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Figure 1. Examples of text-driven manipulations using StyleCLIP. Top row: input images; Bottom row: our manipulated results. The text
prompt used to drive each manipulation appears under each column.

Abstract

Inspired by the ability of StyleGAN to generate highly re-
alistic images in a variety of domains, much recent work has
focused on understanding how to use the latent spaces of
StyleGAN to manipulate generated and real images. How-
ever, discovering semantically meaningful latent manipula-
tions typically involves painstaking human examination of
the many degrees of freedom, or an annotated collection
of images for each desired manipulation. In this work, we
explore leveraging the power of recently introduced Con-
trastive Language-Image Pre-training (CLIP) models in or-
der to develop a text-based interface for StyleGAN image
manipulation that does not require such manual effort. We
first introduce an optimization scheme that utilizes a CLIP-
based loss to modify an input latent vector in response to a
user-provided text prompt. Next, we describe a latent map-
per that infers a text-guided latent manipulation step for
a given input image, allowing faster and more stable text-
based manipulation. Finally, we present a method for map-
ping text prompts to input-agnostic directions in StyleGAN’s
style space, enabling interactive text-driven image manipu-
lation. Extensive results and comparisons demonstrate the
effectiveness of our approaches.
∗ Equal contribution, ordered alphabetically. Code and video are available
on https://github.com/orpatashnik/StyleCLIP

1. Introduction

Generative Adversarial Networks (GANs) [18] have rev-
olutionized image synthesis, with recent style-based gener-
ative models [24, 25, 22] boasting some of the most realistic
synthetic imagery to date. Furthermore, the learnt interme-
diate latent spaces of StyleGAN have been shown to possess
disentanglement properties [9, 48, 19, 53, 58], which enable
utilizing pretrained models to perform a wide variety of im-
age manipulations on synthetic, as well as real, images.

Harnessing StyleGAN’s expressive power requires de-
veloping simple and intuitive interfaces for users to eas-
ily carry out their intent. Existing methods for seman-
tic control discovery either involve manual examination
(e.g., [19, 48, 58]), a large amount of annotated data, or pre-
trained classifiers [49, 1]. Furthermore, subsequent manipu-
lations are typically carried out by moving along a direction
in one of the latent spaces, using a parametric model, such
as a 3DMM in StyleRig [53], or a trained normalized flow
in StyleFlow [1]. Specific edits, such as virtual try-on [27]
and aging [2] have also been explored.

Thus, existing controls enable image manipulations only
along preset semantic directions, severely limiting the
user’s creativity and imagination. Whenever an additional,
unmapped, direction is desired, further manual effort and/or
large quantities of annotated data are necessary.
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In this work, we explore leveraging the power of re-
cently introduced Contrastive Language-Image Pre-training
(CLIP) models in order to enable intuitive text-based se-
mantic image manipulation that is neither limited to preset
manipulation directions, nor requires additional manual ef-
fort to discover new controls. The CLIP model is pretrained
on 400 million image-text pairs harvested from the Web,
and since natural language is able to express a much wider
set of visual concepts, combining CLIP with the generative
power of StyleGAN opens fascinating avenues for image
manipulation. Figure 1 shows several examples of unique
manipulations produced using our approach. Specifically,
in this paper we investigate three techniques that combine
CLIP with StyleGAN:

1. Text-guided latent optimization, where a CLIP model
is used as a loss network [20]. This is the most versatile
approach, but it requires a few minutes of optimization
to apply a manipulation to an image.

2. A latent residual mapper, trained for a specific text
prompt. Given a starting point in latent space (the in-
put image to be manipulated), the mapper yields a local
step in latent space.

3. A method for mapping a text prompt into an input-
agnostic (global) direction in StyleGAN’s style space,
providing control over the manipulation strength as
well as the degree of disentanglement.

The results in this paper and the supplementary mate-
rial demonstrate a wide range of semantic manipulations
on images of human faces, animals, cars, and churches.
These manipulations range from abstract to specific, and
from extensive to fine-grained. Many of them have not been
demonstrated by any of the previous StyleGAN manipula-
tion works, and all of them were easily obtained using a
combination of pretrained StyleGAN and CLIP models.

2. Related Work
2.1. Vision and Language

Joint representations Multiple works learn cross-modal
vision and language (VL) representations [12, 47, 52, 35,
30, 51, 29, 7, 32] for a variety of tasks, such as language-
based image retrieval, image captioning, and visual ques-
tion answering. Following the success of BERT [13] in var-
ious language tasks, recent VL methods typically use Trans-
formers [55] to learn the joint representations. A recent
model, based on Contrastive Language-Image Pre-training
(CLIP) [42], learns a multi-modal embedding space, which
may be used to estimate the semantic similarity between a
given text and an image. CLIP was trained on 400 million
text-image pairs, collected from a variety of publicly avail-
able sources on the Internet. The representations learned by

CLIP have been shown to be extremely powerful, enabling
state-of-the-art zero-shot image classification on a variety
of datasets. We refer the reader to OpenAI’s Distill article
[17] for an extensive exposition and discussion of CLIP.

Text-guided image generation and manipulation The
pioneering work of Reed et al. [45] approached text-guided
image generation by training a conditional GAN [36], con-
ditioned by text embeddings obtained from a pretrained en-
coder. Zhang et al. [62, 63] improved image quality by
using multi-scale GANs. AttnGAN [60] incorporated an
attention mechanism between the text and image features.
Additional supervision was used in other works [45, 31, 26]
to further improve the image quality.

A few studies focus on text-guided image manipulation.
Some methods [14, 39, 33] use a GAN-based encoder-
decoder architecture, to disentangle the semantics of both
input images and text descriptions. ManiGAN [28] intro-
duces a novel text-image combination module, which pro-
duces high-quality images. Differently from the aforemen-
tioned works, we propose a single framework that combines
the high-quality images generated by StyleGAN, with the
rich multi-domain semantics learned by CLIP.

Recently, DALL·E [43, 44], a 12-billion parameter ver-
sion of GPT-3 [6], which at 16-bit precision requires over
24GB of GPU memory, has shown a diverse set of capabil-
ities in generating and applying transformations to images
guided by text. In contrast, our approach is deployable even
on a single commodity GPU.

More recently, TediGAN [59] and Paint by Word [4],
also pair a GAN with CLIP for text-guided image gener-
ation and manipulation. By training an encoder to map
text into the StyleGAN latent space, TediGAN can generate
an image corresponding to a given text. To perform text-
guided image manipulation, TediGAN encodes both the im-
age and the text into the latent space, and then performs
style-mixing to generate a corresponding image. In Sec-
tion 7 we demonstrate that the manipulations achieved us-
ing our approach reflect better the semantics of the driving
text.

Rather than manipulating images, several concurrent
projects use CLIP to guide text-to-image generation through
optimization. Deep Daze [38] optimizes the weights of
a neural implicit representation network, while [37, 41,
10, 16] optimize the latent space of BigGAN [5], Style-
GAN [25] or VQGAN [15]. While text-to-image generation
is an intriguing and challenging problem, we believe that the
image manipulation abilities we provide constitute a more
useful tool for the typical workflow of creative artists.

2.2. Latent Space Image Manipulation

Many works explore how to utilize the latent space of
a pretrained generator for image manipulation [9, 53, 58].
Specifically, the intermediate latent spaces in StyleGAN
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have been shown to enable many disentangled and mean-
ingful image manipulations. Some methods learn to per-
form image manipulation in an end-to-end fashion, by train-
ing a network that encodes a given image into a latent rep-
resentation of the manipulated image [40, 46, 2, 3]. Other
methods aim to find latent paths, such that traversing along
them result in the desired manipulation. Such methods can
be categorized into: (i) methods that use image annotations
to find meaningful latent paths [48, 1], and (ii) methods that
find meaningful directions without supervision, and require
manual annotation for each direction [19, 50, 56, 57].

While most works perform image manipulations in the
W or W+ spaces, Wu et al. [58] proposed to use the
StyleSpace S, and showed that it is better disentangled than
W and W+. Our latent optimizer and mapper work in the
W+ space, while the input-agnostic directions that we de-
tect are in S. In all three, the manipulations are derived di-
rectly from text input, and our only source of supervision is
a pretrained CLIP model. As CLIP was trained on hundreds
of millions of text-image pairs, our approach is generic and
can be used in a multitude of domains without the need for
domain- or manipulation-specific data annotation.

3. StyleCLIP Text-Driven Manipulation
In this work we explore three ways for text-driven image

manipulation, all of which combine the generative power
of StyleGAN with the rich joint vision-language represen-
tation learned by CLIP.

We begin in Section 4 with a simple latent optimization
scheme, where a given latent code of an image in Style-
GAN’s W+ space is optimized by minimizing a loss com-
puted in CLIP space. The optimization is performed for
each (source image, text prompt) pair. Thus, while this
method is versatile, several minutes are required to perform
a single manipulation, and it can be difficult to control. A
more stable approach is described in Section 5, where a
mapping network is trained to infer a manipulation step in
latent space, in a single forward pass. The training takes a
few hours, but it must only be done once per text prompt.
The direction of the manipulation step may vary depending
on the starting position in W+, which corresponds to the
input image, and thus we refer to this mapper as local.

Our experiments with the local mapper reveal that the
manipulation directions are often similar to each other, de-
spite different starting points. Also, since the manipula-
tion step is performed in W+, it is difficult to achieve
fine-grained visual effects in a disentangled manner. Thus,
in Section 6 we explore a third text-driven manipulation
scheme, which transforms a given text prompt into an in-
put agnostic (i.e., global in latent space) mapping direc-
tion. The direction is computed in StyleGAN’s style space
S [58], which is better suited for fine-grained and disentan-
gled visual manipulation, compared to W+.

pre-
proc.

train
time

infer.
time

input image
dependent

latent
space

optimizer – – 98 sec yes W+
mapper – 10 – 12h 75 ms yes W+

global dir. 4h – 72 ms no S

Table 1. Our three methods for combining StyleGAN and CLIP.
The latent step inferred by the optimizer and the mapper depends
on the input image, but the training is only done once per text
prompt. The global direction method requires a one-time pre-
processing, after which it may be applied to different (image, text
prompt) pairs. Times are for a single NVIDIA GTX 1080Ti GPU.

Table 1 summarizes the differences between the three
methods outlined above, while visual results and compar-
isons are presented in the following sections.

We have also experimented with optimizing and map-
ping directly in the S latent space. Our results (in the
supplementary material) reveal that optimizing in S yields
more disentangled edits, however, it is harder to achieve
global changes. For our latent mapper method, we found
no advantage for operating in S.

4. Latent Optimization
A simple approach for leveraging CLIP to guide im-

age manipulation is through direct latent code optimization.
Specifically, given a source latent code ws ∈ W+, and a
directive in natural language, or a text prompt t, we solve
the following optimization problem:

argmin
w∈W+

DCLIP(G(w), t) + λL2 ∥w − ws∥2 + λIDLID(w),

(1)
where G is a pretrained StyleGAN1 generator and DCLIP is
the cosine distance between the CLIP embeddings of its two
arguments. Similarity to the input image is controlled by the
L2 distance in latent space, and by the identity loss [46]:

LID (w) = 1− ⟨R(G(ws)), R(G(w))⟩ , (2)

where R is a pretrained ArcFace [11] network for face
recognition, and ⟨·, ·⟩ computes the cosine similarity be-
tween it’s arguments. We solve this optimization problem
through gradient descent, by back-propagating the gradi-
ent of the objective in (1) through the pretrained and fixed
StyleGAN generator G and the CLIP image encoder.

In Figure 2 we provide several edits that were obtained
using this optimization approach after 200-300 iterations.
The input images were inverted by e4e [54]. Note that
visual characteristics may be controlled explicitly (beard,
blonde) or implicitly, by indicating a real or a fictional per-
son (Beyonce, Trump, Elsa). The values of λL2 and λID
depend on the nature of the desired edit. For changes that
shift towards another identity, λID is set to a lower value.

1We use StyleGAN2 [25] in all our experiments.
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Input “Beyonce”
(0.004, 0)

“A woman
without makeup”

(0.008, 0.005)

“Elsa from
Frozen”
(0.004, 0)

Input “A man with a
beard”

(0.008, 0.005)

“A blonde man”
(0.008, 0.005)

“Donald Trump”
(0.0025, 0)

Figure 2. Edits of real celebrity portraits obtained by latent opti-
mization. The driving text prompt and the (λL2, λID) parameters
for each edit are indicated under the corresponding result.

5. Latent Mapper
The latent optimization described above is versatile, as

it performs a dedicated optimization for each (source im-
age, text prompt) pair. On the downside, several minutes
of optimization are required to edit a single image, and the
method is somewhat sensitive to the values of its parame-
ters. Below, we describe a more efficient process, where a
mapping network is trained, for a specific text prompt t, to
infer a manipulation step Mt(w) in the W+ space, for any
given latent image embedding w ∈ W+.

Architecture The architecture of our text-guided map-
per is depicted in Figure 3. It has been shown that dif-
ferent StyleGAN layers are responsible for different lev-
els of detail in the generated image [24]. Consequently,
it is common to split the layers into three groups (coarse,
medium, and fine), and feed each group with a different
part of the (extended) latent vector. We design our map-
per accordingly, with three fully-connected networks, one
for each group/part. The architecture of each of these net-
works is the same as that of the StyleGAN mapping net-
work, but with fewer layers (4 rather than 8, in our imple-
mentation). Denoting the latent code of the input image as
w = (wc, wm, wf ), the mapper is defined by

Mt(w) = (M c
t (wc),M

m
t (wm),Mf

t (wf )). (3)

Note that one can choose to train only a subset of the three
mappers. There are cases where it is useful to preserve some
attribute level and keep the style codes in the corresponding
entries fixed.

Losses Our mapper is trained to manipulate the desired
attributes of the image as indicated by the text prompt t,

while preserving the other visual attributes of the input im-
age. The CLIP loss, LCLIP(w) guides the mapper to mini-
mize the cosine distance in the CLIP latent space:

LCLIP(w) = DCLIP(G(w +Mt(w)), t), (4)

where G denotes again the pretrained StyleGAN generator.
To preserve the visual attributes of the original input image,
we minimize the L2 norm of the manipulation step in the
latent space. Finally, for edits that require identity preser-
vation, we use the identity loss defined in eq. (2). Our total
loss function is a weighted combination of these losses:

L(w) = LCLIP(w) + λL2 ∥Mt(w)∥2 + λIDLID(w). (5)

As before, when the edit is expected to change the identity,
we do not use the identity loss. The parameter values we
use for the examples in this paper are λL2 = 0.8, λID = 0.1,
except for the “Trump” manipulation in Figure 9, where the
parameter values we use are λL2 = 2, λID = 0.

In Figure 4 we provide several examples for hair style
edits, where a different mapper used in each column. In all
of these examples, the mapper succeeds in preserving the
identity and most of the other visual attributes that are not
related to hair. Note, that the resulting hair appearance is
adapted to the individual; this is particularly apparent in the
“Curly hair” and “Bob-cut hairstyle” edits.

It should be noted that the text prompts are not lim-
ited to a single attribute at a time. Figure 5 shows four
different combinations of hair attributes, straight/curly and
short/long, each yielding the expected outcome. This de-
gree of control has not been demonstrated by any previous
method we’re aware of.

Since the latent mapper infers a custom-tailored manipu-
lation step for each input image, it is interesting to examine
the extent to which the direction of the step in latent space
varies over different inputs. To test this, we first invert the
test set of CelebA-HQ [34, 21] using e4e [54]. Next, we
feed the inverted latent codes into several trained mappers
and compute the cosine similarity between all pairs of the
resulting manipulation directions. The mean and the stan-
dard deviation of the cosine similarity for each mapper is
reported in Table 2. The table shows that even though the
mapper infers manipulation steps that are adapted to the in-
put image, in practice, the cosine similarity of these steps
for a given text prompt is high, implying that their direc-
tions are not as different as one might expect.

6. Global Directions
While the latent mapper allows fast inference time, we

find that it sometimes falls short when a fine-grained disen-
tangled manipulation is desired. Furthermore, as we have
seen, the directions of different manipulation steps for a
given text prompt tend to be similar. Motivated by these ob-
servations, in this section we propose a method for mapping
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Figure 3. The architecture of our text-guided mapper (using the text prompt “grey hair”, in this example). The source image (left) is
inverted into a latent code w. Three separate mapping functions are trained to generate residuals (in blue) that are added to w to yield the
target code, from which a pretrained StyleGAN (in green) generates an image (right), assessed by the CLIP and identity losses.

Mohawk Afro Bob-cut Curly Beyonce Taylor Swift Surprised Purple hair
Mean 0.82 0.84 0.82 0.84 0.83 0.77 0.79 0.73
Std 0.096 0.085 0.095 0.088 0.081 0.107 0.893 0.145

Table 2. Average cosine similarity between manipulation directions obtained from mappers trained using differnt text prompts.

Input “Mohawk
hairstyle”

“Curly hair” “Bob-cut
hairstyle”

“Afro
hairstyle”

Figure 4. Hair style edits using our mapper when training Mc and
Mm only. The driving text prompts are indicated below each col-
umn. All input images are inversions of real images.

“Straight short
hair”

“Straight long
hair”

“Curly short
hair”

“Curly long hair”

Figure 5. Controlling more than one attribute with a single mapper.
The driving text for each mapper is indicated below each column.

a text prompt into a single, global direction in StyleGAN’s
style space S, which has been shown to be more disentan-
gled than other latent spaces [58].

Let s ∈ S denote a style code, and G(s) the correspond-
ing generated image. Given a text prompt indicating a de-
sired attribute, we seek a manipulation direction ∆s, such
that G(s+ α∆s) yields an image where that attribute is in-
troduced or amplified, without significantly affecting other
attributes. The manipulation strength is controlled by α.
Our high-level idea is to first use the CLIP text encoder to
obtain a vector ∆t in CLIP’s joint language-image embed-
ding and then map this vector into a manipulation direction
∆s in S. A stable ∆t is obtained from natural language,
using prompt engineering, as described below. The corre-
sponding direction ∆s is then determined by assessing the
relevance of each style channel to the target attribute.

More formally, denote by I the manifold of image em-
beddings in CLIP’s joint embedding space, and by T the
manifold of its text embeddings. We distinguish between
these two manifolds, because there is no one-to-one map-
ping between them: an image may contain a large number
of visual attributes, which can hardly be comprehensively
described by a single text sentence; conversely, a given sen-
tence may describe many different images. During CLIP
training, all embeddings are normalized to a unit norm, and
therefore only the direction of embedding contains semantic
information, while the norm may be ignored. Thus, in well
trained areas of the CLIP space, we expect directions on
the T and I manifolds that correspond to the same seman-
tic changes to be roughly collinear (i.e., have large cosine
similarity), and nearly identical after normalization.

Given a pair of images, G(s) and G(s+α∆s), we denote
their I embeddings by i and i+∆i, respectively. Thus, the
difference between the two images in CLIP space is given
by ∆i. Given a natural language instruction encoded as ∆t,
and assuming collinearity between ∆t and ∆i, we can de-
termine a manipulation direction ∆s by assessing the rele-
vance of each channel in S to the direction ∆i.
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From natural language to ∆t In order to reduce text em-
bedding noise, Radford et al. [42] utilize a technique called
prompt engineering that feeds several sentences with the
same meaning to the text encoder, and averages their em-
beddings. For example, for ImageNet zero-shot classifica-
tion, a bank of 80 different sentence templates is used, such
as “a bad photo of a {}”, “a cropped photo of the {}”, “a
black and white photo of a {}”, and “a painting of a {}”. At
inference time, the target class is automatically substituted
into these templates to build a bank of sentences with simi-
lar semantics, whose embeddings are then averaged. This
process improves zero-shot classification accuracy by an
additional 3.5% over using a single text prompt.

Similarly, we also employ prompt engineering (using the
same ImageNet prompt bank) in order to compute stable di-
rections in T . Specifically, our method should be provided
with text description of a target attribute and a correspond-
ing neutral class. For example, when manipulating images
of cars, the target attribute might be specified as “a sports
car”, in which case the corresponding neutral class might
be “a car”. Prompt engineering is then applied to produce
the average embeddings for the target and the neutral class,
and the normalized difference between the two embeddings
is used as the target direction ∆t.

Channelwise relevance Next, our goal is to construct a
style space manipulation direction ∆s that would yield a
change ∆i, collinear with the target direction ∆t. For this
purpose, we need to assess the relevance of each channel
c of S to a given direction ∆i in CLIP’s joint embedding
space. We generate a collection of style codes s ∈ S, and
perturb only the c channel of each style code by adding a
negative and a positive value. Denoting by ∆ic the CLIP
space direction between the resulting pair of images, the rel-
evance of channel c to the target manipulation is estimated
as the mean projection of ∆ic onto ∆i:

Rc(∆i) = Es∈S{∆ic ·∆i} (6)

In practice, we use 100 image pairs to estimate the mean.
The pairs of images that we generate are given by G(s ±
α∆sc), where ∆sc is a zero vector, except its c coordinate,
which is set to the standard deviation of the channel. The
magnitude of the perturbation is set to α = 5.

Having estimated the relevance Rc of each channel, we
ignore channels whose Rc falls below a threshold β. This
parameter may be used to control the degree of disentan-
glement in the manipulation: using higher threshold values
results in more disentangled manipulations, but at the same
time the visual effect of the manipulation is reduced. Since
various high-level attributes, such as age, involve a combi-
nation of several lower level attributes (for example, grey
hair, wrinkles, and skin color), multiple channels are rele-
vant, and in such cases lowering the threshold value may be

α = −6 α = −2 Original α = 2 α = 6

β
=

0
.1
6

β
=

0
.1
4

β
=

0
.1
1

Figure 6. Image manipulation driven by the prompt “grey hair” for
different manipulation strengths and disentanglement thresholds.
Moving along the ∆s direction, causes the hair color to become
more grey, while steps in the −∆s direction yields darker hair.
The effect becomes stronger as the strength α increases. When
the disentanglement threshold β is high, only the hair color is af-
fected, and as β is lowered, additional correlated attributes, such
as wrinkles and the shape of the face are affected as well.

preferable, as demonstrated in Figure 6. To our knowledge,
the ability to control the degree of disentanglement in this
manner is unique to our approach.

In summary, given a target direction ∆i in CLIP space,
we set

∆s =

{
∆ic ·∆i if |∆ic ·∆i| ≥ β

0 otherwise (7)

Figures 7 and 8 show a variety of edits along text-driven
manipulation directions determined as described above on
images of faces, cars, and dogs. The manipulations in Fig-
ure 7 are performed using StyleGAN2 pretrained on FFHQ
[24]. The inputs are real images, embedded in W+ space
using the e4e encoder [54]. The figure demonstrates text-
driven manipulations of 18 attributes, including complex
concepts, such as facial expressions and hair styles. The
manipulations in Figure 8 use StyleGAN2 pretrained on
LSUN cars [61] (on real images) and on generated images
from StyleGAN2-ada [23] pretrained on AFHQ dogs [8].

7. Comparisons and Evaluation

We now turn to compare the three methods presented and
analyzed in the previous sections among themselves and to
other methods. All the real images that we manipulate are
inverted using the e4e encoder [54].

Text-driven image manipulation methods: We begin
by comparing several text-driven facial image manipulation
methods in Figure 9. We compare between our latent map-
per method (Section 5), our global direction method (Sec-
tion 6), and TediGAN [59]. For TediGAN, we use the au-
thors’ official implementation, which has been recently up-
dated to utilize CLIP for image manipulation, and thus is
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Input Pale Tanned Makeup Curly Hair Straight Hair Bob Cut Hi-top Fade Fringe Hair

Input Wrinkle Sad Angry Surprised Beard Bald Grey Hair Black Hair

Figure 7. A variety of edits along global text-driven manipulation directions, demonstrated on portraits of celebrities. Edits are performed
using StyleGAN2 pretrained on FFHQ [24]. The inputs are real images, embedded in W+ space using the e4e encoder [54]. The target
attribute used in the text prompt is indicated above each column.

Input Jeep Sports From Sixties Classic Input Happy Big Eyes Golden Fur Bulldog

Figure 8. A variety of edits along global text-driven manipulation directions. Left: using StyleGAN2 pretrained on LSUN cars [61]. Right:
using StyleGAN2-ada [23] pretrained on AFHQ dogs [8]. The target attribute used in the text prompt is indicated above each column.

somewhat different from the method presented in their pa-
per. We do not include results of the optimization method
presented in Section 4, since its sensitivity to hyperparame-
ters makes it time-consuming, and therefore not scalable.

We perform the comparison using three kinds of at-
tributes ranging from complex, yet specific (e.g., “Trump”),
less complex and less specific (e.g., “Mohawk”), to simpler
and more common (e.g., “without wrinkles”). The complex
“Trump” manipulation, involves several attributes such as
blonde hair, squinting eyes, open mouth, somewhat swollen
face and Trump’s identity. While a global latent direction
is able to capture the main visual attributes, which are not
specific to Trump, it fails to capture the specific identity. In
contrast, the latent mapper is more successful. The “Mo-

hawk hairstyle” is a less complex attribute, as it involves
only hair, and it isn’t as specific. Thus, both our methods
are able to generate satisfactory manipulations. The ma-
nipulation generated by the global direction is slightly less
pronounced, since the direction in CLIP space is an aver-
age one. Finally, for the “without wrinkles” prompt, the
global direction succeeds in removing the wrinkles, while
keeping other attributes mostly unaffected, while the map-
per fails. We attribute this to W+ being less disentangled.
We observed similar behavior on another set of attributes
(“Obama”,“Angry”,“beard”). We conclude that for com-
plex and specific attributes (especially those that involve
identity), the mapper is able to produce better manipula-
tions. For simpler and/or more common attributes, a global
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Input TediGAN Global Mapper Input TediGAN Global Mapper Input TediGAN Global Mapper

Trump Mohawk Without wrinkles

Figure 9. We compare three methods that utilize StyleGAN and CLIP using three different kinds of attributes.

direction suffices, while offering more disentangled manip-
ulations. We note that the results produced by TediGAN fail
in all three manipulations shown in Figure 9.

Other StyleGAN manipulation methods: In Figure 10,
we show a comparison between our global direction method
and several state-of-the-art StyleGAN image manipula-
tion methods: GANSpace [19], InterFaceGAN [49], and
StyleSpace [58]. The comparison only examines the at-
tributes which all of the compared methods are able to ma-
nipulate (Gender, Grey hair, and Lipstick), and thus it does
not include the many novel manipulations enabled by our
approach. Since all of these are common attributes, we do
not include our mapper in this comparison. Following Wu
et al. [58], the manipulation step strength is chosen such
that it induces the same amount of change in the logit value
of the corresponding classifiers (pretrained on CelebA).

It may be seen that in GANSpace [19] manipulation is
entangled with skin color and lighting, while in InterFace-
GAN [49] the identity may change significantly (when ma-
nipulating Lipstick). Our manipulation is very similar to
StyleSpace [58], which only changes the target attribute,
while all other attributes remain the same.

In the supplementary material, we also show a com-
parison with StyleFLow [1], a state-of-the-art non-linear
method. Our method produces results of similar quality,
despite the fact that StyleFlow simultaneously uses several
attribute classifiers and regressors (from the Microsoft face
API), and is thus can manipulate a limited set of attributes.
In contrast, our method requires no extra supervision.

Limitations. Our method relies on a pretrained Style-
GAN generator and CLIP model for a joint language-vision
embedding. Thus, it cannot be expected to manipulate im-
ages to a point where they lie outside the domain of the
pretrained generator (or remain inside the domain, but in re-
gions that are less well covered by the generator). Similarly,
text prompts which map into areas of CLIP space that are
not well populated by images, cannot be expected to yield a
visual manipulation that faithfully reflects the semantics of
the prompt. We have also observed that drastic manipula-
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Figure 10. Comparison with state-of-the-art methods using the
same amount of manipulation according to a pretrained attribute
classifier.

tions in visually diverse datasets are difficult to achieve. For
example, while tigers are easily transformed into lions (see
Figure 1), we were less successful when transforming tigers
to wolves, as demonstrated in the supplementary material.

8. Conclusions

We introduced three novel image manipulation methods,
which combine the strong generative powers of StyleGAN
with the extraordinary visual concept encoding abilities of
CLIP. We have shown that these techniques enable a wide
variety of unique image manipulations, some of which are
impossible to achieve with existing methods that rely on
annotated data. We have also demonstrated that CLIP pro-
vides fine-grained edit controls, such as specifying a desired
hair style, while our method is able to control the manipu-
lation strength and the degree of disentanglement. In sum-
mary, we believe that text-driven manipulation is a powerful
image editing tool, whose abilities and importance will only
continue to grow.
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