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Abstract
We address the problem of visible-infrared person re-

identification (VI-reID), that is, retrieving a set of person
images, captured by visible or infrared cameras, in a cross-
modal setting. Two main challenges in VI-reID are intra-
class variations across person images, and cross-modal dis-
crepancies between visible and infrared images. Assuming
that the person images are roughly aligned, previous ap-
proaches attempt to learn coarse image- or rigid part-level
person representations that are discriminative and general-
izable across different modalities. However, the person im-
ages, typically cropped by off-the-shelf object detectors, are
not necessarily well-aligned, which distract discriminative
person representation learning. In this paper, we introduce
a novel feature learning framework that addresses these
problems in a unified way. To this end, we propose to exploit
dense correspondences between cross-modal person im-
ages. This allows to address the cross-modal discrepancies
in a pixel-level, suppressing modality-related features from
person representations more effectively. This also encour-
ages pixel-wise associations between cross-modal local fea-
tures, further facilitating discriminative feature learning for
VI-reID. Extensive experiments and analyses on standard
VI-reID benchmarks demonstrate the effectiveness of our
approach, which significantly outperforms the state of the
art.

1. Introduction

Person re-identification (reID) aims at retrieving person
images, captured across multiple cameras, with the same
identity as a query person. It provides a wide range of ap-
plications, including surveillance, security, and pedestrian
analysis, and has gained a lot of attention over the last
decade [40, 47]. Most reID methods formulate the task as
a single-modality retrieval problem, and focus on finding
matches, e.g., between RGB images. Visible cameras are
incapable of capturing appearances of persons, particularly
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Figure 1: An example of dense cross-modal correspondences be-
tween RGB and IR images from the SYSU-MM01 dataset [36].
For the visualization purpose only, we show the top 20 matches
according to similarities between local person representations
learned without (left) and with (right) our approach. Our person
representations are robust to the cross-modal discrepancies, while
being highly discriminative, especially for person regions. (Best
viewed in color.)

important for person reID, under poor-illumination condi-
tions (e.g., at night time or dark indoors). Infrared (IR) cam-
eras, on the other hand, work well, regardless of visual light,
capturing an overall scene layout, while not taking scene
details, such as texture and color. Accordingly, visible-IR
person re-identification (VI-reID), that is, retrieving IR per-
son images of the same identity as an RGB query and vice
versa, has recently been of great interest [36].

VI-reID is extremely challenging due to intra-class vari-
ations (e.g. viewpoint, pose, illumination and background
clutter), noisy samples (e.g. misalignment and occlusion),
and cross-modal discrepancies between RGB and IR im-
ages. Visual attributes and statistics of RGB/IR images are
significantly different from one another [36]. VI-reID meth-
ods based on convolutional neural networks (CNNs) allevi-
ate the discrepancies using cross-modal metric losses [7, 37,
41] along with a modality discriminator [4] to learn person
representations robust to the cross-modal discrepancies, and
further refine the representations with self-attention [39] or
disentanglement techniques [3]. These approaches focus
on learning coarse image-level or rigid part-level represen-
tations, assuming that person images are roughly aligned.
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Misaligned features from RGB and IR images, however,
have an adverse effect on handling the cross-modal discrep-
ancies, distracting learning person representations.

In this paper, we propose to leverage dense correspon-
dences between cross-modal images during training for VI-
reID. To this end, we encourage person representations
of RGB images to reconstruct those from IR images of
the same identity, which often depict different appearances
due to viewpoint and pose variations, and vice versa. We
achieve this by establishing dense cross-modal correspon-
dences between RGB and IR person images in a probabilis-
tic way. We incorporate parameter-free person masks to fo-
cus on the reconstructions of person regions, while discard-
ing others including background or occluded regions. We
also introduce novel ID consistency and dense triplet losses
using pixel-level associations, allowing the network to learn
more discriminative person representations. Dense cross-
modal correspondences align pixel-level person representa-
tions from RGB and IR image explicitly, which is beneficial
to person representation learning for VI-reID due to two
main reasons. First, by enforcing semantically similar re-
gions from RGB and IR images to be embedded nearby, we
encourage the network to extract features invariant to the
input modalities, even from misaligned RGB and IR per-
son images. Second, by encouraging a local association,
we enforce the network to focus on extracting discrimina-
tive pixel-wise local features, which further facilitates the
person representation learning. The network trained using
our framework is thus able to offer local features that are
robust to cross-modal discrepancies and highly discrimina-
tive (Fig. 1), which are aggregated to form a final person
representation for VI-reID, without any additional parame-
ters at test time. Experimental results and extensive analy-
ses on standard VI-reID benchmarks demonstrate the effec-
tiveness and efficiency of our approach. The main contribu-
tions of this paper can be summarized as follows:

• We propose a novel feature learning framework for VI-
reID using dense cross-modal correspondences that al-
leviates the discrepancies between multi-modal images
effectively, while further enhancing the discriminative
power of person representations.

• We introduce ID consistency and dense triplet losses to
train our network end-to-end, which help to extract dis-
criminative person representations using cross-modal
correspondences.

• We achieve a new state of the art on standard VI-
reID benchmarks and demonstrate the effectiveness
and efficiency of our approach through extensive ex-
periments with ablation studies.

2. Related work
In this section, we briefly describe representative works

related to ours, including person reID, VI-reID, cross-modal

image retrieval and dense correspondence.

ReID. Person reID methods typically tackle a single-
modality case, that is, RGB-to-RGB matching. They for-
mulate the reID task as a multi-class classification prob-
lem [49], where person images of the same identity belong
to the same category. A triplet loss is further exploited to
encourage person representations obtained from the same
identity to be embedded nearby, while those from the dif-
ferent identities to be distant in feature space [12]. Recent
methods focus on extracting person representations robust
to intra-class variations, exploiting attributes to offer com-
plementary information [19], disentangling identity-related
features [9, 48], or incorporating attention techniques to see
discriminative regions [18, 46]. Many reID methods lever-
age part-based representations [8, 32, 33], which further en-
hance the discriminative power of person features. Specif-
ically, they divide person images into multiple horizontal
grids exploiting human body parts implicitly. Local fea-
tures from the horizontal parts are more robust to intra-class
variations, especially for occlusion, than the global one.
However, when body parts from corresponding horizontal
grids are misaligned, this rather distracts learning person
representations. The works of [15, 23, 45, 52] propose to
align semantically related regions between person images,
by employing auxiliary pose estimators [23, 45] or human
semantic parsing techniques [15, 52]. While these auxil-
iary branches offer reliable estimations to guide the align-
ment, they have two main drawbacks: First, they typically
require additional datasets during training. Second, the aux-
iliary predictions are required at test time, making the over-
all pipeline computationally heavy. On the other hand, we
perform the alignment during training only, by leveraging
dense correspondences, without additional supervisory sig-
nals except ID labels, while enabling an efficient pipeline at
test time.

VI-reID. VI-reID has recently been explored compared
to single-modality reID, according to the wide spread of
RGB-IR cameras. VI-reID methods focus on handling
cross-modal discrepancies between RGB and IR images,
while learning discriminative person representations. Early
works try to learn discriminative features generalizable
across different modalities. They adopt classification and/or
triplet losses, widely used in single-modality reID meth-
ods [36, 40], which however do not mitigate the cross-
modal discrepancies explicitly. To address this problem,
recent methods use a cross-modal triplet loss, where pos-
itive/negative pairs and an anchor are sampled from per-
son images with different modalities [7, 37, 41]. For ex-
ample, RGB images are used as anchors, while exploiting
IR ones as positive/negative samples. These approaches en-
courage the features, obtained from person images of the
same identity but having different modalities, to be sim-

12047



ilar, providing person representations robust to the cross-
modal discrepancies. More recently, DDAG [39] proposes
to leverage a graph attention network in order to consider
cross-modal relations between RGB and IR images explic-
itly. VI-reID methods based on generative adversarial net-
works (GANs) alleviate the cross-modal discrepancies in an
image level. For example, they synthesize novel IR person
images, with an identity-preserving constraint [34] or cycle
consistency [35], given RGB inputs, in order to compare
person images with the same modality. Other approaches to
leveraging adversarial learning techniques for VI-reID are
to disentangle identity-related features from person repre-
sentations [3], or to exploit a modality discriminator to bet-
ter align feature distributions of RGB/IR images [4]. Al-
though GANs better capture discriminative factors for per-
son reID, they require lots of parameters and heuristics to
train networks [28]. In contrast to current VI-reID methods,
we address the cross-modal discrepancies in a pixel level.
To this end, we align semantically related regions explicitly
via dense cross-modal correspondences, which also allows
discriminative feature learning, even from misaligned per-
son images.

Cross-modal image retrieval. VI-reID is closely re-
lated to cross-modal image retrieval that focuses on find-
ing matches between images of different modalities, e.g.,
sketch/natural images [27, 29], and RGB/IR images [1, 20].
Existing works typically employ a siamese network [42] to
learn a metric function between input image pairs [1, 29],
or disentangle feature representations into modality shared-
and specific- embeddings [20, 27]. They attempt to alleviate
the cross-modal discrepancies between multi-modal images
in an image-level. We instead address the discrepancies in
a pixel-level by leveraging dense correspondences.

Correspondence. Establishing correspondences between
images has long been of particular importance in many
computer vision tasks, including depth prediction [13, 43],
optical flow [2, 6], 3D scene reconstruction [16, 51], and
colorization [11, 44]. In context of person reID, the work
of [31] leverages dense correspondences to learn a metric
function for single-modality person reID. The learned met-
ric function, however, is required even at test time, demand-
ing large computational power and memory. In contrast,
we exploit the correspondences as explicit regularizers to
guide the feature learning during training only, enabling a
simple cosine distance computation between person repre-
sentations at test time.

3. Approach

We describe in this section an overview of our frame-
work for VI-reID (Sec. 3.1), and present detailed descrip-
tions of a network architecture (Sec. 3.2) and training
losses (Sec. 3.3).

Cross-Modal Correspondence
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Figure 2: Overview of our framework for VI-reID. We extract
RGB and IR features, denoted by fRGB and fIR, respectively, using
a two-stream CNN. The CMAlign module computes cross-modal
feature similarities and matching probabilities between these fea-
tures, and aligns the cross-modal features w.r.t each other using
soft warping, together with parameter-free person masks to mit-
igate ambiguous matches between background regions. We ex-
ploit both original RGB and IR features and aligned ones (f̂RGB

and f̂IR) during training, and incorporate them into our objective
function consisting of ID (LID), ID consistency (LIC) and dense
triplet (LDT) terms. At test time, we compute cosine distances
between person representations, obtained by pooling RGB and IR
features. See text for details.

3.1. Overview

We show in Fig. 2 an overview of our framework for
VI-reID. We first extract RGB and IR features from corre-
sponding person images, and then align the features with
a CMAlign module. It establishes dense cross-modal cor-
respondences between RGB and IR features, and warps
these features w.r.t each other using corresponding match-
ing probabilities. Note that we exploit the CMAlign mod-
ule at training time only, enabling an efficient inference at
test time. To train our framework, we exploit three terms:
ID (LID), ID consistency (LIC), and dense triplet (LDT)
losses. The ID loss applies to each feature from RGB or
IR images, separately, similar to single-modality reID [12].
It enforces the features from person images of the same
identity to be the same, while providing different ones for
the images of different identities. The ID consistency and
dense triplet terms exploit the matching probabilities, and
encourage RGB and IR features from the same identity to
reconstruct one another in a pixel-level, while those from
different identities do not. The person representations ob-
tained using these terms are thus robust to the cross-modal
discrepancies between RGB and IR images. Note that we
use identification labels alone to train our model, without
exploiting auxiliary supervisory signals, such as e.g., body
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parts [15] or landmarks [23], for the alignment. Note also
that all components in our model are fully differentiable,
making it possible to train the whole network end-to-end.

3.2. Network Architecture

Feature extractor. We use a two-stream CNN to extract
feature maps of size h×w×d from a pair of RGB/IR person
images, where h, w and d are the height, width and number
of channels, respectively. Assuming that the cross-modal
discrepancies between RGB/IR images mainly lie in low-
level features [36, 40], we use separate parameters specific
to the input modalities for shallow layers, while sharing the
remaining ones for others.

CMAlign. The CMAlign module aligns RGB and IR fea-
tures bidirectionally, i.e., from RGB to IR and from IR to
RGB, using dense cross-modal correspondences in a prob-
abilistic way. In the following, we describe an IR-to-RGB
alignment. The other case can be performed similarly.

For the IR-to-RGB alignment, we compute local similar-
ities between all pairs of RGB and IR features. Concretely,
we compute cosine similarities between RGB and IR fea-
tures, denoted by fRGB ∈ Rh×w×d and fIR ∈ Rh×w×d,
respectively, as follows:

C(p,q) =
fRGB(p)

⊤
fIR(q)

∥fRGB(p)∥2∥fIR(q)∥2
, (1)

where ∥ · ∥2 computes the L2 norm of a vector. We denote
by fRGB(p) and fIR(q) RGB and IR features of size d at
position p and q, respectively. Based on the similarities, we
compute RGB-to-IR matching probabilities using a softmax
function as follows:

P (p,q) =
exp(βC(p,q))∑
q′ exp(βC(p,q′))

, (2)

where we denote by P a matching probability, a 4D tensor
of size h × w × h × w, and β is a temperature parame-
ter. Note that we can establish dense correspondences ex-
plicitly from RGB to IR images, by applying an argmax
operator to the matching probabilities for each RGB fea-
ture, i.e., argmaxq P (p,q). This offers reliable cross-
modal correspondences for semantically similar regions,
but aligning IR and RGB features using the hard corre-
spondences is problematic. The correspondences are eas-
ily distracted by background clutter and image-specific de-
tails (e.g., texture and occlusion), and appearance variations
between RGB and IR images are even more significant.
Moreover, we could not establish correspondences between
different background regions, e.g., from person images cap-
tured with different surrounding environments. To alleviate
these problems, we instead exploit the matching probabil-
ities, and align IR and RGB features between foreground

regions only, typically correspond to persons, via soft warp-
ing as follows:

f̂RGB(p) = (3)
MRGB(p)W(fIR(p)) + (1−MRGB(p))fRGB(p),

where we denote by f̂RGB ∈ Rh×w×d and MRGB ∈ Rh×w

a reconstructed RGB feature by the IR-to-RGB alignment
and a person mask, respectively. We denote by W a soft
warping operator that aggregates features using the match-
ing probabilities, defined as follows:

W(fIR(p)) =
∑
q

P (p,q)fIR(q). (4)

The person mask ensures that the features f̂RGB, for per-
son regions are reconstructed by aggregating IR features in
a probabilistic way, while others come from original RGB
features fRGB. This reconstruction together with ID con-
sistency and dense triplet losses encourages our model to
provide similar person representations, regardless of im-
age modalities, for the corresponding regions. To infer the
mask without ground-truth labels, we assume that features,
learned with ID labels for the reID task, are highly activated
on person regions than other parts, and compute an activa-
tion map based on L2 norms of the local feature vectors,
denoted by gRGB ∈ Rh×w for an RGB feature, as follows:

gRGB(p) = ∥fRGB(p)∥2. (5)

With the activation map of an RGB feature, gRGB, at hand,
we define a person mask for an RGB feature as follows:

MRGB = f(gRGB), (6)

where f performs min-max normalization:

f(x) =
x−min(x)

max(x)−min(x)
. (7)

The CMAlign, which is a non-parametric module that op-
erates directly on the features obtained from the feature
extractor, facilitates learning robust person representations
by providing the following advantages in VI-reID: First, a
cross-modal alignment helps to alleviate the discrepancies
between RGB and IR images in a pixel-level, allowing to
suppress modality-related features from person representa-
tions more effectively, even with misaligned person images;
Second, a dense alignment allows our network to focus on
learning local features, especially for person regions, fur-
ther enhancing the discriminative power of person repre-
sentations. Note that a pair of RGB and IR images does not
have to be of the same identity in our framework, enabling
exploiting both positive and negative pairs for training.

3.3. Loss

We exploit ground-truth ID labels of person images to
train our model with an overall objective function as fol-
lows:
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L = LID + λICLIC + λDTLDT, (8)

where LID, LIC and LDT are ID, ID consistency, and dense
triplet losses, respectively. λIC and λDT are hyperparame-
ters to balance corresponding terms. In the following, we
present a detailed description of each term in the loss.

ID loss (LID). As an ID loss, we adopt a sum of classi-
fication and hard triplet losses [12] using image-level per-
son representations, which have shown the effectiveness on
learning discriminative person features in single-modality
person reID. We denote by ϕ(fRGB) ∈ Rd and ϕ(fIR) ∈ Rd

image-level person representations for the RGB and IR fea-
tures, respectively, which are obtained by applying a GeM
pooling operation [26] to each feature. To compute the clas-
sification term, we feed each image-level feature, ϕ(fRGB)
and ϕ(fIR), into a same classifier to predict class probabili-
ties, that is, likelihoods of being particular identities for the
image-level feature, where the classifier consists of a Batch
Normalization layer [14], followed by a fully-connected
layer with a softmax activation [22]. We then compute a
cross-entropy between the class probabilities and ground-
truth identities. The hard triplet term is also computed us-
ing image-level person representations, obtained from an-
chor, positive, and negative images, where the anchor and
positive ones share the same ID label, while other pairs do
not. Note that the ID loss does not address the cross-modal
discrepancies between RGB and IR images explicitly.

ID consistency loss (LIC). We design a term to consider
the cross-modal discrepancies between RGB and IR fea-
tures in an image-level. Suppose that we have a positive
pair with the same identity but having different modali-
ties, i.e., RGB and IR images are of the same identity. The
features f̂RGB for person regions are reconstructed by ag-
gregating IR features fIR, suggesting that the identity of
the reconstruction f̂RGB should be the same as ground-truth
identity for the original features fRGB and fIR. More specif-
ically, image-level representations of ϕ(f̂RGB) and ϕ(f̂IR)
should have the same ID labels as corresponding positive
counterparts of different modalities, fIR and fRGB, respec-
tively. To implement this idea, we define an ID consistency
loss as a cross-entropy using image-level representations,
similar to the classification term in the ID loss. We instead
exploit reconstructed features, ϕ(f̂RGB) and ϕ(f̂IR). Note
that we use the same classifier as in the ID loss. The ID
consistency loss enforces ID predictions from person im-
ages of the same identity but with different modalities to be
consistent, allowing to suppress modality-related features
from person representations. Moreover, the reconstructions,
ϕ(f̂RGB) and ϕ(f̂IR) provide an effect of offering additional
samples to train the classifier, further guiding the discrimi-
native person representation learning.

Dense triplet loss (LDT). The ID loss facilitates learn-
ing discriminative person representations, and the ID con-

Figure 3: Visualization of person masks for IR and RGB images,
MIR(left) and MRGB(right), and a corresponding co-attention
map, AIR(middle). We overlay the masks and the attention map
over corresponding images from SYSU-MM01 [36]. We can see
that the IR image depicts a person with fully visible body parts,
whereas the person of the same identity in the RGB image is par-
tially occluded (lower body). The co-attention map highlights im-
age regions that are mutually visible in both images and suppresses
others using dense cross-modal alignments via soft warping. (Best
viewed in color.)

sistency term alleviates the cross-modal discrepancies ex-
plicitly. They, however, focus on learning image-level per-
son representations, which prohibits discriminative feature
learning, especially when the person images are occluded
or misaligned. To address this problem, we introduce a
dense triplet loss. It locally compares original features and
reconstructed ones using the features of different modali-
ties, encouraging final image-level person representations
to be discriminative, while alleviating the cross-modal dis-
crepancies in a pixel-level. A straight-forward approach is
to compute L2 distances between local features, which is,
however, suboptimal in that this does not take occluded re-
gions into consideration. This is particularly problematic
when each of person images in a pair depicts disassociated
human parts. Enforcing local alignments between the entire
person regions in this case is infeasible, and maybe even
harmful. To circumvent this issue, we incorporate a co-
attention map highlighting person regions visible in both
RGB and IR images. This considers feature alignments
within mutually visible foreground regions only to compute
the dense triplet loss. We define a co-attention map, denoted
by ARGB ∈ Rh×w for an RGB image, as follows:

ARGB(p) = MRGB(p)W(MIR(p)). (9)

For W(MIR(p)), in this case, we compute the match-
ing probabilities P between fRGB and fIR, similar to (4),
whereas the person masks are exploited for soft warping.
Namely, the co-attention map ARGB is an intersection of
the RGB person mask MRGB(p) and the warped IR one,
w.r.t the RGB image, W(MIR(p)). We compute a co-
attention map for an IR image similarly, and show in Fig. 3
an example of a co-attention map. Note that we define co-
attention maps between positive pairs of the same identity
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only. Note also that we perform min-max normalization f
on the obtained co-attention map, which we omit for nota-
tional brevity.

To facilitate training with the dense triplet term, we sam-
ple a triplet of anchor, positive, and negative images, where
the anchor and other two images have different modali-
ties e.g., an RGB image for the anchor, and IR images for
a pair of positive and negative samples. We use the super-
scripts, a, p, and n to indicate features from anchor, pos-
itive, and negative images, respectively. For example, we
denote by f̂pRGB a reconstructed RGB feature using an an-
chor faRGB and a positive pair fpIR with the same identity as
the anchor faRGB. Similarly, f̂nIR is a reconstructed IR feature
using an anchor faIR and a negative pair fnRGB with the dif-
ferent identity from the anchor faIR. With co-attention maps
at hand, we define the dense triplet loss as follows:

LDT =
∑

i∈{RGB,IR}

∑
p

Ai(p)[d
+
i (p)−d−i (p)+α]+, (10)

where α is a pre-defined margin and the operation [·]+ indi-
cates max(0, ·). d+i (p) and d−i (p) compute local distances
between an anchor feature and reconstructed ones from pos-
itive and negative images, respectively, as follows:

d+i (p) = ∥fai (p)− f̂pi (p)∥2, d
−
i (p) = ∥fai (p)− f̂ni (p)∥2.

(11)
Note that the reconstructions, f̂pi and f̂ni , are the aggrega-
tions of similar features w.r.t the anchor fai from positive and
negative images, respectively. We can thus interpret that our
loss enforces an aggregation of similar features from nega-
tive images to be distant in the embedding space, compared
to its positive counterpart by a margin. This is similar to
the typical triplet loss [12, 30], but ours penalizes incorrect
distances for all local features visible in both anchor and
positive images in a soft manner. Note that this local as-
sociation is possible due to the CMAlign module that per-
forms the dense cross-modal alignment between RGB and
IR person images in a probabilistic way.

4. Experiments
In this section, we present a detailed analysis and evalua-

tion of our approach including ablation studies on different
losses and network architectures.

4.1. Implementation details
Dataset. We use two benchmarks for evaluation: 1) The
RegDB dataset [24] contains 412 persons, where each per-
son has 10 visible and 10 far-infrared images collected by
dual camera systems. Following the experimental protocol
in [24], we divide the dataset into training and test splits ran-
domly, each of which includes non-overlapping 206 iden-
tities. We test our model in both visible-to-IR and IR-to-
visible settings, which correspond to retrieving IR images

from RGB ones and RGB images from IR ones, respec-
tively, and report the results averaged over 10 trials with dif-
ferent training/test splits. 2) SYSU-MM01 [36] is a large-
scale dataset for VI-reID, consisting of RGB and IR im-
ages obtained by four visible and two near-infrared sen-
sors, respectively. Concretely, it contains 22,258 visible and
11,909 near-infrared images with 395 identities for training.
The test set contains 96 identities with 3,803 near-infrared
images for a query set and 301 visible images for a gallery
set. We adopt the evaluation protocol in [36], which uses
all-search and indoor-search modes for testing, where the
gallery sets for the former and the latter contain images cap-
tured by all four and two indoor visible cameras, respec-
tively. Note that all our results are obtained by taking an
average value over 4 training and test runs.

Training. Following the previous VI-reID methods [3,
21, 39], we adopt ResNet50 [10], trained for ImageNet clas-
sification [5], as our backbone network. The backbone net-
works for visible and infrared images share the parameters,
except for the first residual blocks that take images of differ-
ent modalities, and the stride of the last convolutional block
is set to 1. We resize each person image to the size of 288
× 144, and apply horizontal flipping for data augmentation.
We set the size of a person representation d to 2,048. For
a mini-batch, we randomly choose 8 identities from each
modality and sample 4 person images for each identity. We
train our model for 80 epochs with a batch size of 64, us-
ing the SGD optimizer with momentum of 0.9 and weight
decay of 5e-4. We use a warm-up strategy [22], gradually
raising learning rates for the backbones and other parts of
the network up to 1e-2 and 1e-1, respectively, which are
then decayed by a factor of 10 at the 20th and 50th epochs.
We use a grid search to set hyper-parameters: λIC = 1,
λDT = 0.5, α = 0.3, β = 50. Note that we employ BNN
trick [22] during training only, exploiting ResNet50 [10]
at test time without any additional parameters. We im-
plement our model with PyTorch [25] and train it end-
to-end, taking about 6 and 8 hours for RegDB [24] and
SYSU-MM01 [36], respectively, with a Geforce RTX 2080
Ti GPU.

4.2. Results

Comparison with the state of the art. We present in Ta-
ble 1 a quantitative comparison of our method with the state
of the art for VI-reID [3, 4, 17, 21, 34, 35, 36, 37, 38, 39].
We report mean average precision (mAP) (%) and rank-
1 accuracy (%) for a single-shot setting on RegDB [24]
and SYSU-MM01 [36]. From the table, we can see that
our model sets a new state of the art for VI-reID, except
for an indoor-search mode on SYSU-MM01 [36], where
DDAG [39] shows better results. This method, however, re-
quires additional parameters, other than the ResNet50 [10]
backbone, for a feature refinement with self-attention at test
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Table 1: Quantitative comparison with the state of the art for VI-reID. We measure mAP (%) and rank-1 accuracy (%) on the RegDB [24]
and SYSU-MM01 [36] datasets and report the average and standard deviations over 4 training and test runs. Numbers in bold indicate the
best performance and underscored ones indicate the second best.

Methods
RegDB [24] SYSU-MM01 [36]

Visible to Infrared Infrared to Visible All-search Indoor-search

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

One-stream [36] 14.02 13.11 - - 13.67 12.04 22.95 16.94
Two-stream [36] 13.42 12.43 - - 12.85 11.65 21.49 15.60
Zero-Pad [36] 18.90 17.75 17.82 16.63 15.95 14.80 26.92 20.58
TONE [37] 14.92 16.87 - - 14.42 12.52 26.38 20.82
HCML [37] 20.08 24.44 22.24 21.70 16.16 14.32 30.08 24.52
cmGAN [4] - - - - 31.49 26.97 42.19 31.63
BDTR [38] 32.76 33.56 31.96 32.92 27.32 27.32 41.86 31.92
D2RL [35] 44.10 43.40 - - 29.20 28.90 - -
AlignGAN [34] 53.60 57.90 53.40 56.30 40.70 42.40 54.30 45.90
Xmodal [17] 60.18 62.21 61.80 68.06 50.73 49.92 - -
Hi-CMD [3] 66.04 70.93 - - 35.94 34.94 - -
cm-SSFT [21] 63.00 62.20 - - 52.10 52.40 - -
DDAG [39] 63.46 69.34 61.80 68.06 53.02 54.75 67.98 61.02
Ours 67.64 ± 0.08 74.17 ± 0.04 65.46 ± 0.18 72.43 ± 0.42 54.14 ± 0.33 55.41 ± 0.18 66.33 ± 1.27 58.46 ± 0.67

Table 2: Comparison of the average runtime for extracting a final
person representation and the number of parameters required at
test time.

Methods
Model size (M) Runtime (ms)
RGB IR RGB IR

AlignGAN [34] 30.71 24.66 7.57 3.32
Hi-CMD [3] 52.63 52.63 4.43 4.43
DDAG [39] 40.32 40.32 2.03 2.03
Ours 23.52 23.52 1.90 1.90

time, while being outperformed by ours in other bench-
marks. We can also see that our model achieves better re-
sults than cm-SSFT1 [21] by a significant margin on both
datasets. Note that cm-SSFT [21] uses multiple RGB and
IR images to extract person representations, even at test
time. That is, it exploits additional images of different
modalities, e.g., multiple IR images to extract features from
an RGB input. cm-SSFT [21] is thus computationally ex-
pensive, and requires a lot of memory. Overall, the experi-
mental results on the standard benchmarks demonstrate that
our approach provides person representations robust to the
cross-modal discrepancies and intra-class variations across
RGB and IR images. Qualitative comparisons along with
rank-10 accuracy (%) can be found in the supplementary
material.

Parameter and runtime analysis. We compare in Ta-
ble 2 the average runtime to extract a final person repre-
sentation. For fair comparison, we measure the average
runtime over 50 executions, for person images of the size
288 × 144 on the same machine with a Geforce RTX 2080

1For cm-SSFT [21], we report in Table 1 the results obtained without
using a random erasing technique [50] and a BNN trick [22], similar to
ours, for fair comparison. The results are taken from Table 4 of [21].

Table 3: Quantitative comparison for variants of our model on the
SYSU-MM01 dataset [36] (All-search mode).

LIC LDT A Layer mAP rank-1
✗ ✗ - - 49.54 50.43
✓ ✗ - 4, 5 52.88 54.44
✗ ✓ ✗ 4, 5 50.08 50.38
✗ ✓ ✓ 4, 5 51.23 51.06
✓ ✓ ✗ 4, 5 52.78 53.44
✓ ✓ ✓ 4 53.02 54.63
✓ ✓ ✓ 5 53.81 54.66
✓ ✓ ✓ 4, 5 54.14 55.41

Ti GPU. Table 2 also compares the number of network pa-
rameters required at test time. Our method is fastest among
the state of the art, and uses the smallest number of parame-
ters, as it does not use any additional parameters, except the
ones for a backbone network, at test time. Other methods
on the contrary exploit additional layers or networks.

4.3. Discussion

Ablation study. We show in Table 3 an ablation analy-
sis on training losses and the CMAlign module. We train
variants of our model using different combinations of loss
terms, LIC and LDT, and co-attention map A, while adding
CMAlign modules to different layers of the backbone net-
work. We compare the performance in terms of mAP and
rank-1 accuracy on SYSU-MM01 [36] under the all-search
mode. For the baseline model in the first row, we exclude
the CMAlign module and train it using the ID loss alone.
Overall, we can see that the baseline shows the worst perfor-
mance, indicating that incorporating the CMAlign module
is beneficial for VI-reID. For example, exploiting the CMA-
lign module with either the ID consistency term (the second
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row) or the dense triplet term coupled with the co-attention
map (the fourth row) boosts the performance significantly.
This is because the ID consistency term mainly addresses
cross-modal discrepancies in an image-level and the dense
triplet term handles them in a pixel-level, while further en-
hancing the discriminative power of person representations.
From the second, fourth, and last rows, we can observe that
using all losses and the co-attention map gives the best re-
sults, suggesting that they are complementary to each other.
Note that the co-attention map is particularly important for
the dense triplet term, as shown in the fifth and last rows.
Computing the loss on distractive regions (e.g., occlusions
and background clutter) may hinder learning discriminative
representations. We also compare in the last three rows our
models involving the CMAlign modules in different lay-
ers of the backbone network, where the modules are added
on top of conv4-6 and/or conv5-3 of ResNet50 [10].
We can see that adding the modules to both conv4-6 and
conv5-3 gives the best results, as this allows to consider
cross-modal discrepancies in multiple levels of features.

Visualizations of dense correspondences. We show in
Fig. 4 examples of cross-modal correspondences between
RGB and IR images on SYSU-MM01 [36]. We can see
that the matches are established well between persons of the
same identity, and they are not influenced by cross-modal
discrepancies, appearance variations, and background clut-
ter. Specifically, our model provides local features that
are robust against scale variations (Fig. 4(a)) and occlu-
sions (Fig. 4(b)). This implies that our model is able to
extract discriminative person representations with rich se-
mantics, which are important for the person reID task,
while alleviating the cross-modal discrepancies. In par-
ticular, our model offers local features that are robust to
viewpoint variations (Fig. 4(c)), where a person’s sweat-
shirt or trousers often matches to its pair regardless of front
or side view. This indicates that our network provides lo-
cal person features that are robust to viewpoint variations,
which is particularly useful for VI-reID. This aspect of cor-
respondences for reID is in contrast to typical correspon-
dence tasks, e.g., stereo matching and optical flow estima-
tion, that favor viewpoint-specific matches. We also provide
in Fig. 5 a visual comparison of correspondences for differ-
ent configurations of losses. Our model trained with the ID
loss alone is unable to establish reliable matches between
cross-modal images and easily distracted by background
clutter (Fig. 5(a)), mainly due to cross-modal discrepancies
and a lack of discriminative power in local feature repre-
sentations, particularly for person regions. The ID consis-
tency loss handles the cross-modal discrepancies, establish-
ing correspondences between local person representations
from different modalities (Fig. 5(b)). The dense triplet loss
further encourages each local feature to be discriminative,
which in turn offers matching results focusing on person re-

(a) Scale variation (b) Occlusion (c) Viewpoint variation

Figure 4: Visualization of correspondences between RGB and IR
images on SYSU-MM01 [36]. We show the top 20 matches cho-
sen by matching probabilities. Our local person representations
are robust to scale variations (a), occlusion (b), and viewpoint vari-
ations (c). (Best viewed in color.)

(a) LID (b) LID + LIC (c) LID + LIC + LDT

Figure 5: Visual comparison of correspondences for different con-
figurations of losses: (a) LID; (b) LID + LIC; (c) LID + LIC +
LDT. Our models in (b-c) exploit CMAlign modules. ID con-
sistency and dense triplet terms help to alleviate the cross-modal
discrepancies between RGB and IR images, while further enhanc-
ing the discriminative power of person features. (Best viewed in
color.)

gions (Fig. 5(c)). The features trained by leveraging dense
cross-modal correspondences are more discriminative, es-
tablishing matches focusing on person regions, while be-
ing robust to the cross-modal discrepancies. More examples
can be found in the supplementary material.

5. Conclusion
We have introduced a novel feature learning framework

for VI-reID that exploits dense correspondences between
cross-modal person images, allowing to learn person repre-
sentations that are robust to intra-class variations and cross-
modal discrepancies across RGB and IR person images. We
have also proposed ID consistency and dense triplet losses
exploiting pixel-level associations, enabling our model to
learn more discriminative person representations. We set a
new state of the art on standard benchmarks, outperforming
other VI-reID methods by a significant margin. Extensive
experimental results clearly demonstrate the effectiveness
of our approach.
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