
Generative Layout Modeling using Constraint Graphs

Wamiq Para1 Paul Guerrero2 Tom Kelly3 Leonidas Guibas4 Peter Wonka1
1KAUST 2Adobe Research 3 University of Leeds 4 Stanford University

{wamiq.para, peter.wonka}@kaust.edu.sa guerrero@adobe.com twakelly@gmail.com guibas@cs.stanford.edu

Abstract

We propose a new generative model for layout generation.
We generate layouts in three steps. First, we generate the
layout elements as nodes in a layout graph. Second, we
compute constraints between layout elements as edges in
the layout graph. Third, we solve for the final layout using
constrained optimization. For the first two steps, we build
on recent transformer architectures. The layout optimiza-
tion implements the constraints efficiently. We show three
practical contributions compared to the state of the art: our
work requires no user input, produces higher quality layouts,
and enables many novel capabilities for conditional layout
generation.

1. Introduction
We study the problem of topologically and spatially con-

sistent layout generation. This problem arises in image lay-
out synthesis, floor plan synthesis, furniture layout genera-
tion, street layout planning, and part-based object creation,
to name a few. Generated content must meet stringent crite-
ria both globally, in terms of its overall topological structure,
as well as locally, in terms of its spatial detail. While our
work applies to layouts in general, we focus our discussion
on two types of layouts: floorplans and furniture layouts.

When assessing layouts, we must consider the global
structure which is largely topological in nature, such as con-
nectivity between individual elements or inter-element hop
distance. We are also concerned with spatial detail, such as
the geometric realization of the elements and their relative
positioning, both local and non-local. Realism of such gener-
ated content is often assessed by comparing distributions of
their properties, both topological and spatial, against those
from real-world statistics.

Techniques to generate realistic content have made rapid
progress in recent years due to the emergence of generative
adversarial networks (GANs) [13, 71, 24, 57], variational
autoencoders (VAEs) [27, 53], flow models [48, 63, 53], and
autoregressive models [8]. However, satisfying both topolog-
ical and spatial properties still remains an open challenge.

Living
room

Bedroom Kitchen Bathroom Office Balcony Hallway Other

Figure 1. We present a method for layout generation. Our approach
can generate multiple types of layouts, such as the floor plans
in the top row, where rooms are colored by type, and furniture
layouts in the bottom row, where furniture pieces are colored by
type. Layouts are represented as graphs, where nodes correspond
to layout elements and edges to relationships between elements.
In the top row, nodes represent rooms (illustrated with room-type
icons), and edges relate rooms connected by doors (dotted lines).
Unlike previous methods, our method does not require any input
guidance and generates higher-quality layouts.

Recently, three papers targeting this challenging problem
in the floor plan setting were published [61, 16, 38]. While
these papers often produce good looking floor plans, they
require several simplifications to tackle this difficult problem:
1) RPLAN [61] and Graph2Plan [16] require the outline
of the floorplan to be given. 2) HouseGAN [38] does not
generate the connectivity between rooms that would be given
by doors, and RPLAN places doors using a manually defined
heuristic that is not learned from data. 3) HouseGAN and
Graph2Plan require the number of rooms, the room types
and their topology to be given as input in the form of an
adjacency graph. 4) All three methods require a heuristic

6690

post-process that is essential to make the floorplan look more
realistic, but that is not learned from data, such as adding
doors and windows (RPLAN), or fixing gaps and overlaps
(HouseGAN). In addition, there is still a lot of room to
improve the quality and realism of the results.

In this paper, we would like to explore two ideas to im-
prove upon this exciting initial work. First, after extensive
experiments with many variations of graph-based GANs and
VAEs, we found that these architectures are not well suited
to tackle the problem. It is our conjecture that these methods
struggle with the discrete nature of graphs and layouts. We
therefore propose an auto-regressive model using attention
and self-attention layers. Such an architecture inherently
handles discrete data and gives superior performance to
current state of the art models. While transformer-based
auto-regressive models [55] just started to compete with
GANs built on CNNs in image generation [41, 7] on the
ImageNet [10] dataset, we will show that the gap between
these two competing approaches for layout generation is
significant.

Second, we explore the idea of generative modeling using
constraint generation. We propose to model layouts with
autoregressive models that generate constraint graphs: indi-
vidual shapes are nodes and edges between nodes specify
constraints. Our auto-regressive model first generates initial
nodes, that are subsequently optimized to satisfy constraint
edges generated by a second auto-regressive model. These
models can be conditioned on additional constraints pro-
vided by the user. This enables various forms of conditional
generation and user interaction, from satisfying constraints
provided by the user, to a fully generative model that gener-
ates constraints from scratch without user interaction. For
example, a user can optionally specify a floorplan boundary,
or a set of rooms.

In summary, we introduce two main contributions: 1) A
transformer-based architecture for generative modeling of
layouts that produces higher quality layouts than previous
work. 2) The idea of a generative model that generates
constraint graphs and solves for the spatial shape attributes
via optimization, rather than outputting shapes directly.

We demonstrate our approach in the context of floor plan
generation by creating room layouts and furniture layouts
for apartments (see Figure 1). Our evaluation shows that our
generative model allows layout creation that matches both
global and local statistics of real-world data much better than
competing work.

2. Related Work

We will discuss image-based generative models, graph-
based generative models, and finally models specialized to
layout generation.

2.1. Image-based Generation

A straight-forward approach to generate a layout is to rep-
resent it as an image and use traditional generative models
for image synthesis. The most promising approach are gener-
ative adversarial networks (GANs) [13, 22, 70, 4, 24, 25, 23].
Image-to-image translation GANs [18, 71, 72, 17, 73, 49]
could also be useful for layout generation, e.g., as demon-
strated in this project [5]. Alternatively, modern varitional
autoencoder, such as NVAE [53] or VQ-VAE2 [47] are also
viable options. Autoregressive models, e.g. [8], also showed
impressive results on large-scale datasets. When experiment-
ing with image-based GANs, we noticed that they fail to
respect the relationships between elements and that they
cannot preserve certain shapes (e.g. axis-aligned polygons,
sharp corners).

2.2. Graph-based Generation

In order to capture relationships between elements, vari-
ous graph-based generative models have been proposed [57,
28, 51, 67, 31, 29, 40]. However, purely graph-based ap-
proaches only generate the graph topology, but are missing
the spatial embedding. The specialized layout generation
algorithms described next often try to combine graph-based
and spatial approaches.

2.3. Specialized Layout Generation

Before the rise of deep learning, specialized layout gen-
eration approaches have been investigated in numerous do-
mains, including street networks [64, 43], parcels [2, 54],
floor plans [60], game levels [66], furniture placements [68],
furniture and object arrangements [12], and shelves [32].
Different approaches have been proposed for layout gen-
eration, such as rule-based modeling [45, 36], stochastic
search [35, 69, 66], or integer programming [44, 43, 60], or
graphical models [34, 11, 6, 21, 12, 65].

In recent years, most of the focus has shifted to applying
deep learning to layout generation. A popular and effective
technique places elements one-by-one, [59, 20, 9], while
a different approach first generates a layout graph and then
instantiates elements according to the graph [19, 58, 1]. Both
of these approaches are problematic in layouts such as floor
plans, that have many constraints between elements, such
as zero-gap adjacency and door connectivity. In such a
settings it is non-trivial to a) train a network to generate
constraints that admit a solution, and b) find elements that
satisfy the constraints in a single forward pass. Recently
proposed methods [61, 16, 38] circumvent these problems by
requiring manual guidance as input, or by requiring manual
post-processing. Due to these requirements, these methods
are not fully generative. Recently, Nash et al. introduced
PolyGen [37], a method to generate graphs of vertices that
form meshes with impressive detail and accuracy. We base
our method on a similar architecture, but generate layout

6691

1) Element Constraint Generation 2) Edge Generation 3) Optimization

N1

N2

N3

N1

N2

N3 N4

fN

fN

fN

fN

Transformer

...

R1

R2

R3

R1

R2

R3 R4

fR

fR

fR

fR

Pointer Network

...

N1

N2

N3

N4

N5

C

C

C

C

C

C

C

C C s.t. and allC C

R1

R2

R3

R1

R2

R3 R4

fR

fR

fR

fR

Pointer Network

...

C

Figure 2. Overview of our layout generation approach. We generate constraints on the parameters of layout elements with a Transformer [55],
and constraints on multiple types of relationships between elements using Pointer Networks [56]. Both element and relationship constraints
are used in an optimization to create the final layout.

constraints instead of directly generating the final layout.
Layout elements are then found in an optimization step based
on the generated constraints. This gives us layouts where
elements accurately satisfy the constraints.

3. Method

We present a generative model for layouts that can option-
ally be conditioned on constraints given by the user. Figure 2
illustrates our approach. Layouts are represented as graphs,
where nodes correspond to discrete elements of the layout,
and edges represent relationships between the elements. We
distinguish two types of edges: Constraining edges describe
desirable relationships between element parameters, such as
an adjacency between a bedroom and a bathroom in a floor
plan, and can be used to constrain these parameters. Descrip-
tive edges represent additional properties of the layout that
are not given by the elements, but can be useful for down-
stream tasks, such as the presence of a door between two
rooms of a floor plan where the elements consist of rooms.
Section 3.1 describes this layout representation.

A generative model can be trained to generate both layout
elements and edges. However, generated elements and gen-
erated constraining edges are not guaranteed to match. For
example, two elements that are connected by an adjacency
edge can often be separated by a gap, or can have overlaps.
As the number of constraining edges increases, the prob-
lem of generating a compatible set of edges and elements
becomes increasingly difficult to solve in a forward pass of
the generative model. This has been a major limitation in
previous work.

We introduce two contributions over previous layout gen-
eration methods. First, we show that a two-step autoregres-
sive approach inspired by PolyGen [37] that first generates
elements and then edges is particularly suitable for layout
generation and performs significantly better than current
methods. We describe this approach in Sections 3.2 and 3.3.

Second, we treat element parameters and constraining
edges that were generated in the first two steps as constraints
and optimize element parameters to satisfy the generated
constraints in a subsequent optimization step. In floor plans,
for example, we generate constraints on the maximum and

minimum widths and heights of room areas and on their adja-
cency, and then solve for their locations, widths and heights
in the optimization step. This minimizes any discrepancies
between constraining edges and element parameters. We
describe the optimization in Section 3.4. In Section 3.5, we
describe how to condition on user-provided constraints.

3.1. Layout Representation

We represent layouts as a graph L = (N,R), where
nodes correspond to layout elements N and edges to their re-
lationships R. Each layout elementN ∈ N has a fixed set of
domain-specific parameters. Relationship edges R ∈ R are
chosen from a fixed set of edge types ρ and describe the pres-
ence of that edge between two elements R = (Ni, Nj , ρ).
Edges come in two groups, based on their types: constraining
edges RC that provide constraints for the optimization step,
and descriptive edges RD that provide additional informa-
tion about the layout. We consider two main layout domains
in our experiments: floor plans and furniture layouts, but
will only focus on floor plans here. Furniture layouts are
described in the supplementary material.

In floor plans, each layout element is a rectangular region
of a room N = (τ, x, y, w, h), parameterized by the type of
room τ , the lower-left corner of the rectangular region (x, y),
and the width and height (w, h) of the region. Two types of
edges in RC define horizontal and vertical adjacency con-
straints between elements, while two types of edges in RD,
define the presence of a wall between two adjacent elements,
and the presence of a door between two adjacent elements.
Multiple elements of the same type that are adjacent and not
separated by a wall form a room. The set of all elements fully
cover the floor plan. An example is shown in Figure 3, left.
More details on both representations, including a full list of
all element types, are given in the supplementary material.

3.2. Element Constraint Model

An element constraint NC is defined as a tuple of target
values for one or more of the parameters of element N . In
the optimization, we will use these values as soft constraints
for the corresponding parameters. We create one set of
constraints for each element N of the layout. In floor plans,

6692

1

2

3

4

5

6

7

8

9

10

11

12

13 14

Element constraint sequence
value
index
type ti

i

vi

elem. emb. n2 n9 n10 n3 n5 n6

Horiz. adjacency edge sequence

w11 h1 w22 h2 s...
...
...

...

...

...
1 2 3 4 5 6
1 2 3 1 2 3

MN

0

e
index i

nji ... s
M

type ti
...
...1 2

1 2 3 4 5 6 7
2 1 2 20 0

elem. emb. n3 n5

Door edge sequence

index i

nji ... s
M

type ti
...
...

n7 n8

1 2 1 2

n9 n10

1 2
1 2 3 4 5 6

0

Figure 3. Example floor plan layout and its sequence encoding.
Rooms are represented by rectangles, which are numbered and
colored by room type for illustration (white for the exterior). Edges
either constrain rectangles, like the red adjacency edges, or add
information to the layout, like the blue door edges. Both are en-
coded into sequences that can be ingested by our autoregressive
sequence-to-sequence models.

for example, we create constraints NC = (τ, w, h) for the
type, width, and height of each element. All continuous
values are treated as range constraints, i.e. the actual values
may be within the range ±εvC of the constraint value vC

(we set ε = 0.1 in our experiments). We use a transformer-
based [55] autoregressive sequence-to-sequence model to
generate these element constraints.

Sequence encoding The goal of our element constraint
model is to learn a distribution over constraint sequences.
To flatten our list of element constraints into a sequence of
tokens, we order them from left to right first (small to large
x) and top to bottom (small to large y) for elements with
the same x coordinate. The ordered constraint tuples are
concatenated to get a sequence of constraint values SE =
(vi)

kMN
i=1 , where MN is the number of elements in the layout

and k the number of properties per element. Following
PolyGen [37] we use two additional inputs per token in the
sequence: the sequence index i and the type ti of each value.
Type ti is the index of a constraint value inside its constraint
tuple and indicates the type of the value (x-location, height,
angle, etc.). Finally, we add a special stopping token s as last
element of the sequence to indicate the end of the sequence.

Autoregressive Model Our element constraint model fNθ
models the probability of a sequence by its factorization into
step-wise conditional probabilities:

p(SN ; θ) =

kMN∏
i=1

p(vi|v<i; θ), (1)

where θ are the parameters of the model. Given a par-
tial sequence v<i, the model predicts a distribution over
values for the next token in the sequence p(vi|v<i; θ) =
fNθ (v<i, (1 . . . i− 1), t<i), that we can sample to obtain vi.

We implement fθ with a small version of GPT-2 [46] that
has roughly 10 million parameters. For architecture details,
please refer to Section 3.6 and the supplementary material.

Coordinate Quantization We apply 6-bit quantization for
all coordinate values and learn a categorical distribution over
the discrete constraint values in each step of the model. Nash
et al. [37] have shown that this improves model performance,
since it facilitates learning distributions with complex shapes
over the constraint values.

3.3. Edge Model

We generate relationship edges R between elements.
These edges can be split into two sets: constraining edges
RC constrain element parameters during the optimization
step, while descriptive edges RD add information to the lay-
out that may be needed in down-stream tasks. In floor plans,
for example, adjacency edges constrain the optimization,
while door and wall edges are needed to define walls and
doors. We use an autoregressive sequence-to-sequence ar-
chitecture based on PointerNetworks [56] to generate edges.
We train one model for each of the edge types described
in Section 3.1, each models the distribution for one type of
edge. All models have the same architecture, but do not
share weights.

Sequence Encoding To flatten the list of edges R =
(Ni, Nj , ρ) of any given type ρ, we first sort them by the
index of the first element i, then by the index of the second
element j. We then concatenate the constraints NC

i , NC
j

corresponding to the elements Ni, Nj in each edge to get
a sequence of element constraints. We use a learned em-
bedding nρj = gφρ(N

C
j), giving us a sequence of element

embeddings Sρ = (nρji)
2Mρ

i=1 , where Mρ is the number of
edges of a given type ρ. Two additional inputs are added for
each token: the index i and the type ti, indicating if a token
corresponds to the source or target element of the edge. The
last token in the sequence is the stopping token s.

Due to our ordering, groups of edges that share the same
source element Ni, are adjacent in the list. For types of
edges where these groups are large, that is, where many
edges share the same source element, we can shorten the
sequence by including the constraint of a source element
only once at the start of the group, and then listing only the
constraints of the target elements Nj that are connected to
this source element. The end of a group is indicated by a
special token e. We use this shortened sequence style for the
adjacency edges of floor plans.

Autoregressive Model Similar to the element constraint
model, the probability of an edge sequence Sρ is modeled
by a factorization into step-wise conditional probabilities.

6693

Unlike the element constraint model, however, the edge
model fRφρ outputs a pointer embedding [56]:

qρi = fRφρ(n
ρ
j<i
, (1 . . . i− 1), t<i). (2)

We compare this pointer embedding to all element embed-
dings using a dot-product to get a probability distribution
over elements:

p(nρji=n
ρ
k|n

ρ
j<i

;φρ) = softmaxk
(
(qρi)

Tnk
)

(3)

that we can sample to get the index of the next element
constraint in the sequence.

3.4. Optimizing Layouts

We formulate a Linear Programming problem [3] that reg-
ularizes the layout while satisfying all generated constraints:

min
N

o(N)

s.t. NC are satisfied and

RC are satisfied,

(4)

where o(N) is a regularization term. In floor plans, for
example, we minimize the perimeter of the floor plan
o(N) =W +H , where W and H are the width and height
of the floor plan’s bounding box. This effectively minimizes
the size of the layout, while keeping the optimization prob-
lem linear. This regularization encourages compactness and
a bounded layout size, favoring layouts without unnecessary
gaps and holes. The definition of the constraints depend on
the type of layout.

In floor plans, the x, y, w, h parameters of each element
are bounded between their maximum and minimum values;
we use [0, 64] as bounds in our experiments. Each element
constraint NC adds constraints of the form vC(1 − ε) ≤
v ≤ vC(1 + ε), for each value vC in the element constraint
NC and corresponding value v in the element N . In our
experiments, we set ε = 0.1. Horizontal adjacency edges
R = (Ni, Nj , ρ) add constraints of the form xi + wi = xj ,
and analogously for vertical adjacency edges.

The layout width W is computed by first topologically
sorting the elements in the subgraphs formed by horizontal
adjacency edges, and then defining W := xm + wm for the
last (right-most) element Nm in the topological sort. H is
computed analogously. Note that we do not define W :=
maxi xi + wi to avoid the additional constraints needed
to optimize over the maximum of a set. A detailed list of
constraints for furniture layouts is given in the supplementary
material. The challenge of designing the optimization is to
keep the optimization fast and simple and to make it work in
conjunction with the neural networks.

3.5. User-provided Constraints

We can condition our models on any user-provided ele-
ment constraints that we can encode into a sequence. We
add an encoder to both the element constraint model and
the edge model, following the encoder/decoder architecture
described in [55]. The encoder takes as input a flattened se-
quence of user-provided constraints, enabling cross-attention
from the sequence that is currently being generated to the list
of user constraints. Note that the user-provided constraints
do not have to represent the same quantities as the output
sequence. In floor plans, for example, we can condition both
the element constraint model and the edge model on a list of
room types, room areas and/or a floor plan boundary.

3.6. Network Architecture

Our models use the Transformer [55] as a building block.
Our Element Constraint Model and the Edge model are very
similar to the Vertex and Face models from PolyGen [37] in
organization. The building block for the Transformers them-
selves is based on the GPT-2 model, specifically, we use the
GELU activation [14], Layer Norm [62] and Dropout. For a
complete description, please refer to the supplementary.

We implemented our models in Pytorch[42]. Our models
and sequences are small enough so we train on a single
NVIDIA-V100 GPU with 32 GB memory. We use the Adam
[26] optimizer, with a constant learning-rate of 10−4, and
linear warmup for 500 iterations. The element generation
model is trained for 40 epochs, while the other models are
trained for 80 epochs. It takes approximately 6 hours to train
for our largest model for constrained generation.

The inference time depends on the type of sequence being
sampled. Our large sequences have about 250 tokens. For
this sequence length, generating a batch of 100 element
constraint sequences takes about 10s. Given the element
constraint sequence, all types of edges can be sampled in
parallel. Edge models are larger and need about 60s for a
batch of 100 sequences.

4. Results
We evaluate free generation of layouts, generation con-

strained by a given boundary, and generation constrained by
additional user-provided constraints. We will focus on floor
plans in this section. Furniture layouts are evaluated in the
supplementary material.

Datasets We train and evaluate on two floor plan datasets.
The RPLAN dataset [61] contains 80k floor plans of apart-
ments or residential buildings in an Asian real estate market
between 60m2 to 120m2. The LIFULL dataset [39] contains
61k floor plans of apartments from the Japanese housing
market. The apartments in this dataset tend to be more com-
pact. The original dataset is given as heterogeneous images,

6694

Table 1. Free generation of layouts. We compare FID and lay-
out statistics on two datasets to the state-of-the-art. Note that
Graph2Plan uses a ground-truth layout graph as input, and both
RPLAN and Graph2Plan use the ground truth boundary. We evalu-
ate both free generation with our method and conditional generation.
Our method improves upon the baselines with less input guidance.
dataset method FID ŝt ŝr ŝa ŝavg

RPLAN

StyleGAN. 25.29 46.74 4.41 7.85 19.67
Graph2Plan 29.26 0.83 5.63 18.93 8.46
RPLAN 21.29 5.38 1.53 4.38 3.76
ours free 21.47 1.00 1.00 1.00 1.00
ours cond. 27.27 0.81 0.94 1.34 1.03

LIFULL

StyleGAN 28.06 44.54 2.32 1.96 16.27
Graph2Plan 29.50 9.21 0.94 1.37 3.84
RPLAN 32.98 40.54 2.02 4.10 15.55
ours free 26.15 1.00 1.00 1.00 1.00
ours cond. 31.94 5.70 0.71 0.50 2.30

Table 2. Free generation comparison to HouseGAN on the subset
of metrics that do not require door connectivity (denoted ŝ∗).
dataset method FID ŝ∗t ŝr ŝ∗a ŝ∗avg

LIFULL HouseGAN 35.58 4.01 3.66 3.50 3.72
ours free 26.15 1.00 1.00 1.00 1.00

but a subset was parsed by Liu et al. [30] into a vector format.
Even though both datasets contain apartment floor plans, the
room layouts are quite different. Examples are shown in the
last row of Figure 4. In both datasets we use 1k layouts for
each of testing and validation, and the remainder for training.

Baselines StyleGAN [24] generates a purely image-based
representation of a layout. We render the layout into an
image to obtain a training set, including doors and walls
(see the supplementary material), and parse the generated
images to obtain layouts. Graph2Plan [16] generates a floor
plan given its boundary and a layout graph that describes
rough room locations, types, and adjacencies. Door connec-
tivity is generated heuristically. RPLAN [61] generates a
floor plan given its boundary, with a heuristically-generated
door connectivity. HouseGAN [38] generates a floor plan
given a room adjacency graph, but does not generate door
connectivity. All baselines are re-trained on each dataset.

Metrics We compare generated layouts to ground truth
layouts using two metrics: The Fréchet Inception Distance
(FID) [15] computed on rendered layouts, and a metric based
on a set of layout statistics that measure layout properties
that the image-based FID is less suitable for. Layout statis-
tics are grouped into topological statistics St such as the
average graph distance in the layout graph between any two
element types, element shape statistics Sr such as the as-
pect ratio or area, and alignment statistics Sa such as the
gap between adjacent elements, or their boundary alignment.
We believe that our proposed statistics are more useful to

evaluate layouts than FID. FID is more suitable to evaluate
generative models trained on natural images, but we show
the FID metric for completeness as it is more widely used.

Topological statistics St are specialized to measure the
topology of a layout graph [33, 52]:

srt : the average number of elements of a given type in a layout.
sht : a histogram over the number of elements of a given type in a

layout.
stt: the number of connections between elements of type a and

elements of type b in a layout.
sdt : the average graph distance between elements of type a and

elements of type b in a layout.
set : a histogram of the graph distance from an element of type a

to the exterior.
sct : a histogram of the degree of an element of type a, i.e. how

many connections the element has to other elements.
sut : The number of inaccessible elements of type a in a layout.

Element shape statistics Sr measure simple properties of the
element bounding boxes:

scr: a histogram of location distributions for each element type.
sar : a histogram of area distributions for each element type.
ssr: a histogram of aspect ratio distributions for each element type.

Alignment statistics Sa measure alignment between all pairs
of elements:

sca: a histogram of the distances between element centers, sepa-
rately in x and y direction.

sga: a histogram of the gap size distribution between element
bounding boxes (negatives values for overlaps).

saa: a histogram of the distances between element centers along
the best-aligned (x or y) axis.

ssa: a histogram of the distances between the best-aligned sides
of the element bounding boxes.

The same alignment statistics are also computed between
pairs of elements that are connected by descriptive edges.

We average each statistic over all layouts in a dataset and
compare the resulting averages s to the statistics of the test
set. We use the Earth Mover’s distance [50] to compare
histograms:

ŝ∗ =
1

|S∗|
∑
s∈S∗

EMD(s, sgt)

EMD(sours, sgt)
, (5)

where sours and sgt are the average statistics of our and
ground truth distributions, and ∗ can be t, r or a. The aver-
age over all ŝ∗ is denoted ŝavg. Non-histogram statistics use
the L2 distance instead of the EMD. The denominator nor-
malizes the statistics, effectively giving the statistical error
relative to our method. Thus our method will always have
an error of 1 in this metric.

6695

ou
rs

gt
St

yl
eG

A
N

G
ra

ph
2P

la
n

R
PL

A
N

H
ou

se
GA

N

LIFULL datasetRPLAN dataset

Figure 4. Free generation of floor plans. We compare our method to four baselines and to the ground truth datasets (gt). We show five
unconditionally generated samples per dataset and per method. Rooms are colored by room type, doors connecting two rooms are shown as
architectural door icons. Our three-step approach improves upon the room layout and connectivity compared to previous approaches, while
requiring less guidance as input.

Free Generation First, we generate floor plans without
any user input, by sampling the distribution learned by our
constraint model. A comparison to all baselines is shown
in Table 1 and Figure 4. The comparison to HouseGAN is
shown in Table 2, where we only use the subset of statistics
that are not based on the door connectivity, since HouseGAN
does not create doors. Note that among the baselines, only
StyleGAN can generate floor plans without user input, while
Graph2Plan, RPLAN and HouseGAN need important parts
of the ground truth as input. Providing this additional input
gives Graph2Plan, RPLAN and HouseGAN a significant
advantage in this comparison. The FID score correlates most
strongly with the adjacency statistics, since adjacencies can
be captured by only considering small spatial neighborhoods
around corners and walls of a floor plan, but does not cap-
ture topology or room shape statics accurately that require
considering larger-scale features. Unsurprisingly, StyleGAN
performs reasonably well on the FID score and adjacency
statistics, but shows a poor performance on topological statis-
tics which are mainly based on larger-scale combinatorial
features of the floor plans. Graph2Plan receives the topol-
ogy as input giving it a good performance in topological
statistics, but it struggles with room alignment. The RPLAN
baseline is specialized to the RPLAN dataset, as shown in
the large performance gap between RPLAN and LIFULL.
HouseGAN does not generate doors, thus the topology statis-
tics and alignment statistics are not directly comparable to
the other methods. We can see that room shapes ŝr are not

Table 3. Perceptual study. We show the probability of choosing our
method (yellow) vs each baseline with 95% confidence intervals.

0

0.5

1

pr
ob

ab
ili

ty
 o

f .
..

gt vs. ours Graph2Plan vs. ours RPLAN vs. ours StyleGAN vs. ours

as accurate as for the other baselines, and our method has
improved performance in all statistics.

In summary, our framework improves significantly on
the state-of-the art, in terms of layout topology, element
shape, and element alignment, even though RPLAN and
Graph2Plan received significant help from ground truth data.

Perceptual Study We conducted a two-alternative forced
choice (2AFC) perceptual study to compare the perceived
realism of the generated floor plans. Participants were shown
top-down illustrations of two generated floor plans in the
same style as Figure 1 and asked to pick the more realistic
one. Each pair compares our result to a baseline. We used
models trained on the RPLAN dataset, since our participants
come from geographic regions where the RPLAN style of
apartments is prevalent, and thus aligned with a participant’s
expectation. 10 users completed the study, each performing
between 40 and 45 comparisons, for a total of 435 pairwise
comparisons. Results are shown in Table 3. Note that our re-
sults are consistently rated more realistic than other methods
with high confidence.

6696

boundary
constraints

generated constrained layouts

Figure 5. Boundary-constrained generation. Left: input boundary
constraint; right: floor plans generated with this constraint.

Boundary-constrained Generation As described in Sec-
tion 3.5, we can condition both our element constraint model
and our edge model on input constraints provided by the
user. Here, we show floor plan generation constrained by an
exterior floor plan boundary given by the user. We parse the
exterior of the given boundary into a sequence of rectangular
elements that we use as input sequence for the encoders of
our models. At training time, we use the exterior of ground
truth floor plans as input. This trains the models to output
sequences of element constraints and edges that are roughly
compatible with the given boundary. In the optimization
step, we add non-overlap constraints between the generated
boxes and the given boundary. Additionally, since the inte-
rior boxes are generated in sequence from left to right, we
can initialize the first generated box to match the left-most
part of the interior area. Figure 5 show multiple examples of
floor plans that were generated for the boundary given on the
left. Quantitative results are provided in Table 1, under ours
cond. These results were obtained by generating floor plans
for all boundaries in the test set. The boundary-constrained
floor plans show slightly lower performance in the average
layout statistics and FID scores, but still perform much bet-
ter than RPLAN, which also receives the boundary as input.
We can see that our approach gives realistic floor plans that
satisfy the given boundary constraint.

Element-constrained Generation Our approach can also
handle constraints that are given in a different format than
the output. We constrain our model to produce a given set
of room types, widths, and heights. Results are shown in
Figure 6. Even though these constraints are quite limiting,
our model produces a large variety of results, while still
approximately satisfying the given constraints. Similarly,
we can constrain generation by given room counts or by the
existence of a room type. Results are shown in Figure 7 .

Discussion Our work also has some limitations. For exam-
ple, the constraint generation network can generate invalid
constraints between elements, e.g. doors between rooms that

room , w, h
constraints

generated constrained layouts

Figure 6. Element-constrained generation. Left: The type, width,
and height of the these rooms are used as input constraints. Right:
example layouts generated with these constraints. Note that the
elements form regions of the same types and approximately the
same width and height as the room constraints.

2 bedrooms

without balcony with balcony

3 bedrooms

Figure 7. Generation constrained by room counts/existence. Con-
straints are described in the text above the samples. Our method
can satisfy these more abstract constraints in most cases.

do not share a wall. We can easily identify and remove these
constraints. In addition, some constraints result in optimiza-
tion problems that are infeasible. We simply ignore such
samples. Further, like other methods, our work generates
a small percentage of low quality results, however, signifi-
cantly fewer than other methods, as shown in the statistics.

5. Conclusion
We proposed a new generative model for layouts. Our

model first generates a layout graph with layout elements
as nodes and constraints between layout elements as edges.
The final layout is computed by optimization. Our model
overcomes many limitations of previous models, mainly the
need for significant user input and ad-hoc post-processing
steps. Further, our model leads to significantly higher gener-
ation quality as evidenced by multiple statistics and enables
multiple possibilities of conditional layout generation. In
future work, we would like to explore the application of
our model to other layout problems, such as image layouts,
3D scene layouts, and component-based object modeling.
We also would like to explore if our model can be used to
post-process 3D scans of indoor environments.

6697

References
[1] Oron Ashual and Lior Wolf. Specifying object attributes

and relations in interactive scene generation. International
Conference on Computer Vision, 2019.

[2] Fan Bao, Dong-Ming Yan, Niloy J. Mitra, and Peter Wonka.
Generating and exploring good building layouts. ACM Trans-
actions on Graphics, 32(4), 2013.

[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex optimization. Cambridge university press, 2004.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
2018.

[5] Stanislas Chaillou. Archigan: Artificial intelligence x ar-
chitecture. In Architectural Intelligence, pages 117–127.
Springer, 2020.

[6] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas
Guibas, and Vladlen Koltun. Probabilistic reasoning for
assembly-based 3D modeling. ACM Transactions on Graph-
ics, 2011.

[7] Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo
Jun, Prafulla Dhariwal, David Luan, and Ilya Sutskever. Gen-
erative pretraining from pixels. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

[8] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo
Jun, David Luan, and Ilya Sutskever. Generative pretraining
from pixels. In International Conference on Machine Learn-
ing, 2020.

[9] Hang Chu, Daiqing Li, David Acuna, Amlan Kar, Maria
Shugrina, Xinkai Wei, Ming-Yu Liu, Antonio Torralba, and
Sanja Fidler. Neural turtle graphics for modeling city road
layouts. International Conference on Computer Vision, 2019.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[11] Lubin Fan and Peter Wonka. A probabilistic model for exteri-
ors of residential buildings. ACM Transactions on Graphics,
2016.

[12] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis
of 3d object arrangements. ACM Transactions on Graphics,
2012.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, 2014.

[14] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In
Advances in Neural Information Processing Systems, 2017.

[16] Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick,
Hao Zhang, and Hui Huang. Graph2plan: Learning floorplan
generation from layout graphs. Proceedings of SIGGRAPH,
2020.

[17] Xun Huang, Ming-Yu Liu, Serge J. Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. ECCV
2018, 2018.

[18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. arxiv, 2016.

[19] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-
tion from scene graphs. Conference on Computer Vision and
Pattern Recognition, 2018.

[20] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal,
and Greg Mori. Layoutvae: Stochastic scene layout genera-
tion from a label set. International Conference on Computer
Vision, 2019.

[21] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne
Koller, and Vladlen Koltun. A probabilistic model for
component-based shape synthesis. ACM Transactions on
Graphics, 2012.

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. CoRR, 2017.

[23] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In Advances in Neural
Information Processing Systems, 2020.

[24] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based
Generator Architecture for Generative Adversarial Networks.
arXiv e-prints, 2018.

[25] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. arXiv, 2019.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, 2014.

[27] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[28] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and
Peter Battaglia. Learning deep generative models of graphs.
In ICLR, 2018.

[29] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will
Hamilton, David K Duvenaud, Raquel Urtasun, and Richard
Zemel. Efficient graph generation with graph recurrent atten-
tion networks. In Advances in Neural Information Processing
Systems, 2019.

[30] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-
rukawa. Raster-to-vector: Revisiting floorplan transformation.
International Conference on Computer Vision, 2017.

[31] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin
Swersky. Graph normalizing flows. In Advances in Neural
Information Processing Systems, 2019.

[32] L. Majerowicz, A. Shamir, A. Sheffer, and H. H. Hoos. Filling
your shelves: Synthesizing diverse style-preserving artifact
arrangements. IEEE Transactions on Visualization and Com-
puter Graphics, 2014.

[33] S. Marshall. Streets and Patterns. Routledge, 2015.
[34] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-

generated residential building layouts. ACM Transactions on
Graphics, 2010.

6698

[35] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala,
and Vladlen Koltun. Interactive furniture layout using interior
design guidelines. ACM Transactions on Graphics, 2011.

[36] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,
and Luc Van Gool. Procedural modeling of buildings. ACM
Transactions on Graphics, 2006.

[37] Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W
Battaglia. Polygen: An autoregressive generative model of
3d meshes. arXiv preprint arXiv:2002.10880, 2020.

[38] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori,
and Yasutaka Furukawa. House-gan: Relational generative
adversarial networks for graph-constrained house layout gen-
eration. 2020.

[39] National Institute of Informatics. LIFULL HOME’S Dataset,
2020.

[40] S. Pan, R. Hu, S. Fung, G. Long, J. Jiang, and C. Zhang.
Learning graph embedding with adversarial training methods.
IEEE Transactions on Cybernetics, 2020.

[41] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. arXiv preprint arXiv:1802.05751, 2018.

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[43] Chi-Han Peng, Yong-Liang Yang, Fan Bao, Daniel Fink,
Dong-Ming Yan, Peter Wonka, and Niloy J Mitra. Computa-
tional network design from functional specifications. ACM
Transactions on Graphics, 2016.

[44] Chi-Han Peng, Yong-Liang Yang, and Peter Wonka. Comput-
ing layouts with deformable templates. ACM Transactions on
Graphics, 2014.

[45] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The
Algorithmic Beauty of Plants. Springer-Verlag, New York,
1990.

[46] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 2019.

[47] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with VQ-VAE-2. In Advances
in Neural Information Processing Systems, 2019.

[48] Danilo Jimenez Rezende and Shakir Mohamed. Varia-
tional inference with normalizing flows. arXiv preprint
arXiv:1505.05770, 2015.

[49] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
arXiv preprint arXiv:2008.00951, 2020.

[50] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A
metric for distributions with applications to image databases.
In International Conference on Computer Vision, 1998.

[51] Martin Simonovsky and Nikos Komodakis. GraphVAE: to-
wards generation of small graphs using variational autoen-
coders. In ICLR, 2018.

[52] Sherif Tarabishy, Stamatios Psarras, Marcin Kosicki, and
Martha Tsigkari. Deep learning surrogate models for spatial
and visual connectivity. ArXiv, 2019.

[53] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical
variational autoencoder. In Advances in Neural Information
Processing Systems, 2020.

[54] Carlos A. Vanegas, Tom Kelly, Basil Weber, Jan Halatsch,
Daniel Aliaga, and Pascal Müller. Procedural generation of
parcels in urban modeling. Computer Graphics Forum, 2012.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017.

[56] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. In Advances in Neural Information Processing
Systems, 2015.

[57] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan
Zhang, Fuzheng Zhang, Xing Xie, and Minyi Guo. Graphgan:
Graph representation learning with generative adversarial nets.
In AAAI, 2018.

[58] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X. Chang, and Daniel Ritchie. Planit: planning and
instantiating indoor scenes with relation graph and spatial
prior networks. ACM Transactions on Graphics, 2019.

[59] Kai Wang, Manolis Savva, Angel X. Chang, and Daniel
Ritchie. Deep convolutional priors for indoor scene synthesis.
ACM Transactions on Graphics, 2018.

[60] Wenming Wu, Lubin Fan, Ligang Liu, and Peter Wonka.
Miqp-based layout design for building interiors. Computer
Graphics Forum, 2018.

[61] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-
Hao Qi, and Ligang Liu. Data-driven interior plan generation
for residential buildings. ACM Transactions on Graphics,
2019.

[62] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and
Junyang Lin. Understanding and improving layer normaliza-
tion. In Advances in Neural Information Processing Systems,
2019.

[63] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceedings
of the IEEE International Conference on Computer Vision,
2019.

[64] Yong-Liang Yang, Jun Wang, Etienne Vouga, and Peter
Wonka. Urban pattern: Layout design by hierarchical do-
main splitting. ACM Transactions on Graphics, 2013.

[65] Yi-Ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew
Fisher, and Pat Hanrahan. Synthesis of tiled patterns using
factor graphs. ACM Transactions on Graphics, 2013.

[66] Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D.
Goodman, and Pat Hanrahan. Synthesizing open worlds
with constraints using locally annealed reversible jump mcmc.
ACM Transactions on Graphics, 2012.

[67] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and
Jure Leskovec. GraphRNN: generating realistic graphs with
deep auto-regressive models. In ICML, 2018.

[68] Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Ter-
zopoulos, Tony F. Chan, and Stanley J. Osher. Make it home:
Automatic optimization of furniture arrangement. ACM Trans-
actions on Graphics, 2011.

6699

[69] Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Ter-
zopoulos, Tony F. Chan, and Stanley J. Osher. Make it home:
Automatic optimization of furniture arrangement. ACM Trans-
actions on Graphics, 2011.

[70] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Au-
gustus Odena. Self-attention generative adversarial networks.
arXiv:1805.08318, 2018.

[71] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In 2017 IEEE International Conference
on Computer Vision (ICCV), 2017.

[72] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell,
Alexei A Efros, Oliver Wang, and Eli Shechtman. Toward
multimodal image-to-image translation. In Advances in Neu-
ral Information Processing Systems. 2017.

[73] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In Conference on Computer Vision and Pattern
Recognition, 2020.

6700

