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Abstract

Interaction and navigation defined by natural language
instructions in dynamic environments pose significant chal-
lenges for neural agents. This paper focuses on addressing
two challenges: handling long sequence of subtasks, and
understanding complex human instructions. We propose
Episodic Transformer (E.T.), a multimodal transformer that
encodes language inputs and the full episode history of vi-
sual observations and actions. To improve training, we
leverage synthetic instructions as an intermediate represen-
tation that decouples understanding the visual appearance
of an environment from the variations of natural language
instructions. We demonstrate that encoding the history with
a transformer is critical to solve compositional tasks, and
that pretraining and joint training with synthetic instruc-
tions further improve the performance. Our approach sets
a new state of the art on the challenging ALFRED bench-
mark, achieving 38.4% and 8.5% task success rates on seen
and unseen test splits.

1. Introduction

Having an autonomous agent performing various house-
hold tasks is a long-standing goal of the research com-
munity. To benchmark research progress, several simu-
lated environments [3, 53, 56] have recently emerged where
the agents navigate and interact with the environment fol-
lowing natural language instructions. Solving the vision-
and-language navigation (VLN) task requires the agent to
ground human instructions in its embodied perception and
action space. In practice, the agent is often required to
perform long compositional tasks while observing only a
small fraction of the environment from an egocentric point
of view. Demonstrations manually annotated with human
instructions are commonly used to teach an agent to accom-
plish specified tasks.

This paper attempts to address two main challenges of
VLN: (1) handling highly compositional tasks consisting of
many subtasks and actions; (2) understanding the complex
human instructions that are used to specify a task. Figure 1
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Goal: “put two vases on a cabinet”

“Walk forwards and then turn
right. Pick up the vase from
the fireplace.”

“Put the vase on the cabinet.’|

“Walk back to where you
were standing previously
with the second vase.”

“Go to the right of the fire- “Put the second vase
lIplace. Pick up another vase.” B on the same cabinet.”

Figure 1: An example of a compositional task in the ALFRED
dataset [56] where the agent is asked to bring two vases to a cab-
inet. We show several frames from an expert demonstration with
corresponding step-by-step instructions. The instructions expect
the agent to be able to navigate to a fireplace which is not visible
in its current egocentric view and to remember its previous loca-
tion by referring to it as "where you were standing previously”.

shows an example task that illustrates both challenges. We
show six key steps from a demonstration of 53 actions. To
fulfill the task, the agent is expected to remember the loca-
tion of a fireplace at t = 0 and use this knowledge much
later (at ¢ = 31). It also needs to solve object- (e.g. “an-
other vase”) and location-grounded (e.g. “where you were
standing previously”) coreference resolution in order to un-
derstand the human instructions.

Addressing the first challenge requires the agent to re-
member its past actions and observations. Most recent VLN
approaches rely on recurrent architectures [39, 60, 68, 73]
where the internal state is expected to keep information
about previous actions and observations. However, the re-
current networks are known to be inefficient in capturing
long-term dependencies [660] and may fail to execute long
action sequences [25, 56]. Motivated by the success of the
attention-based transformer architecture [65] at language
understanding [9, 1 7] and multimodal learning [18,59], we
propose to use a transformer encoder to combine multi-
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modal inputs including camera observations, language in-
structions, and previous actions. The transformer encoder
has access to the history of the entire episode to allow long-
term memory and outputs the action to take next. We name
our proposed architecture Episodic Transformer (E.T.).

Addressing the second challenge requires revisiting dif-
ferent ways to specify a task for the autonomous agent. We
observe that domain-specific language [22] and temporal
logic [24,43] can unambiguously specify the target states
and (optionally) their temporal dependencies, while being
decoupled from the visual appearance of a certain environ-
ment and the variations of human instructions. We hypoth-
esize that using these synthetic instructions as an intermedi-
ate interface between the human and the agent would help
the model to learn more easily and generalize better. To this
end, we propose to pretrain the transformer-based language
encoder in E.T. by predicting the synthetic instructions from
human instructions. We also explore joint training, where
human instructions and synthetic instructions are mapped
into a shared latent space.

To evaluate the performance of E.T., we use the AL-
FRED dataset [56] which consists of longer episodes than
the other vision-and-language navigation datasets [3,13,53]
and also requires object interaction. We experimentally
show that E.T. benefits from full episode memory and is bet-
ter at solving tasks with long horizons than recurrent mod-
els. We also observe significant gains by pretraining the
language encoder with the synthetic instructions. Further-
more, we show that when used for training jointly with nat-
ural language such intermediate representations outperform
conventional data augmentation techniques for vision-and-
language navigation [20] and work better than image-based
annotations [37].

In summary, our two main contributions are as follows.
First, we propose Episodic Transformer (E.T.), an attention-
based architecture for vision-and-language navigation, and
demonstrate its advantages over recurrent models. Second,
we propose to use synthetic instructions as the intermediate
interface between the human and the agent. Both contribu-
tions combined allow us to achieve a new state-of-the-art on
the challenging ALFRED dataset.

Code and models are available on the project page'.

2. Related work

Instruction following agents. Building systems to under-
stand and execute human instructions has been the subject
of many previous works [7, 8, 10, 12,37,41,46,47,52,62].
Instruction types include structured commands or logic pro-
grams [22,43,53], natural language [12,61], target state im-
ages [37], or a mix [38]. While earlier work focuses on
mapping instructions and structured world states into ac-

'https://github.com/alexpashevich/E.T.

tions [4, 45, 51], it is desirable for the agents to be able
to handle raw sensory inputs, such as images or videos.
To address this, the visual-and-language navigation (VLN)
task is proposed to introduce rich and unstructured vi-
sual context for the agent to explore, perceive and execute
upon [3, 13,32,33,44]. The agent is requested to navigate
to the target location based on human instructions and real,
or photo-realistic image inputs, implemented as navigation
graphs [3, 13] or a continuous environment [32] in simula-
tors [16,31,55,63]. More recently, the ALFRED environ-
ment [56] introduces the object interaction component to
complement visual-language navigation. It is a more chal-
lenging setup as sequences are longer than in other vision-
language navigation datasets and all steps of a sequence
have to be executed properly to succeed. We focus on the
ALFRED environment and its defined tasks.

Training a neural agent for VLN. State-of-the-art models
in language grounded navigation are neural agents trained
using either Imitation Learning [20], Reinforcement Learn-
ing [34], or a combination of both [60, 68]. In addition,
auxiliary tasks, such as progress estimation [39, 40], back-
tracking [30], speaker-driven route selection [20], cross-
modal matching [29, 68], back translation [60], pretrain-
ing on subtasks [74], and text-based pretraining [14,57] are
proposed to improve the performance and generalization of
neural agents in seen and unseen environments. Most of
these approaches use recurrent neural networks and encode
previous observations and actions as hidden states. Our
work proposes to leverage transformers [65] which enables
encoding the full episode of history for long-term naviga-
tion and interaction. Most relevant to our approach are
VLN-BERT [42] and Recurrent VLBERT [28], which also
employ transformers for VLN. Unlike our approach, VLN-
BERT [42] trains a transformer to measure the compatibil-
ity of an instruction and a set of already generated trajec-
tories. Concurrently, Recurrent VLBERT [28] uses an ex-
plicit recurrent state and a pretrained VLBERT to process
one observation for each timestep, which might have diffi-
culty solving long-horizon tasks [66] such as ALFRED. In
contrast, we do not introduce any recurrency and process all
the history of observations at once.

Multimodal Transformers. Transformers [65] have
brought success to a wide range of classification and gen-
eration tasks, from language [9, 17, 65] to images [, 19]
and videos [23,67]. In [48], the authors show that train-
ing transformers for long time horizon planning with RL
is challenging and propose a solution. The convergence of
the transformer architecture for different problem domains
also leads to multimodal transformers, where a unified
transformer model is tasked to solve problems that require
multimodal information, such as visual question answer-
ing [36], video captioning and temporal prediction [59], or
retrieval [21]. Our Episodic Transformer can be considered

15943



Output actions

Down Right Forward Right Pickup Left

and objects Alarm
( FC layer )
Embeddings 0B E R
Multi-modal o
encoder [ Multi-layer transformer encoder ]
( Positional and temporal encoding )

Embeddings ([N VBN .. GG VNS WA WO ) (EDN WO N N NN MM ) (Af 0 (mg (n§ (A§ (A8

2 conv. and 1 FC layers

) (

Look-up table )

Encoders [ Multi-layer transformer encoder ]

C
( Positional encoding ) [

ResNet-50 backbone ]

( Look-up table )

(Turn around ...
Ty T2

Turn the lamp on )
TL-3TL2TL-1TL
Language instructions

Inputs ]

Y- T
v 3
Camera observations

Down Right Forward Right Pickup
ay a a3 a4 a;g
Previous actions

4
vy V5 U6

Figure 2: Episodic Transformer (E.T.) architecture. To predict the next action, the E.T. model is given a natural language instruction 1.y,
visual observations since the beginning of an episode v1.+, and previously taken actions a1.+—1. Here we show an example that corresponds
to the 6™ timestep of an episode: ¢ = 6. After processing 1.7, with a transformer-based language encoder, embedding v1 .+ with a ResNet-
50 backbone and passing a1:.:—1 through a look-up table, the agent outputs ¢ actions. During training we use all predicted actions for a
gradient descent step. At test time, we apply the last action a; to the environment.

a multimodal transformer, where the inputs are language
(instructions), vision (images), and actions.

Semantic parsing of human instructions. Semantic pars-
ing focuses on converting natural language into logic forms
that can be interpreted by machines. It has applications in
question answering [0,70,7 1] and can be learned either with
paired supervision [6, 69, 72] or weak supervision [5, 50].
For instruction following, semantic parsing has been ap-
plied to map natural language into lambda calculus expres-
sions [5] or linear temporal logic [50]. We show that rather
than directly using the semantic parsing outputs, it is more
beneficial to transfer its pretrained language encoder to the
downstream VLN task.

3. Method

We first define the vision-and-language navigation task
in Section 3.1 and describe the Episodic Transformer (E.T.)
model in Section 3.2. We then introduce the synthetic lan-
guage and explain how we leverage it for pretraining and
joint training in Section 3.3.

3.1. VLN background

The vision-and-language navigation task requires an
agent to navigate in an environment and to reach a goal
specified by a natural language instruction. Each demon-
stration is a tuple (x1.1,,v1.7,a1.7) of a natural language
instruction, expert visual observations, and expert actions.
The instruction 1.7, is a sequence of L word tokens x; € R.
The visual observations v;.7 is a sequence of 7' camera im-

ages v; € RW*HX3 where T is the demonstration length

and W x H is the image size. The expert actions a;.7 is a
sequence of T action type labels a; € {1,..., A} used by
the expert and A is the number of action types.

The goal is to learn an agent function f that approxi-
mates the expert policy. In the case of a recurrent archi-
tecture, the agent predicts the next action a; given a lan-
guage instruction x.1,, a visual observation v, the previ-
ously taken action a;_1, and uses its hidden state h;_; to
keep track of the history:

ag, hy = f(x1.0,0¢, Qp—1, hyi—1). (D

For an agent with full episode observability, all previ-
ous visual observations v;.; and all previous actions a@1.;—1
are provided to the agent directly and no hidden state is re-
quired:

(@)

ar = f(r1.0, Vi, Grie—1)-

3.2. Episodic Transformer model

Our Episodic Transformer (E.T.) model shown in Fig-
ure 2 relies on attention-based multi-layer transformer en-
coders [65]. It has no hidden state and observes the full his-
tory of visual observations and previous actions. To inject
information about the order of words, frames, and action
sequences, we apply the sinusoidal encoding to transformer
inputs. We refer to this encoding as positional encoding for
language tokens and temporal encoding for expert observa-
tions and actions.

15944



Y1-M goto table pickup cellphone
“ =7 | goto bed put cellphone bed

(

Vision-Language-and-Action encoder ]

[ Language decoder ]

[ Language encoder ][ Visual encoder ][Previous action encoder]

move to the large black end table against the wall
1. pick up the phone sitting on top of the end table with the blue case
P1L carry the phone to the foot of the bed

place the phone on the bed to the right of the cushion

I
I
I
]
I
I
I
|
I
I
I
]
[ Language encoder ] I
I
I
I
|
I
I
I
I
I
]
I
I
I

1) pre-training on natural to synthetic translation

L M A

\ - s N I !
: T s=Tl — ~— \
~ = S - \

]

(:rl‘:Lt VLT a’l:‘T) (17/1‘:)[- VLT al:T)

Natural Ianguagg S}/nthetic Ianguag}
|demonstrations (21K) demonstrations (45K)

2) joint training using natural and synthetic annotations

Figure 3: Training with natural and synthetic language. Left: We pretrain the language encoder of the model to translate natural language
instructions to synthetic language. Due to a more task-oriented synthetic representation, the language encoder learns better representations.
We use the language encoder weights to initialize the language encoder of the agent (shown in yellow). Right: We jointly use demonstra-
tions annotated with natural language and demonstrations annotated with synthetic language to train the agent. Due to the larger size of the
synthetic language dataset, the resulting agent has better performance even when evaluated on natural language annotations.

Our E.T. architecture consists of four encoders: language
encoder, visual encoder, action encoder, and multimodal en-
coder. The language encoder shown in the bottom-left part
of Figure 2 gets instruction tokens x.y, as input. It consists
of alook-up table and a multi-layer transformer encoder and
outputs a sequence of contextualized language embeddings
h{.;. The visual encoder shown in the bottom-center part
of Figure 2 is a ResNet-50 backbone [27] followed by 2
convolutional and 1 fully-connected layers. The visual en-
coder projects a visual observation v; into its embedding
hy. All the episode visual observations v;.7 are projected
independently using the same encoder. The action encoder
is a look-up table shown in the bottom-right part of Figure 2
which maps action types ai.7 into action embeddings h{.;.

The multimodal encoder is a multi-layer transformer
encoder shown in the middle of Figure 2. Given the
concatenated embeddings from modality-specific encoders
(hT.p, hY.p, h$.), the multimodal encoder returns output
embeddings (z{.;,2}.;, 2%.r). The multimodal encoder
employs causal attention [65] to prevent visual and action
embeddings from attending to subsequent timesteps. We
take the output embeddings z7.,- and add a single fully-
connected layer to predict agent actions ay.7.

During E.T. training, we take advantage of the sequential
nature of the transformer architecture. We input a language
instruction 1.7, as well as all visual observations v;.7 and
all actions a1.7 of an expert demonstration to the model.
The E.T. model predicts all actions a1.7 at once as shown
at the top of Figure 2. We compute and minimize the cross-
entropy loss between predicted actions a;.7 and expert ac-
tions a;.p. During testing at timestep ¢, we input visual ob-
servations v1.; up to a current timestep and previous actions
a1.¢—1 taken by the agent. We select the action predicted for
the last timestep a., ¢, and apply it to the environment which
generates the next visual observation v, . In Figure 2 we
show an example that corresponds to the 6™ timestep of an
episode where the action Le ft will be taken next.

3.3. Synthetic language

To improve understanding of human instructions that
present a wide range of variability, we propose to pretrain
the agent language encoder with a translation into a syn-
thetic language, see Figure 3 (left). We also generate ad-
ditional demonstrations, annotate them with synthetic lan-
guage and jointly train the agent using both synthetic and
natural language demonstrations, see Figure 3 (right).

An example of the synthetic language and a corre-
sponding natural language instruction is shown in Figure 3
(left). The synthetic annotation is generated for each expert
demonstration using the expert path planner arguments. In
ALFRED, each expert path is defined with Planning Do-
main Definition Language (PDDL) [22] which consists of
several subgoal actions. Each subgoal action has a type and
a target class, e.g. Put Apple Table or Goto Bed
which we use as a synthetic annotation for this subgoal ac-
tion. Note that such annotation only defines a class but not
an instance of the target. We annotate each expert demon-
stration with subgoal action annotations concatenated in
chronological order to produce a synthetic annotation y.;.

We use synthetic language to pretrain the language en-
coder of the agent on a sequence-to-sequence (seq2seq)
translation task. The translation dataset consists of corre-
sponding pairs (1.7, y1.ar) of natural and synthetic instruc-
tions. The translation model consists of a language encoder
and a language decoder as shown in Figure 3 (left). The
language encoder is identical to the agent language encoder
described in Section 3.2. The language decoder is a multi-
layer transformer decoder with positional encoding and the
same hyperparameters as the encoder. Given a natural lan-
guage annotation 1.7, we use the language encoder to pro-
duce embeddings hi.;,. The embeddings are passed to the
language decoder which predicts N translation tokens g;.
We train the model by minimizing the cross-entropy loss
between predictions 1.y and synthetic annotations y.7.
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Once the training converges, we use the weights of the
translator language encoder to initialize the language en-
coder of the agent.

We also explore joint training by generating an addi-
tional dataset of expert demonstrations annotated with syn-
thetic language. We use the AI2-THOR simulator [31] and
scripts provided by Shridhar et al. [56]. Apart from the
annotations, the synthetic dataset differs from the original
one in terms of objects configurations and agent initial po-
sitions. We train the agent to predict actions using both nat-
ural and synthetic language datasets as shown on the right
in Figure 3. We use the same language, vision, and action
encoders for both datasets but two different look-up tables
for natural and synthetic language tokens which we found
to work the best experimentally. For both datasets, we sam-
ple batches of the same size, compute the two losses and do
a single gradient descent step. After a fixed number of train-
ing epochs, we evaluate the agent on natural and synthetic
language separately using the same set of validation tasks.

4. Results

In this section, we ablate different components of E.T.
and compare E.T. with state-of-the-art methods. First, we
describe the experimental setup and the dataset in Sec-
tion 4.1. Next, we compare our method to a recurrent base-
line and highlight the importance of full episode observ-
ability in Section 4.2. We then study the impact of joint
training and pretraining with synthetic instructions in Sec-
tion 4.3 and compare with previous state-of-the-art methods
on the ALFRED dataset in Section 4.4.

4.1. Experimental setup

Dataset. The ALFRED dataset [56] consists of demon-
strations of an agent performing household tasks following
goals defined with natural language. The tasks are compo-
sitional with nonreversible state changes. The dataset in-
cludes 8, 055 expert trajectories (vy.r, a1.7) annotated with
25,743 natural language instructions xy.7,. It is split into
21,023 train, 1,641 validation, and 3, 062 test annotations.
The validation and test folds are divided into seen splits
which contain environments from the train fold and unseen
splits which contain new environments. To leverage syn-
thetic instructions to pretrain a language encoder, we pair
every annotated instruction z 1.7, with its corresponding syn-
thetic instruction y1.ps in the train fold. For joint training,
we generate 44, 996 demonstrations (y1.,s, V1.7, a1.7) from
the train environments annotated automatically with syn-
thetic instructions. For ablation studies in Section 4.2 and
Section 4.3, we use the validation folds only. For compari-
son with state-of-the-art in Section 4.4, we report results on
both validation and test folds.

Baselines. In Section 4.2, we compare our model to a model
based on a bi-directional LSTM [56]. We use the same hy-

perparameters as Shridhar et al. [56] and set the language
encoder hidden size to 100, the action decoder hidden size
to 512, the visual embeddings size to 2500, and use 0.3
dropout for the decoder hidden state. We experimentally
find the Adam optimizer with no weight decay and a weight
coefficient 0.1 for the target class cross-entropy loss to work
best. The LSTM model uses the same visual encoder as the
E.T. model. In Section 4.4, we also compare our model to
MOCA [58] and the model of Nguyen et al. [64].
Evaluation metrics. For our ablation studies in Sections
4.2 and 4.3, we report agent success rates. To understand
the performance difference with recurrent-based architec-
tures in Section 4.2, we also report success rates on individ-
ual subgoals. This metric corresponds to the proportion of
subgoal tasks completed after following an expert demon-
stration until the beginning of the subgoal and conditioned
on the entire language instruction. We note that the aver-
age task length is 50 timesteps while the average length of
a subgoal is 7 timesteps.

Implementation details. Among the 13 possible action
types, 7 actions involve interacting with a target object in
the environment. The target object of an action a; is chosen
with a binary mask m; € {0, 1}"W># that specifies the pix-
els of visual observation v, that belong to the target object.
There are 119 object classes in total. The pixel masks m;
are provided along with expert demonstrations during train-
ing. We follow Singh et al. [58] and ask our agent to predict
the target object class ¢;, which is then used to retrieve the
corresponding pixel mask 7, generated by a pretrained in-
stance segmentation model. The segmentation model takes
vy as input and outputs (&, 77;).

The agent observations are resized to 224 x 224. The
mask generator receives images of size 300 x 300 following
Singh et al. [58]. Both the visual encoder and the mask gen-
erator are pretrained on a dataset of 325K frames of expert
demonstrations from the train fold and corresponding class
segmentation masks. We use ResNet-50 Faster R-CNN [54]
for the visual encoder pretraining and ResNet-50 Mask R-
CNN [26] for the mask generator. We do not update the
mask generator and the visual encoder ResNet backbone
during the agent training. In the visual encoder, ResNet fea-
tures are average-pooled 4 times to reduce their size and 0.3
dropout is applied. Resulting feature maps of 512X 7 x 7 are
fed into 2 convolutional layers with 256 and 64 filters of size
1 by 1 and mapped into an embedding of the size 768 with
a fully connected layer. Both transformer encoders of E.T.
have 2 blocks, 12 self-attention heads, and the hidden size
of 768. We use 0.1 dropout inside transformer encoders.

We use the AdamW optimizer [35] with 0.33 weight de-
cay and train the model for 20 epochs. Every epoch in-
cludes 3, 750 batches of 8 demonstrations each. For joint
training, each batch consists of 4 demonstrations with hu-
man instructions and 4 demonstrations with synthetic in-
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Task Sub-goal
Model Seen Unseen Seen Unseen
LSTM 23.2 2.4 75.5 58.7
LSTM + E.T.enc. 27.8 33 76.6 59.5
E.T. 33.8 3.2 77.3 59.6

Table 1: Comparison of E.T. and LSTM architectures: (1) an
LSTM-based model [56], (2) an LSTM-based model trained with
the transformer language encoder of the E.T. model, (3) E.T., our
transformer-based model. All models are trained using the natural
language dataset only and evaluated on validation folds. The two
parts of the table show the success rate for tasks (average length
50) and sub-goals (average length 7). While the sub-goal success
rates of all models are relatively close, E.T. outperforms both re-
current agents on full tasks which highlights the importance of the
full episode observability.

Frames Actions
Seen Unseen Seen Unseen

None 0.5 0.2 23.7 1.7
1 last 28.9 2.2 33.8 3.2
4 last 31.5 2.0 32.0 2.4
16last  33.5 2.9 31.1 2.8
All 33.8 3.2 27.1 2.2

Visible

Table 2: Ablation on accessible history length of E.T., in terms of
visual frames (left two columns) and actions (right two columns).

structions. For all experiments, we use a learning rate of
10~* during the first 10 epochs and 10~° during the last
10 epochs. Following Shridhar et al. [56], we use auxiliary
losses for overall and subgoal progress [39] which we sum
to the model cross-entropy loss with weights 0.1. All the
hyperparameter choices were made using a moderate size
grid search. Once the training is finished, we evaluate ev-
ery 2-nd epoch on the validation folds. Following Singh et
al. [58], we use Instance Association in Time and Obstruc-
tion Detection modules during evaluation.

4.2. Model analysis

Comparison with recurrent models. To validate the gain
due to the episodic memory, we compare the E.T. archi-
tecture with a model based on a recurrent LSTM architec-
ture. We train both models using the dataset with natural
language annotations only. As shown in Table 1, the recur-
rent model succeeds in 23.2% of tasks in seen environments
and in 2.4% of tasks in unseen environments. E.T. succeeds
in 33.8% and 3.2% of tasks respectively which is a relative
improvement of 45.6% and 33.3% compared to the LSTM-
based agent. However, the success rate computed for in-
dividual subgoals shows only 2.3% and 1.5% of relative
improvement of E.T. over the recurrent agent in seen and
unseen environments respectively. We note that a task con-

sists on average of 6.5 subgoals which makes the long-term
memory much more important for solving full tasks.

To understand the performance difference, we train an
LSTM-based model with the E.T. language encoder. Given
that both LSTM and E.T. agents receive the same visual
features processed by the frozen ResNet-50 backbone and
have the same language encoder architecture, the princi-
pal difference between the two models is the processing of
previous observations. While the E.T. agent observes all
previous frames using the attention mechanism, the LSTM-
based model relies on its recurrent state and explicitly ob-
serves only the last visual frame. The recurrent model per-
formance shown in the 2-nd row of Table 1 is similar to the
E.T. performance in unseen environments but is 17.7% less
successful than E.T. in seen environments. This comparison
highlights the importance of the attention mechanism and
full episode observability. We note that E.T. needs only one
forward pass for a gradient descent update on a full episode.
In contrast, the LSTM models need to do a separate forward
pass for each episode timestep which significantly increases
their training time with respect to E.T. models. We further
compare how E.T. and LSTM models scale with additional
demonstrations in Section 4.3.

Accessible history length. We train E.T. using different
lengths of the episode history observed by the agent in terms
of visual frames and previous actions and show the results in
Table 2. The first two columns of Table 2 compare different
lengths of visual observations history from no past frames
to the entire episode. The results indicate that having access
to all visual observations is important for the model perfor-
mance. We note that the performance of the model with 16
input frames is close to the performance of the full episode
memory agent, which can be explained by the average task
length of 50 timesteps.

The last two columns of Table 2 show that the agent does
not benefit from accessing more than one past action. This
behavior can be explained by the “causal misidentification”
phenomenon: access to more information can yield worse
performance [15]. It can also be explained by poor general-
izability due to the overfitting of the model to expert demon-
strations. We also note that the model observing no previ-
ous actions is 29.8% and 46.8% relatively less successful
in seen and unseen environments than the agent observing
the last action. We, therefore, fix the memory size to be un-
limited for visual observations and to be 1 timestep for the
previous actions.

Model capacity. Transformer-based models are known to
be expressive but prone to overfitting. We study how the
model capacity impacts the performance while training on
the original ALFRED dataset. We change the number of
transformer blocks in the language encoder and the multi-
modal encoder and report results in Table 3. The results
indicate that the model with a single transformer block is
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# Blocks Seen Unseen
1 25.0 1.6
2 33.8 3.2
3 28.6 2.2
4 19.8 1.1

Table 3: Ablation of E.T. model capacity. We compare E.T. mod-
els with different number of transformer blocks in language and
multimodal encoders.

Test on synthetic Test on human

Synthetic instr.
y Seen Unseen Seen Unseen

Expert frames  54.0 6.1 285 34
Speaker text 36.3 3.1 374 39
Subgoal actions 47.2 5.9 385 54

No synthetic - - 33.8 3.2

Table 4: Comparison of different synthetic instructions used for
joint training. We jointly train E.T. using demonstrations with
human annotations and demonstrations with different types of syn-
thetic instructions. In the first two columns, we evaluate the re-
sulting models using the same type of synthetic annotations that
is used during training. In the last two columns, the models are
evaluated on human annotated instructions.

LSTM E.T.
Seen Unseen Seen Unseen

Human annotations  23.2 24 33.8 3.2
Human + synthetic ~ 25.2 2.9 38.5 54

Train data

Table 5: Comparison of an LSTM-based model and E.T. trained
jointly with demonstrations annotated by subgoal actions. The
results indicate that E.T. scales better with additional data than the
LSTM-based agent.

not expressive enough and the models with 3 and 4 blocks
overfit to the train data. The model with 2 blocks represents
a trade-off between under- and overfitting and we, therefore,
keep this value for all the experiments.

Attention visualization. We visualize text and visual atten-
tion heatmaps in Appendices A.4 and A.5 of [49].

4.3. Training with synthetic annotations

Joint training. We train the E.T. model using the origi-
nal dataset of 21, 023 expert demonstrations annotated with
natural language and the additionally generated dataset of
44,996 expert demonstrations with synthetic annotations.
We compare three types of synthetic annotations: (1) di-
rect use of visual embeddings from the expert demonstra-
tion frames, no language instruction is generated. A sim-
ilar approach can be found in Lynch and Sermanet [38];
(2) train a model to generate instructions, e.g. with a speaker
model [20], where the inputs are visual embeddings from

the expert demonstration frames, and the targets are human-
annotated instructions; and (3) subgoal actions and objects
annotations described in Section 3.3. For (1), we experi-
mentally find using all expert frames from a demonstration
works significantly better than a subset of frames. The vi-
sual embeddings used in (1) and (2) are extracted from a
pretrained frozen ResNet-50 described in Section 4.1. To
generate speaker annotations, we use a transformer-based
seq2seq model (Section 3.3) with the difference that the in-
puts are visual embeddings instead of text.

We report success rates of models trained jointly and
evaluated independently on synthetic and human-annotated
instructions in Table 4. The results are reported on the val-
idation folds. The model trained on expert frames achieves
the highest performance when evaluated on synthetic in-
structions. However, when evaluated on human instruc-
tions, this model has 15.6% relatively lower success rate in
seen environments than the baseline without joint training.
This indicates that the agent trained to take expert frames as
instructions does not generalize well to human instructions.
Using speaker translation annotations improves over the no
joint training baseline by 10.6% and 21.8% in seen and un-
seen environments respectively. Furthermore, our proposed
subgoal annotations bring an even larger relative improve-
ment of 13.9% and 68.7% in seen and unseen environments
which highlights the benefits of joint training with synthetic
instructions in the form of subgoal actions.

Finally, we study if the recurrent baseline also benefits
from joint training with synthetic data. Table 5 shows that
the relative gains of joint training are 2.3 and 4.4 times
higher for E.T. than for the LSTM-based agent in seen and
unseen environments respectively. These numbers clearly
show that E.T. benefits more from additional data and con-
firms the advantage of our model over LSTM-based agents.

Language encoder pretraining. Another application of
synthetic instructions is to use them as an intermediate rep-
resentation that decouples the visual appearance of an en-
vironment from the variations of human-annotated instruc-
tions. For this purpose, we pretrain the E.T. language en-
coder with the synthetic instructions. In particular, we pre-
train a seq2seq model to map human instructions into syn-
thetic instructions as described in Section 3.3, and study
whether it is more beneficial to transfer explicitly the “trans-
lated” text or implicitly as representations encoded by the
model weights. Our pretraining is done on the original
train fold with no additionally generated trajectories. The
seq2seq translation performance is very competitive, reach-
ing 97.1% in terms of F1 score. To transfer explicitly
the translated (synthetic) instructions, we first train an E.T.
agent to follow synthetic instructions on the training fold
and then evaluate the agent on following human instructions
by translating these instructions into synthetic ones with our
pretrained seq2seq model.
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Objective Transfer Seen Unseen
None - 33.8 3.2
BERT Text embedding  32.3 3.4

Seq2seq  Translated text  35.2 3.6
Seq2seq Text encoder 37.6 3.8

Table 6: Comparison of models with different language encoder
pretraining strategies. We pretrain a seq2seq model to map hu-
man instructions into synthetic instructions and transfer either its
output text (third row) or its learned weights (fourth row). For
completeness, we also compare with no pretraining (first row) and
BERT pretraining (second row).

Table 6 compares these two pretraining strategies. We
can see that both strategies outperform the no pretraining
baseline (first row) significantly and that transferring the
encoder works better than explicit translation. For com-
pleteness, we also report results with BERT pretraining [17]
(second row). The BERT model is pretrained on generic
text data (e.g. Wikipedia). We use the BERT base model
whose weights are released by the authors. We extract its
output contextualized word embeddings and use them as the
input word embeddings to the language encoder. To our sur-
prise, when compared with the no pretraining baseline, the
BERT pretraining decreases the performance in seen envi-
ronments by 4.4% and brings a marginal improvement of
6.2% relative in unseen environments. We conjecture that
domain-specific language pretraining is important for the
ALFRED benchmark. Overall, these experiments show an-
other advantage of the proposed synthetic annotations and
highlight the importance of intermediate language represen-
tations to better train instruction-following agents.

We finally combine the language encoder pretraining and
the joint training objectives and present the results in Ta-
ble 7. We observe that these two strategies are complemen-
tary to each other: the overall relative improvements of in-
corporating synthetic data over the baseline E.T. model are
37.8% and 228.1% in seen and unseen environments, re-
spectively. We conclude that synthetic data is especially
important for generalization to unseen environments. A
complete breakdown of performance improvements can be
found in Appendix A.2 of [49].

4.4. Comparison with state-of-the-art

We compare the E.T. agent with models with associated
tech reports on the public leaderboard’. The results on val-
idation and test folds are shown in Table 8. The complete
table with solved goal conditions and path-length-weighted
scores [2] is given in Appendix A.1 of [49]. The E.T. model
trained without synthetic data pretraining and joint train-
ing sets a new state-of-the-art on seen environments (row

2https://leaderboard.allenai.org/alfred, the results
were submitted on February 22, 2021.

Pretraining  Joint training Seen  Unseen
33.8 3.2
v 37.6 3.8
v 38.5 5.4
v 4 46.6 7.3

Table 7: Ablation study of joint training and language encoder
pretraining with synthetic data. We present baseline results with-
out leveraging synthetic data (first row), the independent perfor-
mance of pretraining (second row) and joint training (third row),
and their combined performance (fourth row).

Model Validation Test

Seen Unseen Seen Unseen
Shridhar et al. [56] 3.70 0.00 3.98 0.39
Nguyen et al. [64] N/A N/A 12.39 4.45
Singh et al. [58] 19.15 3.78 22.05 5.30
E.T. 33.78 3.17 28.77 5.04
E.T. (pretr.) 37.63 3.76 33.46 5.56

E.T. (pretr. & jointtr.) 46.59 7.32 38.42 8.57

Human performance - - - 91.00

Table 8: Comparison with the models submitted to the public
leaderboard on validation and test folds. The highest value per fold
is shown in blue. ‘N/A’ denotes that the scores are not reported on
the leaderboard or in an associated publication. Our method sets a
new state-of-the-art on all metrics.

4). By leveraging synthetic instructions for pretraining, our
method outperforms the previous methods [56, 58, 64] and
sets a new state-of-the-art on all metrics (row 5). Given ad-
ditional 45K trajectories for joint training, the E.T. model
further improves the results (row 6).

5. Conclusion

We propose E.T., a transformer-based architecture for
vision-and-language navigation tasks. E.T. observes the full
episode history of vision, language, and action inputs and
encodes it with a multimodal transformer. On the ALFRED
benchmark, E.T. outperforms competitive recurrent base-
lines and achieves state-of-the-art performance on seen en-
vironments. We also propose to use synthetic instructions
for pretraining and joint training with human-annotated in-
structions. Given the synthetic instructions, the perfor-
mance is further improved in seen and especially, in un-
seen environments. In the future, we want to explore other
forms of synthetic annotations and techniques to automati-
cally construct them, for example with object detectors.

Acknowledgement: We thank Peter Anderson, Ellie
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