastic neighbor
embedding. In NIPS, volume 15, pages 833–840. Citeseer,
2002.

[20] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
International conference on machine learning, pages 1989–
1998. PMLR, 2018.

[21] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.
Fcns in the wild: Pixel-level adversarial and constraint-based
adaptation. arXiv preprint arXiv:1612.02649, 2016.

[22] Steven CH Hoi, Rong Jin, Jianke Zhu, and Michael R Lyu.
Semisupervised svm batch mode active learning with appli-
cations to image retrieval. ACM Transactions on Information
Systems (TOIS), 27(3):1–29, 2009.

[23] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active
learning by querying informative and representative exam-
ples. Advances in neural information processing systems,
23:892–900, 2010.

[24] Sheng-Jun Huang, Jia-Wei Zhao, and Zhao-Yang Liu. Cost-
effective training of deep cnns with active model adapta-
tion. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages
1580–1588, 2018.

[25] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 172–189, 2018.

[26] Wei Ji, Jingjing Li, Shuang Yu, Miao Zhang, Yongri Piao,
Shunyu Yao, Qi Bi, Kai Ma, Yefeng Zheng, Huchuan Lu,
and Li Cheng. Calibrated rgb-d salient object detection. In
CVPR, pages 9471–9481, June 2021.

[27] Wei Ji, Jingjing Li, Miao Zhang, Yongri Piao, and Huchuan
Lu. Accurate RGB-D salient object detection via collabora-
tive learning. In ECCV, pages 52–69, 2020.

9120



[28] Wei Ji, Shuang Yu, Junde Wu, Kai Ma, Cheng Bian, Qi
Bi, Jingjing Li, Hanruo Liu, Li Cheng, and Yefeng Zheng.
Learning calibrated medical image segmentation via multi-
rater agreement modeling. In CVPR, pages 12341–12351,
June 2021.

[29] Christoph Kading, Alexander Freytag, Erik Rodner, Paul
Bodesheim, and Joachim Denzler. Active learning and dis-
covery of object categories in the presence of unnameable
instances. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4343–4352,
2015.

[30] Chieh-Chi Kao, Teng-Yok Lee, Pradeep Sen, and Ming-Yu
Liu. Localization-aware active learning for object detection.
In Asian Conference on Computer Vision, pages 506–522.
Springer, 2018.

[31] David D Lewis and Jason Catlett. Heterogeneous uncertainty
sampling for supervised learning. In Machine learning pro-
ceedings 1994, pages 148–156. Elsevier, 1994.

[32] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional
learning for domain adaptation of semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6936–6945, 2019.

[33] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation net-
works. In International conference on machine learning,
pages 97–105. PMLR, 2015.

[34] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation net-
works. In International conference on machine learning,
pages 2208–2217. PMLR, 2017.

[35] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi
Yang. Taking a closer look at domain shift: Category-level
adversaries for semantics consistent domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2507–2516, 2019.

[36] Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi
Zhang, Xingle An, Congcong Wang, Qiyuan Wang, Xin Liu,
et al. Abdomenct-1k: Is abdominal organ segmentation a
solved problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[37] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, page 3. Citeseer, 2013.

[38] James MacQueen et al. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA,
1967.

[39] Hieu T Nguyen and Arnold Smeulders. Active learning us-
ing pre-clustering. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 79, 2004.

[40] Munan Ning, Cheng Bian, Donghuan Lu, Hong-Yu Zhou,
Shuang Yu, Chenglang Yuan, Yang Guo, Yaohua Wang, Kai
Ma, and Yefeng Zheng. A macro-micro weakly-supervised
framework for as-oct tissue segmentation. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 725–734. Springer, 2020.

[41] Munan Ning, Cheng Bian, Dong Wei, Shuang Yu,
Chenglang Yuan, Yaohua Wang, Yang Guo, Kai Ma, and
Yefeng Zheng. A new bidirectional unsupervised domain
adaptation segmentation framework. In International Con-
ference on Information Processing in Medical Imaging,
pages 492–503. Springer, 2021.

[42] Munan Ning, Cheng Bian, Chenglang Yuan, Kai Ma, and
Yefeng Zheng. Ensembled resunet for anatomical brain bar-
riers segmentation. Segmentation, Classification, and Regis-
tration of Multi-modality Medical Imaging Data, 12587:27,
2021.

[43] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit.
Hands deep in deep learning for hand pose estimation. arXiv
preprint arXiv:1502.06807, 2015.

[44] Yongri Piao, Wei Ji, Jingjing Li, Miao Zhang, and Huchuan
Lu. Depth-induced multi-scale recurrent attention network
for saliency detection. In ICCV, pages 7254–7263, 2019.

[45] Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, and
Hong-Jiang Zhang. Two-dimensional active learning for im-
age classification. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[46] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European conference on computer vision, pages
102–118. Springer, 2016.

[47] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234–3243,
2016.

[48] Tobias Scheffer, Christian Decomain, and Stefan Wrobel.
Active hidden markov models for information extraction. In
International Symposium on Intelligent Data Analysis, pages
309–318. Springer, 2001.

[49] Burr Settles. Active learning literature survey. Technical re-
port, University of Wisconsin-Madison Department of Com-
puter Sciences, 2009.

[50] Yawar Siddiqui, Julien Valentin, and Matthias Nießner.
Viewal: Active learning with viewpoint entropy for semantic
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9433–
9443, 2020.

[51] Jong-Chyi Su, Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu,
Subhransu Maji, and Manmohan Chandraker. Active adver-
sarial domain adaptation. In The IEEE Winter Conference on
Applications of Computer Vision, pages 739–748, 2020.

[52] Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In European con-
ference on computer vision, pages 443–450. Springer, 2016.

[53] Qing Sun, Ankit Laddha, and Dhruv Batra. Active learning
for structured probabilistic models with histogram approxi-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3612–3621, 2015.

[54] Antti Tarvainen and Harri Valpola. Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. arXiv preprint
arXiv:1703.01780, 2017.

9121



[55] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7472–7481,
2018.

[56] Alexander Vezhnevets, Vittorio Ferrari, and Joachim M Buh-
mann. Weakly supervised structured output learning for se-
mantic segmentation. In 2012 IEEE conference on computer
vision and pattern recognition, pages 845–852. IEEE, 2012.

[57] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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Thomas Natschläger, and Susanne Saminger-Platz. Central
moment discrepancy (cmd) for domain-invariant representa-
tion learning. arXiv preprint arXiv:1702.08811, 2017.

[60] Miao Zhang, Wei Ji, Yongri Piao, Jingjing Li, Yu Zhang,
Shuang Xu, and Huchuan Lu. LFNet: Light field fusion net-
work for salient object detection. IEEE Transactions on Im-
age Processing, 29:6276–6287, 2020.

[61] Miao Zhang, Jingjing Li, Wei Ji, Yongri Piao, and Huchuan
Lu. Memory-oriented decoder for light field salient object
detection. In NeurIPS, pages 896–906, 2019.

[62] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Cat-
egory anchor-guided unsupervised domain adaptation for se-
mantic segmentation. In Advances in Neural Information
Processing Systems, pages 435–445, 2019.

[63] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017.

9122


